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Abstract—Gait assessment is a common method for
diagnosing various diseases, disorders, and injuries, studying
their impact on mobility, and evaluating the efficacy of various
therapeutic interventions. The recent emergence of inertial body
sensors for gait assessment addresses the limitations of visual
observation and subjective clinical evaluation by providing more
precise and objective measures. Inertial sensors have been
included in an ongoing study at the University of Virginia
Medical Center on Multiple Sclerosis (MS), a chronic
autoimmune disorder of the central nervous system (CNS) that
produces neurologic impairment and functional disability over
time, with the goal of improving the ability to assess MS-affected
gait and to distinguish between subjects with MS and those
without MS.

This work presents a gait assessment technique based on
causal modeling to distinguish MS-affected gait and healthy gait.
The approach in this work is based on the hypothesis that the
strength of interaction between body parts during walking is
greater in healthy controls that in MS subjects. The strength of
interaction was quantified using a causality index based on the
pairwise causal relationships between body parts as
characterized by the Phase Slope Index (PSI) of inertial signals
from pairs of body parts. In a pilot study with 41 subjects (28 MS
subjects and 13 healthy controls), the approach developed in this
paper provided better separability (p < 0.0001) compared with
existing methods.

Keywords—inertial body sensors; gait assessment; multiple
sclerosis; causality

I. INTRODUCTION

In recent years, performance in the 6-minute walk (6MW)
is gaining popularity as an outcome measure in evaluating
Multiple Sclerosis (MS), which is a chronic autoimmune
disorder of the central nervous system (CNS) that results in
neurologic impairment and functional disability over time [1].
Over the course of the disease, loss of functional ambulation
occurs in almost all patients. Walking performance is,
therefore, an important outcome to assess severity of disease,
disease progression, and therapeutic efficacy. More recently
there has been interest in the objectivity that inertial sensing
provides over human observation.
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There are many methods for gait assessment based on
inertial body sensors using gait cycle detection [2], gait pattern
recognition [3], etc. Often temporal gait features based on gait
phase decomposition are used. These include gait speed [1, 4],
stride length [5], joint angles [6], swing time [7], double stance
time, single stance time [8] or other derived parameters [9].
Other systems for gait assessment include motion capture
system based on computer vision techniques, such as Vicon,
which provides 3D position tracking.

Despite the advances in MS research using gait assessment,
the detailed impact of MS disease on gait performance is
unresolved. For instance, the neurologic impairment and
functional disability may result in left foot abnormality in one
individual, but right arm abnormality in another. Since MS can
affect different body parts in different individuals, separately
investigating gait parameters in individual body parts may not
work well for MS gait assessment.

In addition, human motion consists of not only the spatial-
temporal evolution of individual body parts, but also the
coordination and interaction between body parts. Johansson
[10] showed that humans recognize motions by observing only
a few tracked points and considering their interactions. The
interactions among body parts contain rich information of body
motion, even more than the separate spatial-temporal evolution
of body parts. These interactions give a richer representation
and quantification of the body motions.

Since the impact of MS disease on gait performance would
result in the motion abnormality of any body part,
comprehensive gait assessment of the whole body is needed for
improving separability in MS diagnosis. According to the
above analysis of human motion, we calculate the overall
interactions between body parts to assess the comprehensive
gait performance. The idea behind this paper is a hypothesis
that these interactions between body parts are stronger in
healthy controls than in MS subjects.

In this work, we propose a causality-based approach for
quantifying these interactions between body parts with the goal
of providing better separability in MS diagnosis compared with
previous work. We evaluate our method on a data set of inertial



body sensor data, including 121 data sessions, each of which
contains time series data from 41 subjects (28 MS and 13
healthy control) performing the 6MW wearing 5 inertial body
sensors (a 3-axis accelerometer and 3-axis gyroscope on both
wrists, both ankles, and sacrum). We compare to state-of-the-
art methods for the separability performance in MS diagnosis.

Organization of the rest of the paper is as follows.
Approach for gait assessment using interactions among body
parts is explained in Section II. The details of the experimental
setup are provided in Section III. Results on the data set for
motion assessment and experiments related to MS diagnosis
are given in Section IV. Comparison with other related work is
discussed in Section V, and we conclude the paper in Section
VL

II.  CAUSALITY BASED APPROACH

Causal interactions among body parts occur inherently
among motion patterns in an action and capturing such
interactions will help in modeling and quantifying actions
better. In this section we will formally introduce causality and
use it to construct descriptors which will encode the
interactions among body parts. In order to quantify the
specified action (walking) regardless of the effect of other
needless actions, such as body rotation, we perform a coarse-
level segmentation to eliminate the needless actions. Pairwise
causality matrix based on Phase Slope Index (PSI) [11, 12] is
built for each data segment from coarse-level segmentation. At
last, the average value of the significant PSIs in pairwise
causality matrix is used as a metric so called causality index to
represent the strength of the interactions between the body
parts. Figure 1 illustrates an example of the proposed motion
assessment approach.

A. What is Causality?

The idea behind that a signal is said to be “causal” to
another comes from the understanding of the interacting
system in a physical view. This was formalized by Nolte [11],
and this interaction between a pair of signals is so called
“Phase Slope Index”. The central idea behind the PSI measure
of causal influence is that the cause precedes the effect in time
and thus the slope of the phase of the cross spectrum between
two signals reflects the direction of influence.

Given two time-varying signals x;[t] and x;[t]. ~ The cross

spectrum between them is defined as follows:
$i;(f) = E[X:(NX j(N)] M
And the complex coherence is
Sii(F)

Ci(f) = —L— 2

The unnormalized PSI metric is defined using complex
coherence as follows [13]

@, = Imag(Trer C;;(F)Cij (f + 6)) 3)

Where fis the frequency band of interest and §f is the
frequency resolution. It is straightforward to show that ‘f’ij
measures a weighted sum of the slopes of the phase between
x[t] and x;[t] over the band f [11]. This measure is
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Figure 1: Illustration of causality based approach: The time series data is
segmented in coarse level to eliminate the needless actions. The causal
interactions between pairs of body parts are caculated resulting in a pairwise
causality matrix (PCM) for each data segment. The average value of the
quantifications of PCM so called causality index is used to quantify the
strength of the interactions among body parts during the time series.

normalized by its standard deviation to obtain a metric ¥;;that
can be used to determine whether causal influence from x;[t]
to x;[t] is significant:

__ Yy
¥y = std(¥y)) 4
The causal direction is estimated to go from x;[¢] to x;[t] if
¥;; is positive. Nolte et al. [12] suggest that absolute values of
¥;; greater than 2 should be considered significant. We
compute ¥;;using the MATLAB software available in [11].

B. Coarse-Level Segementation

In order to get better quantification of the walking
performance, we adopt a coarse level segmentation to eliminate
the needless actions (body rotation in this application). When
the subjects wearing inertial sensors on the lower limbs were
asked to undergo an in-clinic 6MW, they are required to walk
as far and as fast as possible up and down a 75-foot hallway,
the actions merged in the data from inertial body sensors
contained straight walking and body rotation. These two
different actions have different coordination strategies in the
body parts, which may affect the causality estimation.

(a)

i i

(e)

Figure 2: An example of coarse-level segementation: (a) original time-series
data; (b) change point discovery and (c) 20 motion data segements were
extracetd from the time series data in this example.

With considerations of human factors during the real-world
deployment, such as mounting errors (from sensor
displacement orientation) [14] and looseness of sensors [15],
we adopted a robust segmentation method proposed in [16].
The method combined change point discovery and features
based on linear dynamical system to robustly segment time
series inertial data into different temporal scales.



Figure 2 shows an example of one data session from one
subject’s 6MW. The segmentation method successfully cuts
the time series data into 20 pieces and eliminates the needless
actions. For more information about the segmentation method,
we refer the reader to [16].

C. Pairwise Causality Matrix

Our hypothesis is that the strength of the interactions
among body parts in healthy control subjects is greater than in
MS subjects. In order to represent the interactions among body
parts, we use the normalized PSI to construct a pairwise
causality matrix of the inertial body sensors which are attached
on different body parts, as described in the following, and then
count how many significant PSI in the matrix as the strength of
the interactions. The strength value will be used as a metric
which we called the causality index to represent the
interactions among body parts. This is the proposed gait
assessment of the subject during the 6MW.

Let x[t] € RN*D denote time series data session from
inertial body sensors during 6MW where D is the signal
dimension of each inertial body sensor and N is the number of
inertial body sensors the clinics adopted to put on the subject’s
body. In other words, N is the number of the body parts the
interactions among which we are going to investigate. The
reason that we consider all the dimensions in the signal from
each inertial body sensor is the uncertain orientation of the
inertial body sensor during the real-world deployment of
6MW. It means we cannot eliminate any dimensional signal
since the orientation of inertial body sensors is unknown. We
therefore consider all the dimensional signals to discover the
interactions between inertial body sensors.

After coarse-level segmentation, x[t] € RN*P is segmented
into xX[t],k € [1,2..M], where M is the number of the data
segments. Note that the segments do not overlap. Let xK[t] €
R! and X}‘[t] € R denote a pair of 1D signals in dimension i
and j, respectively, where i,j € {1,2, ..., N = D}. Now let ‘Pi}j‘ be
the PSI computed using xX[t] and X]-k[t]. Then the matrix¥X is
the pairwise causality matrix of the k segment of time series
data xX[t]. Otherwise, the diagonal D*D matrix in the ND*ND
matrix WX are set to 0, because the self-causality cannot be

counted as interactions. Figure 3 shows the graphic and matrix
demonstration of the pairwise causality between body parts.

We judge the significance of the PSI according to the
suggestion from Nolte et al. [11], and then count the number of
significant PSIs in the pairwise causality matrix. Considering
our hypothesis, the number of significant PSIs in the pairwise
causality matrix is used to describe the strength of the
interactions among body parts during the walking period of the
k segment of time series data x¥[t].

The binary pairwise causality matrix using significant
threshold is given as below:

k — wk
A=W (5)
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Figure 3: Illustration of pairwise causality in graph and matrix demonstrarion:
the subject wears five inertial body sensors in left/right wrist, left/right ankle
and sacrum, and the 3D gyroscope data from each inertial sensor is used to
calculate the 15*15 pairwise causality matrix. Note that the diagonal 3*3
matrix are set to be 0, because the self-causality are not counted as
interactions.
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Figure 4: An example of binary pairwise causality matrix: threshold is
suggested by Nolte et al. [11] to select the significant PSIs and then the
significant PSIs is counted as a metric for describe the strength of the

interactions between body parts in the data segment.
Where
. _{1,if|\p{;|zz ;
debl=2 = o, if |wk| < 2 ©
Figure 4 gives an example of the determination of

significant PSIs in pairwise causality matrix using the
threshold suggested by Nolte et al. [11].

The strength of the interactions among all the body parts in
the kth segment of data as follows:

k1 k
0% = Yija=n ¥ 1{|W’i‘j|22} @

D. Causality Index

Based on the calculation of pairwise causality matrix, we
create a causality index for each data session to represent the
average strength of the interactions among body parts during
the 6BMW. The causality index is defined as below:

C(x[t]) = - X O ()

Figure 1 illustrates the calculation process of causality
descriptor for a time series data session as an example. This
feature is used to separate the healthy control and MS subjects.
In corresponding to our motivated hypothesis, if the causality



indexes of healthy controls were larger than those of MS
subjects, then the hypothesis get proved.

III. EXPERIMENTAL SETUP

A. Description

41 study subjects (28 MS and 13 healthy control) wearing 5
inertial sensors (3 axes of accelerometers and gyroscopes on
each sensor node) on the left/right wrists, left/right ankles and
sacrum were asked to undergo an in-clinic 6MW. Figure 3
illustrates the locations of the inertial body sensors on the
body.

Followed by a medical assistant with a measurement wheel,
the distance walked was recorded in 1-minute epochs. Subjects
were asked to walk as far and as fast as possible (without
running) up and down a 75-foot hallway. The inertial sensor
data was wirelessly transmitted to a laptop for post-processing.

The sampling rate of inertial sensors is 128Hz which is
sufficient to capture the frequency band of the body motion in
walking action. The operator of the data collection system is
required to make timestamp annotations in order to indicate the
beginning and end of the walking actions.

B. Acquisition and Preprocessing

132 data sessions were collected in 3 years and each subject
performed at least once 6MW. All the data sessions are
calibrated with the recorded calibration parameters that had
been done before the data collection [14]. There is no general
normalization in the data preprocessing. However, due to the
technical issues of our custom data collection system and
human factors in the real-world deployment, 11 data session
failed in the calibration process; 6 of them have too much drop
packets during the wireless transmission to the laptop for data
collection, 3 of them have timestamp etror due to the system
operator’s fault, and 2 of them lose the calibration parameters
in the calibration records. Finally, 36 data sessions were
collected from 13 healthy controls while 85 data sessions were
collected from 28 MS subjects, successfully.

Current causality algorithms, including PSI and granger
causality, always have restriction on the stationary properties
of the input signal. As the discussion in [16], accelerometer
data always merged with random spikes and other artifacts
make its stationary property cannot meet well for the
requirements of causality algorithms. In contrast, short-term
calibrated gyroscope data basically meets the stationary
requirements of causality algorithms. According to the initial
test results of accelerometer and gyroscope data with different
causality algorithms, we choose the calibrated gyroscope data
as the target and PSI as the causality estimation method in our
experiments. It means each data session contain 15
dimensional gyroscope data from the 5 inertial body sensors.

C. Setting Parameters

There are three parameters needed to be set up before
running the proposed algorithm: frequency band and frequency
resolution in equation (3) and threshold used to quantify the
significance of PSIs in pairwise causality matrix.

Recently the discovery in causal relationship between the
frequency band of motion and neurological signals had been

978-1-4673-7201-5/15/$31.00 ©2015 IEEE

reported [17, 18], however there is rare prior knowledge about
which frequency band of body motion is dominated during
walking and how this motion frequency gets impact from MS
disease. In order to avoid the information loss, we therefore
choose the all frequency bandwidth in the data (1-64Hz). The
frequency resolution is chosen as 0.5Hz. As mentioned before,
we adopt the suggestion from Nolte [11] to choose the
threshold as 2.

IV. RESULTS

Figure 5 shows the causality index calculated from 121
data sessions. The blue bars indicate the 36 data sessions are
collected from healthy control subjects, while green bars
indicate the data sessions collected from MS subjects.
Apparently, the healthy control subjects have higher causality
index than MS subject. More specifically, the outlier of the
healthy control subject in the red circle shown in Figure 5 is the
subject 39. From the clinic records, this healthy control subject
got a surgery between the two moments of 6MW data
collection. The impact on the gait performance of the subject
from surgery should be considered in future research. Other
outliers of MS subjects in black circle will be investigated in
future personalized analysis combining other medical records
or factors, which is not included in this paper.

[l Healthy Controls
VS Subjects

Number of Data Sessions

40 45 60
Causality Index

Figure 5: Experimental results of causality index caculated from 121 data
sessions. The outlier of healthy control subjects in ellipse circle is subject No.
39. The clinic record shows the subject got a surgery between the moments of
two data sessions.
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Figure 6: Comparision of causality index between healthy control and MS
subjects.

Figure 6 illustrates the comparison of the causality index
from the two groups: healthy control and MS subjects. The
average value of the distribution in healthy control group is
higher than in MS group.



We adopt two statistical evaluation methods, Cohen-D
(Effect Size) [19] and t-test (p value), to compare the
performance of different features in separability between
healthy control and MS subjects in this dataset. Gait speed is
the current clinically-used metric for gait assessment in MS
diagnosis [1]. Chen et al. [9] reported a set of features extracted
from gait cycle detection and the best of the features is the ratio
between double stance time and single stance time (DST/SST).
The reason for we compared to Chen et al is because we had
access to their original data and code for identifying the various
events. We selected these two features in the experiment of
performance comparison. Effect size (p value) of gait speed,
DST/SST, and causality index are 0.74 (p<0.05), 0.96 (p<0.01)
and 1.12 (p<0.0001), respectively. The proposed causality
index improves much in separability for MS subject diagnosis.

Apparently, it is reasonable to find a threshold in causality
index calculated from inertial sensor data to assist the MS
diagnosis which is the goal of this research. As you can see in
Figure 5 and 6, the threshold in this pilot data can be set up at
40. However, in order to generalize the efficacy of the
threshold in MS diagnosis, we need to collect more data and
conduct more research in personalized analysis regarding of
other factors as mentioned before.

Effect SizeE ]

S: 1.12
12 ES: 0.96 p<0.0001
p<0.01
ES: 0.74
0.8 p<0.05
0.6
m Effect Size
0.4
0.2
0 T
Guait Speed  DST/SST [9] Causality
Index

Figure 7: Performance comparision of different features in separability
between healthy control and MS subjects in this dataset. Effect size (p value)
of gait speed, ratio between double stand time and single stand time
(DST/SST), and causality index are 0.74 (p<0.05), 0.96 (p<0.01) and 1.12
(p<0.0001), respectively.
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Figure 8: A comparision example of strength of interactions between inertial
body sensors from healthy control and MS subject: the causality index on the
left (66) is calculated from the 2™ sement in No. 23 data session (subject 90,
health(?/ control), while the causality index on the right (40) is calculated from
the 2™ sement in No. 45 data session (subject 64, MS subject).

As we know, gait speed is measured manually in clinics
with man power and time consumption, while Chen et al. [9]
requires the fine-level gait cycle detection to decompose the
gait cycles in double stance time, single stance time and swing
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time that means it heavily relies on the accurate gait cycle
detection and is fragile to noise. It is also a time-consuming
method to reliably detect gait cycles in the real-world time
series data. In contrast, the proposed causality index conducts
coarse-level segmentation instead of gait cycle detection. It
enhances the robustness of the method in real-world data
processing. We implemented the proposed method in a
commercial PC with Intel i7 CPU and 8G memory using
MATLAB code. Each data session took 2 seconds to calculate
the causality index. Therefore, the proposed method is a fast
and robust algorithm to provide better performance.

Considering the motivated hypothesis, the experimental
results can give a conclusion that it is proved: According to the
performance of separability in healthy control and MS subjects,
the strength of the interactions between body parts in healthy
control is stronger than in MS subjects. Figure 8 illustrates an
comparison example of strength of interactions between
inertial body sensors from healthy control and MS subject.

V. RELATED WORK

Similar to this work, a number of the causality based
methods for motion assessment has been used in other research
fields such as computer vision, motion capture system, music
conducting. Narayan et al. [20] computed the feature
interactions based on causality between pairs of trajectories of
body parts from video for human action recognition. Jiang et
al. [21] proposed an action classification method using 2D
histogram on trajectory features. Sachoon [22] proposed a
sparse causality graph to classify human actions using motion
capture data.

Alessandro et al. [23] explored the interaction between
music conductors and musicians using accelerometer equipped
on the arms of the subjects.

Mohammad et al. [24] proposed a framework for mining
causal relationships in time-series data with comparable
experimental results using accelerometers and motion capture
system.

All the above approaches are used to perform action
classification or interaction exploration and most of them have
been applicable in motion capture data or video. Although [23,
24] demonstrated the ability to process the -causality
relationship in accelerometer data, these methods had only few
time series signals to deal with and the signals were known to
be originating from specific joints in case of action recognition.
We propose an approach to incorporate the advantages of
causality measures in the data processing of inertial body
sensors for MS diagnosis where such constraints cannot be
fulfilled. First, the signals from inertial body sensors during the
6MW for MS diagnosis are in higher dimensions without the
information of specific joints. Second, gait assessment in 6MW
is a task of motion quantification in the same action (walking)
rather than a task of classification from different actions.
Compared with state-of-the-art methods, the proposed method
has better separability in MS diagnosis and our motivated
hypothesis is proved.

Based on the above considerations, the contributions of this
paper are:



1. An approach for incorporating the interactions among
large number of inertial signals (i.e., 15-dimensional
signal from 5 inertial body sensors) in a clinical
deployment.

2. Strong evidence that the strength of interactions
between body parts in healthy control subjects during
6-minutes walking is stronger than in MS subjects.

VI. CONCLUSION

This paper is motivated by the hypothesis that the strength
of the interactions between body parts in healthy controls is
greater than in MS subjects. In order to test the hypothesis, we
developed a causality index, a technique that leverages causal
modeling theory for quantifying the interactions between body
parts through the time series data from inertial body sensors.
The pairwise causality matrix is calculated to model all the
interactions between body parts, and the causality index is used
to assess the gait performance of the subject during 6MW. The
novelty comes from the causality index incorporating the
interactions among inertial body sensors as rich information
into gait assessment. The main contribution comes from the
proven hypothesis, which provides a new technical view in MS
research. We have compared causality index to state-of-the-art
algorithms for separability in MS research, with the causality
index achieving better performance.

Future work focuses on personalized signal processing for
high precision diagnosis, intuitional meaning extraction for
clinicians, and deep leaning in causal relationship between the
gait performance and clinic records.
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