
Poster: Automatically Evading Classifiers
A Case Study on Structural Feature-based PDF Malware Classifiers

Weilin Xu, Yanjun Qi, and David Evans
University of Virginia

{xuweilin, yanjun, evans}@virginia.edu

Abstract—Machine learning methods are widely used in se-
curity tasks. However, the robustness of these models against
motivated adversaries is unclear. In this work, we propose a
generic method that simulates evasion attempts to evaluate the
robustness of classifiers under attack. We report results from
experiments automatically generating malware variants to evade
classifiers, from which we have observed non-robust features
result in vulnerable classifiers. This suggests the proposed eva-
sion simulation method will help to improve the robustness of
classifiers by locating weak spots of learning models.

I. INTRODUCTION

Machine learning models are popular in security tasks such
as malware detection, network intrusion detection and spam
detection. From data scientists’ perspective, these models are
effective, since they achieve extremely high accuracies. For
example, Dahl et al. trained an ensemble deep neural network
with dynamic features for the Win32 malware classification
that achieves 99.58% accuracy [5]. Šrndic et al. trained a
SVM-RBF model with accuracy of 99.958% in a PDF malware
classification task by using structural path features [8].

However, it is important to understand that these results
are specific for given test datasets. Unlike the application
of machine learning in other fields, security tasks involve
adversaries responding to the classifier. For example in mal-
ware detection, attackers will always try to generate new
malware samples that have different patterns to evade existing
classifiers. This breaks the assumption of machine learning
models that training set and testing set share the same data
distribution, consequently decreasing the accuracy in practice.
As a result, it will be beneficial to model attackers’ efforts in
evaluating the robustness of classifiers in security tasks.

In this work, we propose a generic method to evaluate the
robustness of a classifier by simulating attackers’ efforts in
evasion attacks. Taking the idea from genetic programming
(GP), we don’t need to design any manipulation strategy on
malicious samples with security experts’ knowledge. Instead,
we perform random manipulations and then evaluate the
generated variants to select positive ones. By repeating this
procedure iteratively, we aim to find evasive variants.

The proposed method has been demonstrated to work effec-
tively on two PDF malware classifiers by successfully gener-
ating evasive variants. The evasive malware exhibits the same
malicious behavior as the original sample, however, they have
widely different patterns in feature spaces, resulting in being
classified as benign by the machine learning-based model.
Further examination shows it is because of the employment

of non-robust features, which directs a hopeful way to build
more robust classifiers by eliminating these features.

II. APPROACH

Genetic programming (GP) is a type of evolution algorithm,
originally developed for automatically generating computer
programs. Recently, Le Gous et al. showed that GP can also
work on manipulating programs in fixing software bugs [6].
We propose a GP-based method that can manipulate existing
malicious samples to evade classifiers. Our goal is to simulate
what an attacker would do to evade the malware classifier.

The GP-based procedure is illustrated in Figure 1. First, we
initiate a population of variants by randomly manipulating a
seed malicious sample that exhibits malicious behavior and is
classified as malicious by the target classifier. Our method aims
to find an evasive sample that preserves the malicious behavior
but is mis-classified as benign by the target classifier.

Subsequently, the population is evaluated by a target classi-
fier as well as an oracle. If any variant is classified as benign
but the oracle reports that it behaves maliciously it is deemed
an evasive sample. Otherwise, some variants are selected
but others are eliminated based on a fitness measure. Next
the selected variants are randomly manipulated by mutation
and crossover operators to produce next generation of the
population. The loop continues until an evasive sample is
found or a threshold number of iterations is reached.

The fitness function is designed as monotonically increasing
as the success of evasion increases in order to eliminate
the hopeless variants in each generation. There should be
a threshold value of fitness score that indicates the evasion
attempt succeeds, which is determined by the output structures
of the oracle and the target classifier.

III. PDF MALWARE EXPERIMENT

We conducted an experiment using our approach on two
PDF malware classifiers, respectively PDFRATE and Hidost.
PDFRATE is a Random-Forest model using meta data and

Fig. 1. A generic method that simulates attackers’ efforts in evasion attack.



structural information as features [9], while Hidost is a SVM
learning model employing structural paths as features [8].

A. Implementation

To implement the method in PDF malware’s case, we
need to understand PDF format and define an oracle as well
as a fitness function. PDF file is organized as a tree-like
structure of objects internally. An object can be any visible
element in a PDF document, or can be Javascript code and
other embedded executables. PDF malware typically contains
objects of malicious payloads in random locations of the tree-
like structure. We use pdfrw [2], a python-based open source
library to convert a PDF file to the tree-like structure and vice
versa, so the variants can be manipulated by GP operators and
can be saved as the equivalent file representation.

We use Cuckoo sandbox [3] as the oracle. Cuckoo sandbox
run each submitted sample in a virtual machine with a PDF
reader, and reports the malicious behaviors that match the
known signatures.

Let’s formulate the oracle as a binary function oracle(x) =
1 if the maliciousness is preserved and oracle(x) = 0
otherwise. We define the evasion threshold as 0, then the
fitness function can be designed based on the output structure
of the target classifier. As PDFRATE outputs confidence value
of maliciousness from 0 to 1, we define the fitness function as
f

pdfrate

(x) = (0.5� pdfrate(x))⇥ oracle(x). In contrast, as
Hidost outputs positive (negative) distance of a benign (mali-
cious) sample to hyperplane, the fitness function is defined as
f

hidost

(x) = hidost(x)⇥ oracle(x).
In terms of GP parameters, we specify the population size as

48, mutation rate as 0.3, crossover rate as 0.0 and the threshold
iterations as 10.

B. Results

We selected 50 malware samples from Contagio archive [1],
all of which are recognized as malware by Cuckoo sandbox
(with a virtual machine of Windows 7 and Adobe Reader
8.1.1) as well as the two classifiers, and can be correctly
repacked by pdfrw.

After an approximately 16 hours of execution, the method
generates variants for all 50 malware samples that evade
PDFRATE. For Hidost, it took about 14 hours to achieve an
evasion rate of 100% on the 50 samples.

By comparing the pairs of original malware samples and
their evasive variants in feature space, we found classifiers rely
on some features that can be easily manipulated by an attacker
without losing the malicious behavior. For example, the num-
ber of font objects is not relevant to malicious behavior, but it
is the most critical feature for some evasive samples against
PDFRATE. The classifier learns this feature because most of
the malware in the training set contain no font objects as the
malware authors are too lazy to insert any text. However, this is
an artifact of the malware samples used to train the classifier,
not an inherent property for malicious PDFs. It is trivial to
add more font objects to an existing PDF malware sample to
evade the classifier. Our future work will use the automated

tool for finding evasive sample to improve the robustness of
classifiers. We intend to explore both retraining the classifier
using the find evasive samples, as well as using the evasive
sample to identify non-robust feature that should be removed
from the classifier.

IV. RELATED WORK

Evasion attacks against machine learning classifiers have
been discussed by Biggio et al. from the angle of classification
models [4] and other malware classifier authors such as Šrndic
et al. [8]. However, these studies assumed that attackers can
only insert features. In fact, the experiments in our work show
attackers also have the ability of removing features, which
leads to evade classifiers.

Šrndic et al. demonstrated how PDFRate could be evaded
by exploiting an implementation flaw in the feature extraction
[9]. Our method does not rely on any implementation flaw.
Instead, it captures the weak spots in model’s feature space.

In addition, Maiorca et al. proposed reverse-mimicry attacks
against PDF malware classifiers [7]. The attack is generic to
a class of classifiers based on structural features. However,
the hand-crafted attack only works on malware with simple
payloads. In contrast, our GP-based method is automatic and
does not have this limitation.

V. CONCLUSION

We propose a generic method that automatically evades
classifiers in security tasks. The experiments on real classifiers
have shown the traditional approach of building machine
learning classifiers fails against determined adversaries. As
future work, we are going to improve the efficiency of the
method and better utilize the information from evasive samples
to build more robust classifiers.

REFERENCES

[1] http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-
for.html.

[2] https://code.google.com/p/pdfrw/.
[3] http://www.cuckoosandbox.org/.
[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim

Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks
against machine learning at test time. In ECML-KDD. 2013.

[5] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale
malware classification using random projections and neural networks. In
ICASSP, 2013.

[6] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair. IEEE
Trans. on Software Engineering, 2012.

[7] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the
bag is not enough to find the bomb: an evasion of structural methods for
malicious pdf files detection. In ASIACCS, 2013.

[8] Nedim Šrndic and Pavel Laskov. Detection of malicious pdf files based
on hierarchical document structure. In NDSS, 2013.

[9] Nedim Šrndic and Pavel Laskov. Practical evasion of a learning-based
classifier: A case study. In Oakland, 2014.


