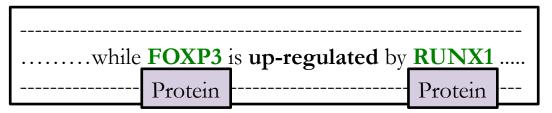
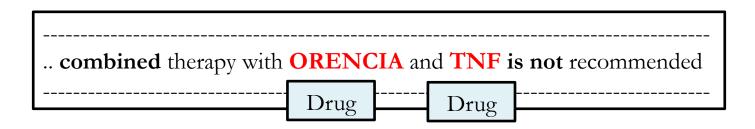
Character based String Kernels for Bio-Entity Relation Detection

Ritambhara Singh and Yanjun Qi ACL BioNLP Workshop 2016 August 12, 2015




Introduction

Extraction of bio-entity relations:

• Protein-protein Interaction (PPI)

• Drug-drug Interaction (DDI)

Motivation

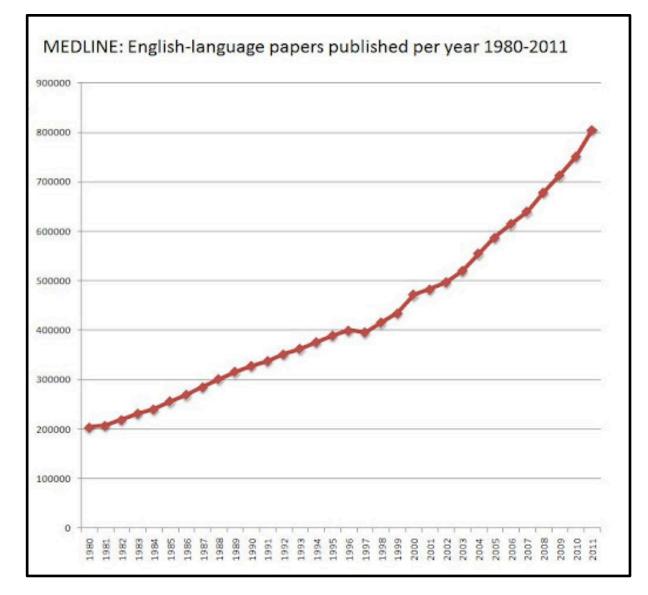
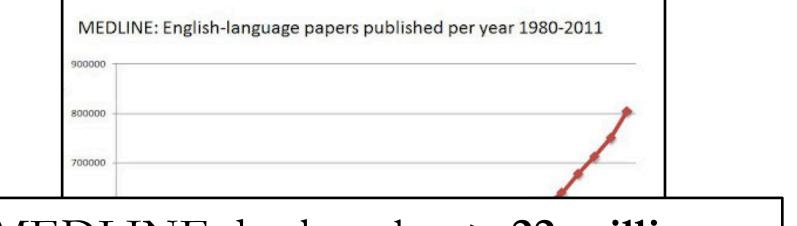



Image Courtesy: "Science: Growing Too Fast?" (Discovery Magazine Blog)

Motivation

MEDLINE database has > 22 million journals related to biomedicine

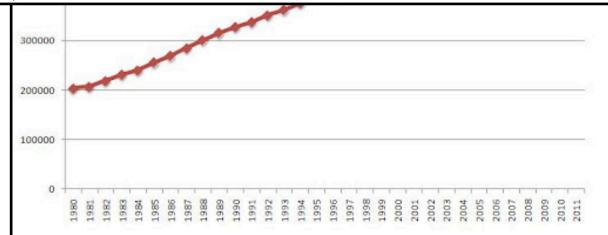
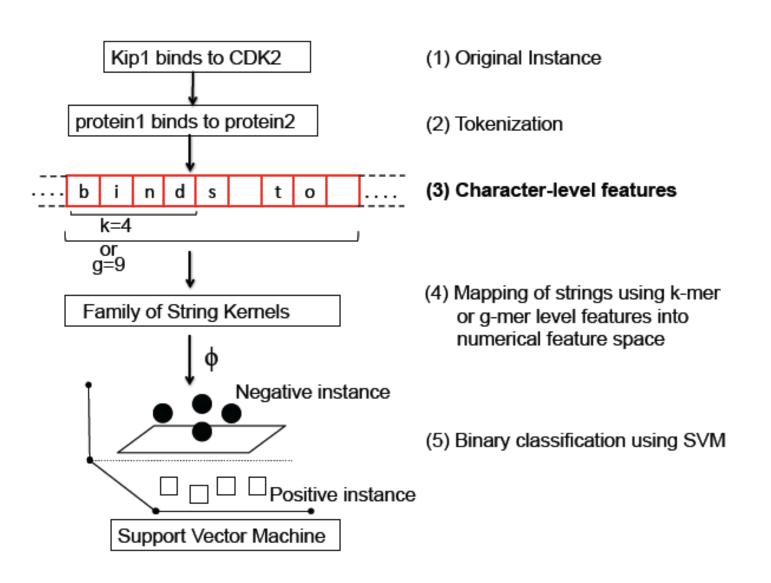
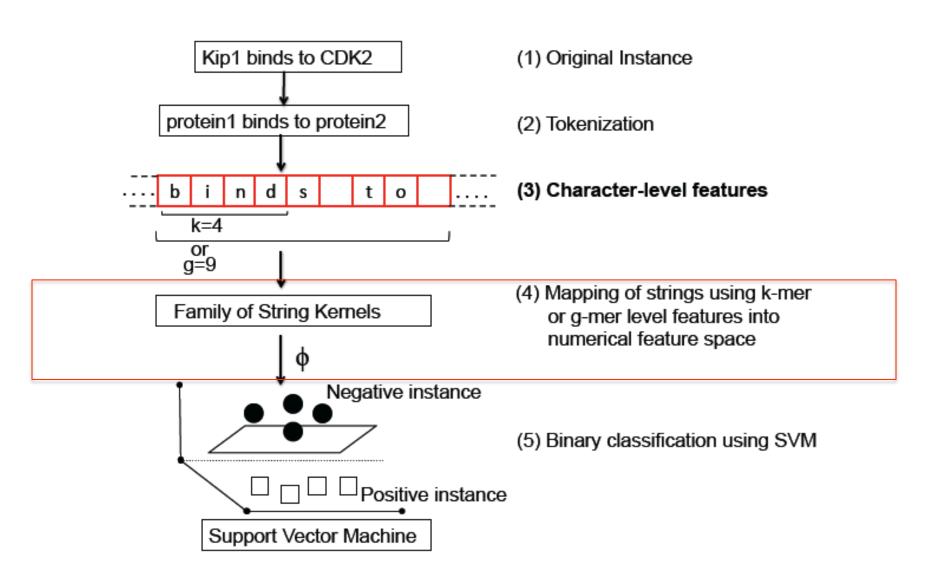


Image Courtesy: "Science: Growing Too Fast?" (Discovery Magazine Blog)

- Background
- Approach
 - Overview
 - String Kernels
- Experimental Setup
- Results

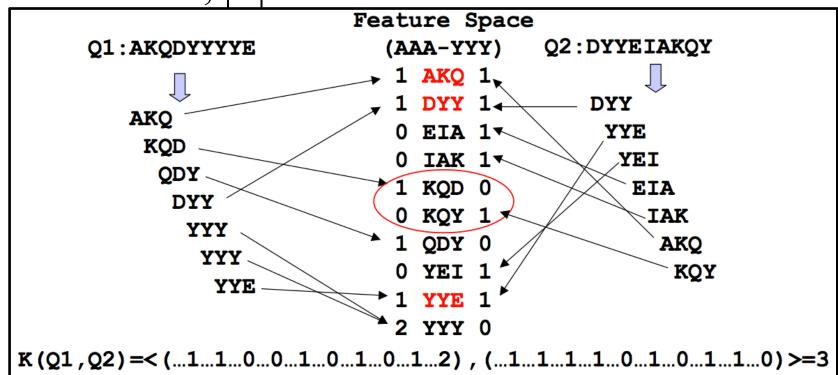

- Background
- Approach
 - Overview
 - String Kernels
- Experimental Setup
- Results

Background


- Convolutional kernels :
 - Shallow Linguistic Kernels (SL)
 - Constituent parse tree-based kernels: subtree (ST), partial tree (PT) etc.
 - Dependency parse tree-based kernels: k-band shortest paths (kBSPS), all-path graph kernel (APG)
- State-of-the-art: SL, APG, kBSPS

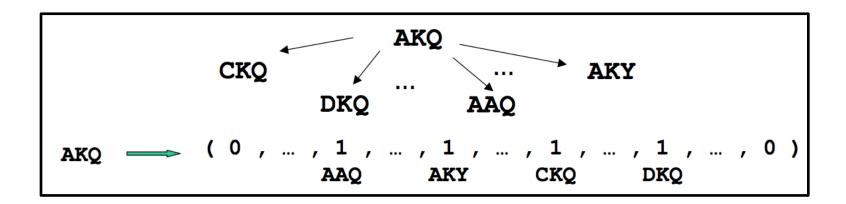
- Background
- Approach
 - Overview
 - String Kernels
- Experimental Setup
- Results

Overview



Overview

Spectrum Kernel (SK)


Feature map indexed by all k-length subsequences ("k-mers") from alphabet Σ of amino acids, $|\Sigma|=20$

Leslie, Eskin and Noble, PSB 2002

Mismatch Kernel (MK)

For k-mer s, the mismatch neighborhood $N_{(k,m)}(s)$ is the set of all k-mers *t* within *m* mismatches from s.

Leslie, Eskin, Weston and Noble, NIPS 2002

Wildcard Kernel (WK)

Dictionary is augmented with a wild character '*'


$\Sigma \cup \{\star\}$

Feature Space

AAA	
AA*	
A*A	
AA*	
AAQ	
•••	
•••	

Leslie and Kuang, JMLR 2004

Gapped k-mer based Kernel (GK)

number of gaps (d)=10-3=7

Ghandhi, Mohammed-Noori Ghareghani, Lee, Garraway and Beer, Bioinformatics 2016

- Background
- Approach
 - Overview
 - String Kernels
- Experimental Setup
- Results

Experimental Setup

• Dataset:

Corpus	Task	Sent.	Pos	Neg	Total
MEDLINE	DDI	1301	232	1555	1787
AIMed	PPI	1955	1000	4834	5834
LLL	PPI	77	164	166	330

- **Baselines:** SL, APG and kBSPS
- Parameters:
 - $-SK: k = \{6, 7, ..., 10\}$
 - MK, WK : $k = \{6, 7, ..., 10\}; m = \{1, 2, ..., k-1\}$

 $-GK: g= \{6, 7, ..., 10\}; k= \{1, 2, ..., g-1\}$

• Evaluation Metric: AUC Score

- Background
- Approach
 - Overview
 - String Kernels
- Experimental Setup
- Results

Results

• Performance:

Corpus	Task	kBSPS	APG	SL	SK	(k)	MK	(k,m)	WK	(k,m)	GK	(g,k)
MEDLINE	DDI	-	82.3	78.9	82.1	(7)	82.7	(7,3)	83	(7,3)	82.4	(7,4)
AIMed	PPI	75.1	84.6	83.5	75.6	(8)	74.9	(10,5)	75.2	(10,5)	75.4	(8,6)
LLL	PPI	84.3	83.5	81.2	67.9	(7)	77.9	(7,3)	78.4	(8,5)	78.1	(7,5)

• Time:

Corpus	Task	kBSPS	APG	SL	SK	MK	WK	GK
MEDLINE	DDI	169.13	169.13	5.2	0.4	2.6	3.1	2.6
AIMed	PPI	254.15	254.14	7.82	76.8	79.5	78	41.3
LLL	PPI	10	10	0.3	0.2	1.3	1	0.2

Conclusion

- Simple and novel character-based representation
- Implement family of string kernels
- Fast and flexible for any bio-NLP dataset
- Complimentary to existing state-of-the-art methods

