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Abstract—Gait assessment is a common method for 

diagnosing various diseases, disorders, and injuries, studying 
their impact on mobility, and evaluating the efficacy of various 
therapeutic interventions. The recent emergence of inertial body 
sensors for gait assessment addresses the limitations of visual 
observation and subjective clinical evaluation by providing more 
precise and objective measures. Inertial sensors have been 
included in an ongoing study at the University of Virginia 
Medical Center on Multiple Sclerosis (MS), a chronic 
autoimmune disorder of the central nervous system (CNS) that 
produces neurologic impairment and functional disability over 
time, with the goal of improving the ability to assess MS-affected 
gait and to distinguish between subjects with MS and those 
without MS. 

This work presents a gait assessment technique based on 
causal modeling to distinguish MS-affected gait and healthy gait. 
The approach in this work is based on the hypothesis that the 
strength of interaction between body parts during walking is 
greater in healthy controls that in MS subjects. The strength of 
interaction was quantified using a causality index based on the 
pairwise causal relationships between body parts as 
characterized by the Phase Slope Index (PSI) of inertial signals 
from pairs of body parts. In a pilot study with 41 subjects (28 MS 
subjects and 13 healthy controls), the approach developed in this 
paper provided better separability (p < 0.0001) compared with 
existing methods. 

Keywords—inertial body sensors; gait assessment; multiple 
sclerosis; causality 

I. INTRODUCTION 

In recent years, performance in the 6-minute walk (6MW) 
is gaining popularity as an outcome measure in evaluating 
Multiple Sclerosis (MS), which is a chronic autoimmune 
disorder of the central nervous system (CNS) that results in 
neurologic impairment and functional disability over time [1]. 
Over the course of the disease, loss of functional ambulation 
occurs in almost all patients. Walking performance is, 
therefore, an important outcome to assess severity of disease, 
disease progression, and therapeutic efficacy. More recently 
there has been interest in the objectivity that inertial sensing 
provides over human observation. 

There are many methods for gait assessment based on 
inertial body sensors using gait cycle detection [2], gait pattern 
recognition [3], etc. Often temporal gait features based on gait 
phase decomposition are used. These include gait speed [1, 4], 
stride length [5], joint angles [6], swing time [7], double stance 
time, single stance time [8] or other derived parameters [9]. 
Other systems for gait assessment include motion capture 
system based on computer vision techniques, such as Vicon, 
which provides 3D position tracking. 

Despite the advances in MS research using gait assessment, 
the detailed impact of MS disease on gait performance is 
unresolved. For instance, the neurologic impairment and 
functional disability may result in left foot abnormality in one 
individual, but right arm abnormality in another. Since MS can 
affect different body parts in different individuals, separately 
investigating gait parameters in individual body parts may not 
work well for MS gait assessment. 

In addition, human motion consists of not only the spatial-
temporal evolution of individual body parts, but also the 
coordination and interaction between body parts. Johansson 
[10] showed that humans recognize motions by observing only 
a few tracked points and considering their interactions. The 
interactions among body parts contain rich information of body 
motion, even more than the separate spatial-temporal evolution 
of body parts. These interactions give a richer representation 
and quantification of the body motions. 

Since the impact of MS disease on gait performance would 
result in the motion abnormality of any body part, 
comprehensive gait assessment of the whole body is needed for 
improving separability in MS diagnosis. According to the 
above analysis of human motion, we calculate the overall 
interactions between body parts to assess the comprehensive 
gait performance. The idea behind this paper is a hypothesis 
that these interactions between body parts are stronger in 
healthy controls than in MS subjects. 

In this work, we propose a causality-based approach for 
quantifying these interactions between body parts with the goal 
of providing better separability in MS diagnosis compared with 
previous work. We evaluate our method on a data set of inertial 
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body sensor data, including 121 data sessions, each of which 
contains time series data from 41 subjects (28 MS and 13 
healthy control) performing the 6MW wearing 5 inertial body 
sensors (a 3-axis accelerometer and 3-axis gyroscope on both 
wrists, both ankles, and sacrum). We compare to state-of-the-
art methods for the separability performance in MS diagnosis. 

Organization of the rest of the paper is as follows. 
Approach for gait assessment using interactions among body 
parts is explained in Section II. The details of the experimental 
setup are provided in Section III. Results on the data set for 
motion assessment and experiments related to MS diagnosis 
are given in Section IV. Comparison with other related work is 
discussed in Section V, and we conclude the paper in Section 
VI. 

II. CAUSALITY BASED APPROACH 

Causal interactions among body parts occur inherently 
among motion patterns in an action and capturing such 
interactions will help in modeling and quantifying actions 
better. In this section we will formally introduce causality and 
use it to construct descriptors which will encode the 
interactions among body parts. In order to quantify the 
specified action (walking) regardless of the effect of other 
needless actions, such as body rotation, we perform a coarse-
level segmentation to eliminate the needless actions. Pairwise 
causality matrix based on Phase Slope Index (PSI) [11, 12] is 
built for each data segment from coarse-level segmentation. At 
last, the average value of the significant PSIs in pairwise 
causality matrix is used as a metric so called causality index to 
represent the strength of the interactions between the body 
parts. Figure 1 illustrates an example of the proposed motion 
assessment approach. 

A. What is Causality? 

The idea behind that a signal is said to be “causal” to 
another comes from the understanding of the interacting 
system in a physical view. This was formalized by Nolte [11], 
and this interaction between a pair of signals is so called 
“Phase Slope Index”. The central idea behind the PSI measure 
of causal influence is that the cause precedes the effect in time 
and thus the slope of the phase of the cross spectrum between 
two signals reflects the direction of influence. 

Given two time-varying signals ݔ௜ሾݐሿ and ݔ௝ሾݐሿ.  The cross 
spectrum between them is defined as follows: 

                        ௜ܵ௝ሺ݂ሻ ൌ ൣܧ ௜ܺሺ݂ሻܺ	 ሺ݂ሻ௝
∗ ൧                         (1) 

And the complex coherence is 

௜௝ሺ݂ሻܥ ൌ 	
ௌ೔ೕሺ௙ሻ

ටௌ೔೔ሺ௙ሻௌೕೕሺ௙ሻ
                              (2) 

The unnormalized PSI metric is defined using complex 
coherence as follows [13]           

෩௜௝ߖ ൌ ∑൫݃ܽ݉ܫ ܥ ሺ݂ሻܥ௜௝ሺ݂ ൅ ሻ௜௝݂ߜ
∗

௙∈ி ൯              (3) 

Where 	݂ is the frequency band of interest and ݂ߜ is the 
frequency resolution. It is straightforward to show that ߖ෩௜௝ 
measures a weighted sum of the slopes of the phase between 
  ሿ over the band ݂ [11]. This measure isݐ௝ሾݔ ሿ andݐሾݔ

 
Figure 1: Illustration of causality based approach: The time series data is 
segmented in coarse level to eliminate the needless actions. The causal 
interactions between pairs of body parts are caculated resulting in a pairwise 
causality matrix (PCM) for each data segment. The average value of the 
quantifications of PCM so called causality index is used to quantify the 
strength of the interactions among body parts during the time series. 

normalized by its standard deviation to obtain a metric ߖ௜௝that 
can be used to determine whether causal influence from ݔ௜ሾݐሿ 
to ݔ௝ሾݐሿ is significant: 

௜௝ߖ  ൌ
అ෩೔ೕ

௦௧ௗሺఅ෩೔ೕሻ
                                       (4) 

The causal direction is estimated to go from ݔ௜ሾݐሿ to ݔ௝ሾݐሿ if 
 ௜௝ is positive. Nolte et al. [12] suggest that absolute values ofߖ
௜௝ߖ greater than 2 should be considered significant. We 
compute ߖ௜௝using the MATLAB software available in [11]. 

B. Coarse-Level Segementation 

In order to get better quantification of the walking 
performance, we adopt a coarse level segmentation to eliminate 
the needless actions (body rotation in this application). When 
the subjects wearing inertial sensors on the lower limbs were 
asked to undergo an in-clinic 6MW, they are required to walk 
as far and as fast as possible up and down a 75-foot hallway, 
the actions merged in the data from inertial body sensors 
contained straight walking and body rotation. These two 
different actions have different coordination strategies in the 
body parts, which may affect the causality estimation. 

 
Figure 2: An example of coarse-level segementation: (a) original time-series 
data; (b) change point discovery and (c) 20 motion data segements were 
extracetd from the time series data in this example. 

With considerations of human factors during the real-world 
deployment, such as mounting errors (from sensor 
displacement orientation) [14] and looseness of sensors [15], 
we adopted a robust segmentation method proposed in [16]. 
The method combined change point discovery and features 
based on linear dynamical system to robustly segment time 
series inertial data into different temporal scales. 
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indexes of healthy controls were larger than those of MS 
subjects, then the hypothesis get proved. 

III. EXPERIMENTAL SETUP 

A. Description 

41 study subjects (28 MS and 13 healthy control) wearing 5 
inertial sensors (3 axes of accelerometers and gyroscopes on 
each sensor node) on the left/right wrists, left/right ankles and 
sacrum were asked to undergo an in-clinic 6MW. Figure 3 
illustrates the locations of the inertial body sensors on the 
body.  

Followed by a medical assistant with a measurement wheel, 
the distance walked was recorded in 1-minute epochs. Subjects 
were asked to walk as far and as fast as possible (without 
running) up and down a 75-foot hallway. The inertial sensor 
data was wirelessly transmitted to a laptop for post-processing. 

The sampling rate of inertial sensors is 128Hz which is 
sufficient to capture the frequency band of the body motion in 
walking action. The operator of the data collection system is 
required to make timestamp annotations in order to indicate the 
beginning and end of the walking actions. 

B. Acquisition and Preprocessing 

132 data sessions were collected in 3 years and each subject 
performed at least once 6MW. All the data sessions are 
calibrated with the recorded calibration parameters that had 
been done before the data collection [14]. There is no general 
normalization in the data preprocessing. However, due to the 
technical issues of our custom data collection system and 
human factors in the real-world deployment, 11 data session 
failed in the calibration process; 6 of them have too much drop 
packets during the wireless transmission to the laptop for data 
collection, 3 of them have timestamp error due to the system 
operator’s fault, and 2 of them lose the calibration parameters 
in the calibration records. Finally, 36 data sessions were 
collected from 13 healthy controls while 85 data sessions were 
collected from 28 MS subjects, successfully. 

Current causality algorithms, including PSI and granger 
causality, always have restriction on the stationary properties 
of the input signal. As the discussion in [16], accelerometer 
data always merged with random spikes and other artifacts 
make its stationary property cannot meet well for the 
requirements of causality algorithms. In contrast, short-term 
calibrated gyroscope data basically meets the stationary 
requirements of causality algorithms. According to the initial 
test results of accelerometer and gyroscope data with different 
causality algorithms, we choose the calibrated gyroscope data 
as the target and PSI as the causality estimation method in our 
experiments. It means each data session contain 15 
dimensional gyroscope data from the 5 inertial body sensors. 

C. Setting Parameters 

There are three parameters needed to be set up before 
running the proposed algorithm: frequency band and frequency 
resolution in equation (3) and threshold used to quantify the 
significance of PSIs in pairwise causality matrix.  

Recently the discovery in causal relationship between the 
frequency band of motion and neurological signals had been 

reported [17, 18], however there is rare prior knowledge about 
which frequency band of body motion is dominated during 
walking and how this motion frequency gets impact from MS 
disease. In order to avoid the information loss, we therefore 
choose the all frequency bandwidth in the data (1-64Hz). The 
frequency resolution is chosen as 0.5Hz. As mentioned before, 
we adopt the suggestion from Nolte [11] to choose the 
threshold as 2. 

IV. RESULTS 

Figure 5 shows the causality index calculated from 121 
data sessions. The blue bars indicate the 36 data sessions are 
collected from healthy control subjects, while green bars 
indicate the data sessions collected from MS subjects. 
Apparently, the healthy control subjects have higher causality 
index than MS subject. More specifically, the outlier of the 
healthy control subject in the red circle shown in Figure 5 is the 
subject 39. From the clinic records, this healthy control subject 
got a surgery between the two moments of 6MW data 
collection. The impact on the gait performance of the subject 
from surgery should be considered in future research. Other 
outliers of MS subjects in black circle will be investigated in 
future personalized analysis combining other medical records 
or factors, which is not included in this paper. 

 
Figure 5: Experimental results of causality index caculated from 121 data 
sessions. The outlier of healthy control subjects in ellipse circle is subject No. 
39. The clinic record shows the subject got a surgery between the moments of 
two data sessions. 

 
Figure 6: Comparision of causality index between healthy control and MS 
subjects. 

 Figure 6 illustrates the comparison of the causality index 
from the two groups: healthy control and MS subjects. The 
average value of the distribution in healthy control group is 
higher than in MS group.  
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1. An approach for incorporating the interactions among 
large number of inertial signals (i.e., 15-dimensional 
signal from 5 inertial body sensors) in a clinical 
deployment. 

2. Strong evidence that the strength of interactions 
between body parts in healthy control subjects during 
6-minutes walking is stronger than in MS subjects. 

VI. CONCLUSION 

This paper is motivated by the hypothesis that the strength 
of the interactions between body parts in healthy controls is 
greater than in MS subjects. In order to test the hypothesis, we 
developed a causality index, a technique that leverages causal 
modeling theory for quantifying the interactions between body 
parts through the time series data from inertial body sensors. 
The pairwise causality matrix is calculated to model all the 
interactions between body parts, and the causality index is used 
to assess the gait performance of the subject during 6MW. The 
novelty comes from the causality index incorporating the 
interactions among inertial body sensors as rich information 
into gait assessment. The main contribution comes from the 
proven hypothesis, which provides a new technical view in MS 
research. We have compared causality index to state-of-the-art 
algorithms for separability in MS research, with the causality 
index achieving better performance. 

Future work focuses on personalized signal processing for 
high precision diagnosis, intuitional meaning extraction for 
clinicians, and deep leaning in causal relationship between the 
gait performance and clinic records. 
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