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Peterlin and Trono Nature Rev. Immu. 3. (2003)

Host machinery is essential in the viral life cycle.
Established through host-virus protein interactions.



Predicting HIV-1,human protein-protein interactions
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HIV-1, host protein-protein interaction data

Fu W et al. NAR 37:D417-22 (2009)

Ptak RG et al. AIDS. 24(12):1497-502 (2008)

2589 interactions
1448 human proteins

Which of these interactions
are direct physical
interactions?

How confident are we in each
interaction being a direct
physical interaction?

National Institute of Allergy & Infectious Diseases

% NCBI ‘ HIV-1, Human Protein Interaction Database
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« Keywords of indirect interactions b)

HIV-1 human protein interactions
Keywords: “Nef binds p61HCK"
« Keywords of more likely direct interact!)ons
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HIV-1 human protein interactions
Keywords: “Nef binds p61HCK"

Keywords of more likely direct interacti)ons
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Support of interactions
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Majority of the interactions are supported by single publication!



Subsetting high-quality interaction data is challenging

 Many literature curated databases offer details on
» the experimental techniques that found the interaction
 the publications reporting it
« occasionally a score based on several predefined parameters

1 Yet, subsetting for high quality set of interactions is a
challenge



Many techniques to detect PPls experimentally

O There is a long list of techniques used to detect PPls,
 Affinity Capture-Luminescence
 Affinity Capture-MS
« Biochemical Activity
» Co-crystal Structure
» Co-fractionation
» Co-localization
» Co-purification
« FRET
« Two-hybrid

O The strength of the evidence depends on how the experiment is conducted
in what conditions, the properties of the proteins, etc



Ask HIV-1 experts

Do you think there is enough evidence to conclude
the two proteins physically directly interact?

Interactions

& )
Hyperlinks to publications

1 Experts were HIV-1 biologists:

O 15 professors well known in the field, 1 PhD student
] Experts are only asked interactions of the viral proteins that
they are expert of.



= ANnotated 'not a direct interaction’
Experts

= Annotated ‘direct interaction’
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Experts disagree
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Example: ‘vpu stabilizes catenin’
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Estimating the most probable label

« Given multiple expert opinions on an interaction, what is the
most probable label and the confidence in the label?

 Introduce expert labeling accuracy to be able to account for
subjectivity, bias of experts.



Expert labeling accuracy

e Let's consider N literature reported protein-protein interactions

e Let y; € Z indicate the true and hidden label for the it" PPI, where Z =
{“direct physical interaction” or “not”}

e Expert labels y; = {y},v?,...,yM} provided by M different experts.

e Similiar to Raykar et al. biased coin model (Raykar et al. JLMR 2010) define
expert 5 labeling accuracy for the label type z:



The probability of the label type

The probability of a label type for the interaction:

M

= p} x [p1)"¥1 =) x [(1 — )] =

Most probable label for the interaction given the expert opinions:
yi = argmax gi(z| ©)

The uncertainty of this label:

ui(9;) =1 =P (y; = U | i, O)



Estimating expert labeling accuracies

Estimate the parameters © through maximum likelihood estimation (MLE):
O™ — arg max L(D|O)

where D = {(vi,y7,...,y;" ) }ie1...N

The log-likelihood of the observed expert opinions:

L(D[©)=> logP (y;|O) ZZIOgZP(inyq; =2,0)xP(y; =2|0)

1=1

We assume decisions by the experts are conditionally independent given the true
label:

L(D|O) Zlogz (HP( fyiz,@)P(yiz@))



Finding MLE of labeler accuracies

D EXpeCtatlon-maX|mlzat|On (Dempster et al J.R. Stat.Soc. 1977)

Start with an initial guess of 0

|

Expectation step

Given the current estimate of 0,
guess the most probable label

types for each interaction \

Maximization step

Given label types, estimate expert

_ being accuracies maximizing the log
Repeat until convergence likelihood




Synthetic experiments set up

Generate labels

Generate expert labeler

for N interactions randomly accuracies, 0, randomly

Generate expert opinions

l

Estimate 6

{ |




Average Mean Squareq Error
Expert Labeling Accuracy

Synthetic data experiments
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Precision
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Refined interactome

gp41 pr55

Solid line: Estimated probability of being a direct interaction is 20.5
Dashed line: Estimated probability of being a direct interaction is <0.5

Edge thickness indicates confidence in the interaction



Possible directions

1 Moving from experts to crowds — students?

1 Providing incentives to annotate data

1 Estimating over which type of interactions the
labeler is better and optimizing which expert to ask
which set of interactions
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Questions?




