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Abstract —Through sequence-based classification, this paper tries to accurately predict the DNA binding sites of transcription factors (TFs)
in an unannotated cellular context. Related methods in the literature fail to perform such predictions accurately, since they do not consider
sample distribution shift of sequence segments from an annotated (source) context to an unannotated (target) context. We, therefore,
propose a method called “Transfer String Kernel” (TSK) that achieves improved prediction of transcription factor binding site (TFBS) using
knowledge transfer via cross-context sample adaptation. TSK maps sequence segments to a high-dimensional feature space using a
discriminative mismatch string kernel framework. In this high-dimensional space, labeled examples of the source context are re-weighted so
that the revised sample distribution matches the target context more closely. We have experimentally verified TSK for TFBS identifications on
fourteen different TFs under a cross-organism setting. We find that TSK consistently outperforms the state-of-the-art TFBS tools, especially
when working with TFs whose binding sequences are not conserved across contexts. We also demonstrate the generalizability of TSK by
showing its cutting-edge performance on a different set of cross-context tasks for the MHC peptide binding predictions.

Index Terms —Machine Learning, Bioinformatics, Support Vector Machines, Domain Adaptation, String Classification, String Kernel

This work will be originally published in IEEE/ACM Transactions on Computational Biology and
Bioinformatics. Code available at github.com/QData/TransferStringKernel.
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1 INTRODUCTION

SEQUENCEanalysis plays an important role in the field of bioin-
formatics. Genomic sequences build the basis of a large bodyof

research on understanding the biological processes in living organ-
isms. As an important application of sequence based mining,the task
of predicting Transcription Factor Binding Sites (TFBSs) on genomes
has attracted much attention over the years [1]. Transcription factors
(TFs) are regulatory proteins that bind on functional sitesof DNA to
control the regulation of genes. Each different TF binds to specific
locations (or sites) on a genomic sequence to regulate cell machinery.
While many TFs are highly conserved among different species[2],
conservation of their binding sequence is low [3]. These TFBSs
vary across different cell types, cell stages and genomes. Owing
to the development of chromatin immunoprecipitation and mas-
sively parallel DNA sequencing (ChIP-seq) technologies [4], maps
of genome-wide binding sites are currently available for multiple
TFs in a few cell types across human and mouse genomes via the
ENCODE [1] database. Because ChIP-seq experiments are slowand
expensive, they have not been performed for many important cell
types or organisms. Therefore, computational methods to identify
TFBS accurately remain essential for understanding the regulatory
functioning and evolution of genomes. Such predictions areespecially
important for unannotated cellular contexts (e.g., cell types of rare
diseases or rare organisms).

String kernel techniques under the support vector machine (SVM)
classification framework have been successfully used for detecting
patterns of DNA or protein sequences before [5]. Through local
substring (k-mer) comparisons that incorporate mismatches, this
category of models extracts mismatch features and trains toclassify
sequence segments from a set of previously labeled sequences. Then,
the learned models are used to classify a new set of sequences.
Recently, [6] extended this discriminative SK+SVM classification
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setup for predicting TFBSs in a cell-type specific manner. Their
results [6] have suggested that traditional motif-driven approaches
(details in Section 2.4) for TFBS predictions are not alwayssufficient
for accurately accounting for cell-type specific binding profiles.
Despite the exciting aforementioned framework [6], one shortcoming
remains significant: this method assumes that the source andtarget
samples are drawn from the same probability distribution. This makes
string kernel non-applicable to most cases of TFBS predictions in
unannotated cellular contexts.

We take into consideration that if a genome-wide ChIP-seq
experiment has been performed for a specific TF in a certain context,
it is normally unnecessary to computationally predict TFBSs for
that specific [TF, context] pair again. Therefore, this paper focuses
on computationally predicting TFBSs for cellular contextsthat have
not yet been annotated. We generate the “gold standard” reference
labels, used for training, from an existing ChIP-seq TFBS map of
an annotated context that is most related to the target [TF, context]
configuration of interest. Since each TF’s binding sequencepatterns
vary with the context factor, it is likely that data samples in the
annotated (source) context are distributed differently from samples in
the unannotated (target) context. This also connects to observations
in the literature that the TFBS sequences have low conservation
across species even though many TF proteins are conserved across
large evolutionary distances [7]. When implementing crosscontext
prediction, it is desirable to design algorithms that remain effective
under such distribution shifts [8]. While the problem may beunsolv-
able if the source and target distributions share nothing incommon,
recent machine learning studies [9] have provided effective adaptation
for closely related distributions. Biologically, this also makes sense
since closely related cell contexts should have similar gene regulation
processes and similar TFBS sequence patterns [6].

In this paper, we propose an approach called “Transfer String
Kernel (TSK)” that learns to transfer knowledge from an annotated
to an unannotated cellular context to achieve better sequence-based
TFBS predictions. Essentially, TSK re-weighs the source data so that
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Fig. 1: Overview of our experimental setup for cross-context TFBS prediction tasks. (a) Source (mouse) and target (human) ChIP-seq maps for
cross-context TFBS classifications (a family of tasks). Four example cases are shown. (b) An example of sequence based TFBS classification
shown for TF_1. “y” labels are obtained from ChIP-seq signals. “x” are corresponding sequence segments. Thus,y ∈ {+1,−1}, where
y = +1 indicates binding of TF andy = −1 means TF does not bind to the sequence. (c) The baseline(k,m)-mismatch string kernel. Here,
k = 5 andm ∈ {0, 1}.

its distribution more closely matches that of the target data [9]. It
assigns higher weights to those observations in the source context that
are most similar to those in the target context, and lower weights to
those that rarely occur in that context. This connects to a more general
machine-learning topic calleddomain adaptation[10] (discussed in
Section 2.4).

In summary, this paper includes the following contributions:
• “Transfer String Kernel (TSK)” implements domain transferof

string kernel via Kernel Mean Matching, on tasks for which
target domain is unannotated;

• Experimentally, we apply TSK on 14 different TFBS prediction
tasks from mouse to human genomes. To the best of authors’
knowledge, this is the first attempt of studying cross-context
TFBS predictions across different genomes. This setting resem-
bles the translational setup that many biologists are working on;

• We demonstrate that TSK consistently outperforms state-of-
the-art TFBS prediction tools, especially for those TFs whose
binding properties do not conserve across contexts;

• Our experiments show that TSK exhibits robust performance
despite the label imbalance issue that is common in TFBS
prediction tasks;

• Finally, we show that TSK generalizes well to other cross-
context sequence based prediction tasks.

TSK is a general cross-context sequence modeling approach and
not tied to the TFBS applications. We show this generality byapply-
ing it for predicting peptide binding (PB) to Major Histocompatibility
Complex Molecules (MHC class I). MHC is a set of cell surface
proteins that bind to peptide fragments derived from pathogens and
display them on cell surface for recognition by the appropriate T-
cells (i.e., consequently controlling the adaptive immuneresponse).
Knowledge of these peptide bindings helps in studying immunity and
is vital for vaccine development. The protein sequence-based PB pre-

TABLE 1: Notations we use and their descriptions.

Notations Descriptions

x Input sample

y Output label

sd Source domain

td Target domain

nsd Number of source domain samples

ntd Number of target domain samples

w Decision hyperplane of the weight vector

b Intercept term of the hyperplane

αi Slack variable (Lagrange multiplier associated
with each constraintyi = (wT xi + b)) ≥ 1

K Kernel matrix among source samples

κi Weighted sum of kernel values among a source
sample and all target samples

βββ Importance weight vector (Dimension=nsd)

diction tasks are similar to TFBS tasks because: a) MHC PB bindings
vary across organisms and b) obtaining such experimental data is a
complex, expensive and time consuming task, therefore leading to
lack of labeled samples in target (human) domain. However, it differs
from TFBS prediction tasks in its larger dictionary size (due to protein
sequences) as well as in the sample properties (e.g., shorter sequence
length, varying ratios of positive to negative samples and size) of the
datasets.

2 METHODS: TRANSFER STRING KERNEL (TSK)
We propose a learning method, called “Transfer String Kernel”
(TSK) that performs cross-context “knowledge transfer” and utilizes
available TF binding labels from a source context to discriminatively
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predict TFBS for the same specific TF in an unannotated target
context. We now discuss various components of our approach.Table 1
provides a list of notation symbols that we have used in this section.

2.1 Basic Tasks: A family of sequence classification tasks

The sequence-based TFBS prediction problem can be casted asa
string classification task. For a certain TF of interest, on aparticular
genome under a specific cellular context, the task aims to classify
a DNA sequence segment as a potential TFBS or a non-binding
background site (see a sample sequence-label pair(x, y) in Fig-
ure 1(b)). When considering multiple TFs and various cellular con-
texts (Figure 1(a)), this constitutes a family of sequence classification
problems. For example in Figure 1(b), we train a string classifier
using labeled segments (obtained from ChIP-seq) of TF_1 from the
source context. The classifier is then used to predict potential TFBS
sites of the same TF (TF_1) in the target context. This means that if
we work onN different TFs, we are handling a family ofN different
classification tasks. In case of Figure 1(a), there are four different
TFBS tasks for 4 TFs.

For each task, when performing sequence-based TFBS predic-
tions in an unannotated cellular context, we face a data problem called
distribution shift. We first define necessary notations to explain this
problem. We have two spaces,X represents all possible sequence
patterns andY represents their respective labels. The set of source
samples:

Zsd = {(xsd
1 , ysd1 ), ..., (xsd

nsd
, ysdnsd

)} ⊆ X × Y, (1)

follow a probability distributionPsd(x, y)
1 in the annotated source

context. Target samples (for the sameTFi) form the following set:

Ztd = {(xtd
1 , ytd1 ), ..., (xtd

ntd
, ytdntd

)} ⊆ X × Y, (2)

drawn from another distributionPtd(x, y) in the unannotated target
context. In the training phase, we are assuming a transductive setting,
in which we can access a set ofxtd

i . True label,ytdi , is not available
for training and is used in testing for evaluation.

2.2 Basic Model: Mismatch String Kernels with SVM

The key idea of string kernels is to apply a functionφ(·), which maps
sequences of arbitrary length into a vectorial feature space of fixed
length. In this space, a standard classifier such as a supportvector
machine (SVM) [11] can then be applied. Kernel-version SVMs
calculate the decision function for an input samplex as,

f(x) =
∑

i∈sd

αiK(xsd
i , x) + b. (3)

String kernels [5] [12], implicitly compute an inner product in the
mapped feature spaceφ(x) as:

K(x, x′) = 〈φ(x), φ(x′)〉, (4)

wherex = (s1, . . . , s|x|), x, x
′ ∈ S, |x| denotes the length of the

sequencex, S represents the set of all sequences composed of all
possible dictionary items (for example, in case of DNA sequences
si ∈ {A,C, T,G}), andφ : S → Rm defines the mapping from a
sequencex ∈ S to am-dimensional feature vector.

The feature representationφ(·) plays a key role in the effec-
tiveness of sequence analysis since biological sequences cannot be
readily described as feature vectors. One classic representation is
to treat DNA sequence segments as an unordered set of nucleotide
k-mers (combinations ofk adjacent nucleotide residues). A feature

1. This probability varies with differentTFi

vector indexed by allk-mers records the number of occurrences of
eachk-mer in the current sequence. The string kernel using this
representation is calledspectrum kernel[5], where the spectrum
representation counts the occurrences of each nucleotidek-mer in
a DNA sequence segment. Kernel scores between sequences arethen
computed by taking an inner product between corresponding “k-mer
- indexed” feature vectors:

K(x, x′) =
∑

γ∈Γk

cx(γ) · cx′(γ), (5)

whereγ represents ak-mer,Γk is the set of all possiblek-mers, and
cx(γ) is the number of occurrences (with normalization) ofk-merγ
in sequencex.

However, exact kernel matching in biological sequences is in-
effective due to naturally occurring letter (e.g., nucleotide) substi-
tutions, insertions, or deletions. Therefore, inexact comparison is
critical for effective matching between sequence segments. In string
kernels, this is typically achieved by using different families of
mismatches [12]. We use the concept of(k,m)-mismatch string
kernels [12] (illustrated in Figure 1(c)), which considersk-mer counts
with m inexact matching ofk-mers (e.g.k=5,m ∈ {0, 1}). For this
kernel,

K(x, x′) =
∑

γ∈Γk

ck,mx (γ) · ck,mx′ (γ), (6)

ck,mx =
∑

g∈S(γ,m,k)

cx(g), (7)

S(γ,m, k) denotes the set of contiguous substrings of lengthk
that differ fromγ in at mostm positions (see Figure 1(c) with an
example case for(k = 5,m ∈ {0, 1})).

Through mismatches,(k,m)-mismatch kernel allows flexibility
when matchingk-mers between sequences. This flexibility partly
reflects the true biological nature of DNA or proteins sequences since
they are prone to mutations like deletions, insertions, substitutions
etc. As expected, it performs better than spectrum kernel (as seen in
Section 4.1) therefore; it is a natural choice for our TSK approach.

In practice, string kernel implementations typically require effi-
cient computation without explicitly constructing potentially high-
dimensional feature vectorsφ(·). This is because the explicit feature
vector mappingφ(·) becomes problematic (especially in the case of
inexact matching) for even small value ofk (due to the dimensionality
of φ(·) being exponential ink). Researchers have proposed various
strategies [5], [12] to address these computational difficulties. We
adopt a statistical strategy from [12] that provides linear-time string
kernel computations and scales well with dictionary size and input
length.

2.3 Proposed Model: Transfer String Kernel

String kernel assumes training and testing samples are drawn from
the same probability distribution. To consider the variation between
source and target samples in our application,domain adaptation
[10], [13] serves as a natural candidate to tackle this computational
challenge. In machine learning,domain adaptationaims to use data or
a model of a well-analyzed source domain to obtain or refine a model
for a less analyzed target domain. The specific “domain transfer”
setting being focused in this paper assumes that historicallabels only
exist in the source context and are not available in the target context
(reasons explained in Section 1). Accordingly, we propose “Transfer
String Kernel (TSK)” approach to achieve better cross-context TFBS
predictions by transferring knowledge from an annotated context to
an unannotated context.



4

TSK revises the(k,m)-mismatch string kernel framework using
a “Kernel Mean Matching” (KMM) strategy [9] in order to perform
knowledge transfer. To our knowledge, TSK has not been proposed
in the literature for cross-context TFBS prediction tasks.Specifically,
TSK adapts string kernel under the “covariate shift” assumption [9].
It assumes that the conditional probability distribution of the output
variable, given the input variable, remains fixed in both thesource
and target set. In other words, the data shift happens for themarginal
probability distribution of feature variables (fromPsd(x) to Ptd(x))
and not for the conditional distributionP (y|x).

The key to correcting this type of sampling bias is to estimate the
“importance weight” for each source sample [8]:

β(x, y) :=
Ptd(x, y)

Psd(x, y)
=

P (y|x)Ptd(x)

P (y|x)Psd(x)
=

Ptd(x)

Psd(x)
. (8)

The KMM estimator accounts for the difference between
Ptd(x, y) andPsd(x, y) by re-weighting the source points so that the
means of the source and target points in a Reproducing KernelHilbert
Space (RKHS) are close. This reweighing process is therefore called
“Kernel Mean Matching” (KMM). When the RKHS is universal, the
population solution of weight vector̂βββ (in the following Equation 9)
to the KMM optimization (of matching means) is exactly the vector
form of ratio Ptd(x)

Psd(x)
(in Equation 8) including allx from the source

domain. Letβi represent the “importance weight” of a source instance
xi. More specifically, KMM uses a “maximum mean discrepancy”
measure to minimize the difference between the empirical mean of
the source and the empirical mean of the target distribution. Formally,
KMM attempts to match the mean elements in a feature space induced
by a kernel functionK(·, ·):

β̂ββ = argminβββL̂(βββ), (9)

where,

L̂(βββ) = ‖
1

nsd

nsd∑

i=1

βi ∗ φ(x
sd
i )−

1

ntd

ntd∑

i=1

φ(xtd
i )‖2 (10)

=
1

n2
sd

βββ
T
Kβββ −

2

n2
sd

κTβββ + constant, (11)

s.t. βi ∈ [0, B] and |
nsd∑

i=1

βi − nsd| ≤ nsdǫ.

Here,K is the kernel matrix among all source examples, andκi

is the weighted sum of kernel values among a source example and all
target examples:

Kij :=K(xsd
i , xsd

j ), (12)

κi :=
nsd

ntd

ntd∑

j=1

K(xsd
i , xtd

j ). (13)

Large values ofκi correspond to more important observationsxsd
i

and are more likely to lead to largerβi. Equation 9 involves a
quadratic program which can be efficiently solved using the interior
point methods or any other subsequent procedures such as projected
gradient optimization method [9].

Algorithm 1 Algorithm for Transfer String Kernel through matching
means in RKHS

1: procedure TSK
2: Implement (k,m)-mismatch string kernel to calculate the

kernel matrixK and vectorκ;
3: Use Kernel Mean Matching estimator onK andκ to obtain

the importance weight̂βi for each source samplei;
4: Useβ̂i to perform instance re-weighted SVM training step;
5: Use the trained SVM model to perform sequence classifica-

tion of target samples.

The derived importance weightŝβββ are then used to re-weigh
source samples in a revised support vector machine trainingalgo-
rithm, i.e., an instance weighted SVM that aims to optimize:

nsd∑

i=1

αi − 0.5
∑

i,j∈sd

αiαjyiyjK(xsd
i , xsd

j ), (14)

s.t.

nsd∑

i=1

αiyi = 0, and β̂iC ≥ αi ≥ 0. (15)

Hereαi are the slack variables in the SVM, the same asαi in Eq 3.
In summary, we apply KMM in conjunction with the(k,m)-

mismatch string kernel using the algorithm summarized in Algo-
rithm 1, thus enabling us to perform knowledge transfer across
domains when classifying strings.

2.4 Connecting to Previous Studies

2.4.1 Sequence-motif based TFBS prediction tools

Transcription factors influence gene expression by bindingto specific
DNA sequence in a genomic region. Therefore accurate modelsfor
identifying and describing the binding sites of TFs are essential in
understanding cells. Previous techniques include many sequence-
motif based computational approaches that typically use position-
based sequence information for predicting TFBS. Relying ona set
of known transcription factor binding sites (TFBSs) for a given
TF, the binding preference is generally represented in the form of
a position weight matrix (PWM) [14], [15] (also called position-
specific scoring matrix) derived from a position frequency matrix
(PFM). A PFM is essentially an occurrence table, summarizing the
number of each nucleotide being observed at each position ofa set
of aligned TFBSs. [6] have suggested that traditional motif-driven
approaches are not always sufficient to accurately account for cell-
type specific binding profiles. While motif-based PWMs are compact
and interpretable, they can under-fit ChIP-seq data by failing to
capture subtle but detectable and important sequence signals, such
as direct DNA-binding preferences of certain TFs, cofactorbinding
sequences, accessibility signals, or other discriminative sequence
features. Gene regulatory programs are primarily regulated through
cell-context specific binding of TFs. Therefore, it becomesmore
clear that TFBS analyses should consider distinct cell contexts (see
Figure 1(a)). To the best of authors’ knowledge, this paper is the first
attempt of direct testing of cross-context prediction performance of
such methods.

2.4.2 String Classification

Our formulation of TFBS prediction belongs to a general category
of "string classification". Various methods have previously been pro-
posed to solve string classification, including generative(e.g., Hidden
Markov Models-HMMs) and discriminative approaches. Amongthe
discriminative approaches, string kernel methods providesome of the
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most accurate results, such as for remote protein fold and homology
detections [5], [12]. Aside from spectrum kernel [5] and(k,m)-
mismatch string kernel [12] introduced in the previous section, a
few other notable string kernels include (but are not limited to): (1)
The gapped kernel calculates dot-product of (non-contiguous)k-mer
counts with gaps allowed between elements. (2) More generally, the
substring kernel [16] measures similarity between sequences based
on common co-occurrence of exact sub-patterns (e.g., substrings).
(3) The profile kernel [17] uses the notion of similarity based on
a probabilistic model (e.g. profile). (4) Under the semi-supervised
setting, the so-called “sequence neighborhood” kernel or “cluster”
kernel [18] proposes a semi-supervised extension of stringkernel,
which replaces every sequence with a set of “similar” (neighboring)
sequences and a new representation is obtained by averagingrepre-
sentations of these neighboring sequences found in the unlabeled data
using a certain sequence similarity measure.

Sequence labeling or sequence tagging is another related category
of formulations for sequence modeling. Many successful works in
the field of natural language processing [19] belong to this category
in which each position of input sequences can be annotated with
tags indicating parts of speech, named entities, semantic roles, etc.
Popular bioinformatics tasks predicting proteins’ local functional
properties [20] have been modeled as a labeling or tagging of
amino acids on proteins. Many important functional properties are
computationally predicted in this fashion, such as secondary structure,
solvent accessibility, transmembrane topology or the locations of
coiled-coil regions. Multiple classic machine learning methods have
been benchmark tools for sequence tagging, like conditional random
field [21]. We omit a full survey of this topic due to its vast body of
previous literature and loose connection to our TFBS formulations.

2.4.3 Domain Transfer for Genome Sequence Mining

TSK relates to a more general machine-learning topic “covariate
shift". Traditional supervised learning assumes source and target
samples are usually drawn from the same probability distribution.
This assumption can be easily violated in practice, for instance,
due to sampling bias or nonstationarity of the sampling environment
(i.e. the case of TSK) [8]. Algorithms that remain effectiveunder
such distribution shifts are highly preferred. This problem has been
investigated in both statistics and machine learning undervarious
assumptions [8]. The covariate shift assumption assumes that the
conditional probability distribution of the output variable y, given the
input variable,x remains fixed in both the source and target. Under
this setting, the basic motivation to correct the sampling bias is to
re-weigh the source data so that its distribution matches more closely
to that of the target data. A number of previous methods have been
proposed to estimate the “importance weight”βββ from finite samples,
including kernel mean matching (KMM), logistic regression, KL
importance estimation and many others [8].

More generally, TSK belongs to topics ofdomain adaptationand
transfer learning[13] [10], where one aims to use data or models
of a well-analyzed source domain to obtain or refine models for a
less analyzed target domain. This helps when datasets from the two
domains belong to different feature spaces or follow different data
distributions. For such scenarios, knowledge transfer will potentially
improve the performance of learning by avoiding or reducingthe
expensive data-labeling efforts [13]. A good classifier canonly be
trained when a sufficient amount of annotated training data is avail-
able. However, labeled training data in biomedical fields isscarce.
Obtaining such labeled datasets can be costly and time-consuming.
This results in the data sparsity problem that is a major bottleneck
for applying machine learning in biomedical domain. Computational

methods with the ability of “knowledge transfer” become highly
crucial for such applications because biomedical data is intrinsically
complex and heterogeneous at almost every level (e.g., different
species, different tissue types, etc). Transfer learning can help in
reusing knowledge from annotated datasets to new domains [22],
reducing the knowledge gap of labeled data due to heterogenous
variations. For example, one previous study [10] explored “domain
adaptation” strategies for a task of sequence-based prediction for
acceptor splice sites. It assumed that historical labels exist for both
source and target contexts, which is different from our setting. We aim
to predict TFBS for a cellular context that has not yet been annotated
(i.e. no label exists in the target domain). Our setting is more practical
for TFBS prediction tasks, because if a ChIP-seq experimenthas
been performed for a specific TF in a certain context, it is normally
unnecessary to computationally predict TFBS for that specific domain
again. Experimental results in Section 4 successfully present a strong
case of mining bio-medical data where the transfer of knowledge
across domains is critical and fruitful.

2.4.4 Covariate Shift & Domain Adaptation

Domain adaptation has been widely studied in machine learning
literature to train an effective classifier for a target domain for
which labeled data is rare, or even unavailable (this paper’s case).
By exploiting labeled training samples from a different butrelated
source domain, a variety of previous studies have demonstrated its
effectiveness on multiple applications including sentiment analysis
[23], object classification [24], activity recognition [25], text catego-
rization [26] and Brain-computer interface (BCI) tasks [27]. Roughly
speaking, previous learning methods for domain adaptationcan be
summarized into two main types:

Covariate Shift: First, many existing studies try to estimate
weights of samples that account for the mismatch in distributions
between a target and a source domain. Covariate shift assumes that
the marginal distributions of the source and target instances differ
while the conditional distribution of the target output remains the
same across domains [28]. Methods for domain adaptation under
covariate shift assumptions mostly try to estimate the weights of
source instances so that the weighted source distributionsare most
similar to the target distribution. Then, an instance-weighted classifier
is trained for the target domain. For instance, the authors of [29]
propose density estimators that incorporate sample selection bias to
adapt two distributions. The Kernel Mean Matching (KMM) method
[9], [30] then learns the weights by matching the distributions in
a RKHS, with a recent extension [31] developing surrogate-kernel
based kernel matching. Later, [32], [33] propose to minimize the
Kullback-Leibler divergence between the target distribution and the
weighted source distribution. Several recent papers [25],[34], [35]
aim to estimate the optimal weights by solving least-squarebased
formulations. Furthermore, theoretical analysis of this type of domain
adaptation has been studied by [36].

The aforementioned studies separate the estimation of importance
weights and the training of weighted learning models in two stages.
Several existing machine learning methods have been explored in
this framework, such as importance-weighted logistic regression [33],
importance-weighted kernel regression [32], importance-weighted
Gaussian processes [37], and the so-called consistent distance metric
learning method [38].

Moreover, a few studies try to unify the two stages. For instance,
the authors of [39] propose a discriminative learning basedadaptation
that trains an integrated model to obtain both importance weights and
the classifier at the same time. As another example, a so-called doubly
robust covariate shift correction method [40] first trains an non-
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TABLE 2: Sample sizes and hyperparameters in TFBS prediction experiments.

Source Samples : Mouse (train) Target Samples : Human (validation and test) Kernel Parameters
Pos sites Neg sites Total (n) Pos sites Neg sites Ratios (r) k m

500 500 1000 500 500,1000,1500 1:1,1:2,1:3 8, 10 ,12 1,2,3

TABLE 3: Sample sizes and hyperparameters in PB prediction experiments.

Source Samples: Mouse (train) Target Samples: Human (validation) Target Samples: Human (test) Kernel Parameters
Pos sites Neg sites Total (n) Target Pos sites Neg sites Total (n) Pos sites Neg sites Total (n) k m

586 2598 3184

HLA-A0201 1370 11752 13122 82 1169 1251

5,6,7 1,2,3
HLA-B0702 170 3627 3797 135 1592 1727
HLA-B4403 204 538 742 91 629 720
HLA-B5301 121 806 927 109 376 485
HLA-B5701 237 1882 2119 286 550 836

TABLE 4: Comparison using average test AUC scores of 14 TFs for spectrum (Spec.) kernel and(k,m)-mismatch (Mis.) kernel.(k,m)-
mismatch kernel consistently outperforms spectrum kernel, making it the natural choice for TSK approach.

Ratio=1:1 Ratio=1:2 Ratio=1:3
Mis. Kernel Spec. Kernel Mis. Kernel Spec. Kernel Mis. Kernel Spec. Kernel

0.7786 0.7694 0.7804 0.7731 0.7805 0.7734

weighted classifier model, estimates the weights of source instances,
and then retrains an instance-weighted classification model with the
learned weights.

Subspace Adaptation: Another direction of domain adaptation
is to extract a subspace, or newer feature representations in the data
space, to model invariant parts across target and source distributions.
Transferring knowledge between domains is through such learned
subspaces or feature representations. For example, [23], [41] propose
novel feature representations for the domain adaptation purpose.
Transfer component analysis [42] was introduced to find low dimen-
sional representations in RHKS where the target and source domains
are similar. The authors of [43] try to learn a linear subspace that is
suitable for knowledge transfer by minimizing Bregman divergence
between target and source distributions in this subspace. Arelated
study [44] transforms target samples such that they are a linear
combination of basis from the source domain. More recently,[45]
learns a domain-invariant data transformation to minimizedifferences
between source and target distributions while preserving functional
relations between data and labels. Furthermore, the authors of [46]
propose to identify subspaces that align to the eigenspacesof the
target and source domains.

2.4.5 Sequence-based Prediction of peptide binding to MHC

As mentioned in the introduction, the proposed TSK method isgen-
eral to any cross-domain sequence modeling problems. We implement
TSK on another sequence-based bioinformatics task for MHC peptide
binding and compare TSK with state-of-art tools on benchmark
datasets.

The first machine learning competition in Immunology (2011)
[47] compared various computational algorithms for classifying pep-
tide binding versus non-binding sites for multiple MHC molecules.
They used experimental labels of peptide binding from 3 classes of
MHC molecules in humans as performance benchmarks. In 2012,the
second machine learning competition in Immunology [48] increased
the number of experimental datasets for both human and mouse
molecules, providing training and test data for both species. The task
was formulated as classifying eluted peptide (naturally processed by
MHC) as positive samples while simple binding and non-binding
peptides were classified as negative labeled samples.

For peptide-protein interaction prediction, relative positions of
amino acids and their physiochemical properties play a veryimpor-
tant role [49]. The oligo kernel proposed by [50], takes the relative

positions into consideration by assigning a weight to each common
k-mer based on their relative position in the two peptide sequences.
For the 2012 Machine Learning Competition in Immunology for
peptide binding prediction, [49] showed that their GenericString
(GS) kernel gave state-of-the-art performance when implemented
on the datasets provided by the competition from [51]. According
to the authors, the GS kernel includes information regarding both
physiochemical property and relative position of amino acids during
k-mer comparison. We demonstrate in Section 4 that our basic
mismatch string kernel (SK) yields better performance thanGS kernel
on the benchmark data from this competition.

3 EXPERIMENTAL SETUP

3.1 TFBS Prediction Task

We chose a family of cross-genome TFBS prediction tasks for
evaluations. This set of tasks transfer knowledge from mouse genome
to human genome, which is the translational research setting. For a
certain TF, we train a TSK model using existing ChIP-seq TFBSdata
of a certain cell-type of mouse genome (source) and perform TFBS
predictions of the same cell-type on human genome (target).

3.2 Datasets

There exist thousands of TFs that are common between mice andhu-
mans. The ENCODE [1] database, however, contains only 14 ChIP-
seq TF experiments that are available for both species. Therefore,
we use these 14 available ChIP-seq datasets for our cross-context
predictions. The cell-type for each of the different TFs belongs to
normal blood tissue, as it has the maximum number of common TF
experiments across the two genomes.

3.2.1 Sequence selection method

To select training and testing sequences from the ENCODE database,
we use the “peak-centric standard” as described in [52]. According
to this standard, there exists a single central position in each ChIP-
seq region that represents positive binding site for a certain TF,
and all other genomic positions are negative sites. Consequently, for
positive sequences, we use the 100 nucleotides surroundingeach peak
position. For negative samples, since there is a lack of experimental
evidence showing where the negative “peak” is, we randomly select
100 basepair-length subsequences from the genomic regionswhere
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TABLE 5: Comparison using test AUC scores across 14 TFBS prediction tasks. TSK outperforms SK and baselines for the majority of cases.
Position Weight/Frequency Matrix based approaches, MEME and CISFINDER, also perform well for three TFs that have strong sequence
conservation across genomes. The last column “CS” represents the conservation score of the corresponding TF. We note that SK and TSK
perform the best when the conservation score is low (11 out of14 cases).

Ratio=1:1 Ratio=1:2 Ratio=1:3

TF TSK SK CISF MEME TSK SK CISF MEME TSK SK CISF MEME CS

Maz 0.9167 0.9102 0.8396 0.8579 0.9106 0.9052 0.8422 0.8469 0.9091 0.9038 0.8417 0.8406 0.0580

Jund 0.6008 0.5958 0.5475 0.5861 0.6010 0.5943 0.5506 0.5955 0.6033 0.5951 0.5549 0.6027 0.0663

Mafk 0.8317 0.8313 0.6038 0.6694 0.8344 0.8365 0.6111 0.6714 0.8416 0.8456 0.6143 0.6740 0.0753

Tbp 0.6305 0.6214 0.5146 0.5236 0.6325 0.6187 0.5106 0.5343 0.6283 0.6167 0.5105 0.5316 0.0827

Max 0.8726 0.8642 0.8478 0.2105 0.8856 0.8747 0.8513 0.2048 0.8877 0.8759 0.8499 0.1986 0.0844

Ctcf 0.8314 0.8252 0.7667 0.8135 0.8311 0.8282 0.7677 0.8142 0.8301 0.8268 0.7655 0.8112 0.0873

Chd1 0.6731 0.6677 0.5732 0.3375 0.6724 0.6625 0.5709 0.3455 0.6640 0.6592 0.5746 0.3457 0.0965

Mxi1 0.8630 0.8523 0.7785 0.2522 0.8606 0.8505 0.7780 0.2476 0.8612 0.8494 0.7794 0.2506 0.1071

P300 0.6288 0.6503 0.5055 0.5795 0.6375 0.6470 0.50344 0.5689 0.6412 0.6526 0.5000 0.5781 0.1235

Chd2 0.8355 0.8270 0.6079 0.7420 0.8383 0.8315 0.6066 0.7405 0.8460 0.8383 0.6078 0.7430 0.1236

Sin3a 0.8821 0.8646 0.8025 0.2118 0.8841 0.8679 0.8005 0.2048 0.8805 0.8657 0.7990 0.2036 0.1254

Usf2 0.8812 0.8673 0.8841 0.9658 0.8856 0.8723 0.8833 0.96346 0.8815 0.8705 0.8826 0.9608 0.1300

Rad21 0.7408 0.7176 0.7654 0.8310 0.7456 0.7214 0.7612 0.8302 0.7381 0.7164 0.7627 0.8313 0.1577

Smc3 0.8277 0.8052 0.9113 0.9818 0.8365 0.8158 0.9150 0.9812 0.8305 0.8114 0.9163 0.9816 0.1637

AVG 0.7868 0.7786 0.7106 0.6116 0.7897 0.7804 0.7109 0.6106 0.7888 0.7805 0.7114 0.6109

positive ChIP-seq TFBS peaks are absent2. Coordinates of TFBS
peak positions are obtained from the ChIP-seq data available in the
ENCODE repository [1].

3.3 Setup

Our experiments include a few important data statistics andhyperpa-
rameters to tune:

• Dictionary size (d): Our TFBS prediction uses DNA sequence
segments as input data. These strings are made up of 4 characters
(also known as nucleotides): A,T,C,G. The dictionary size is
d=4.

• Number of source samples (n): For each of the 14 TFs, we
use its top 500 (ranked according to ChIP-seq peak enrichment)
mouse TFBS sequences. For each TF task, we randomly select
500 negative samples using the strategy in Section 3.2.1. Totally,
for each TF, we have a training set containingn=1000 sequences
(positive=500, negative=500).

• Ratio of positive to negative target samples (r): In a target
context, we generated a validation set for hyperparameter tuning
and a test set for performance evaluation. For each of the 14
TFs, we use the subsequent 500 human TFBS sequences each
for both the positive validation set and positive testing set.
However, the number of negative validation and testing samples
may vary. For TFBS prediction on an unannotated context, it
is not practical to assume that the ratio between positive and
negative sites is always balanced. This is because the number of
bound sites varies from one cell-context to another cell-context
as well as across different TFs. Furthermore, the number of
TFBSs is generally much smaller compared to regions without
the TFBSs. Accordingly, we create target sets in which positive
to negative ratio varies, simulating real-world predictions on
unlabeled datasets3. By varying negative samples in the target
context and keeping the positive samples constant, we obtain

2. We first select “open” DNA segments where the TFBS binding can take place.
Next, we remove all possible TFBS regions for a particular TF.

3. Intuitively, searching TFBS sites should consider all genomic positions. In
reality, researchers use epigenomic evidence to filter out non-possible binding
sites.

different positive to negative ratios in target data, i.e r=1:1, 1:2
and 1:3 respectively. A ratio of 1:3 means we expect 3 negative
sites for every observed positive site in the target data. More
specifically, we generated three cases of validation and test
sets for each TF task, containing n=1000 (positive=500, nega-
tive=500), n=1500 (positive=500, negative=1000) and n=2000
(positive=500, negative=1500) sequences.

• String kernel hyperparameters (k,m): For both SK and
TSK, we tune two hyperparameters: the length of input k-
mer,k ∈ {8, 10, 12}, and the number of allowed mismatches,
m ∈ {1, 2, 3}. We first perform hyperparameter selection using
our validation sets and then evaluate model performance using
the selected hyperparameters on the test sets. Hyperparameters
for the SVM training (C ∈ {0.1, 1, 10, 100, 1000}) are also
selected using the validation sets.

The setup described above is novel. Our cross-context setup
differs from previous TFBS prediction works and closely resembles a
real biological scenario. The data statistics and hyperparameters used
in our TFBS experiments are summarized in Table 2.

3.4 Evaluation Metric

Our investigation of TSK focuses on the SVM [53] [54] classifier
framework. SVMs are known to provide state-of-the-art performance
for many applications [11], including a large number of successes
in computational biology [55]. Binary SVM learns a real-valued
function that assigns a continuous score to each candidate sequence
segment based on the labeled source set. Larger scores correspond
to more confident predictions as the positive class. As a result, we
rank all candidate samples in the target set using SVM prediction
values. This naturally leads us to utilize Area Under Curve (AUC)
score (from the Receiver Operating Characteristic (ROC) curve) as
our main evaluation metric. The area under the ROC curve (AUC)
is commonly used as a summary measure of diagnostic accuracy.
It is interpreted as the probability that a randomly selected “event”
will be regarded with greater suspicion (in terms of its continuous
measurement) than a randomly selected “non-event”. AUC score
ranges between 0 and 1, where values closer to 1 indicate more
successful predictions.
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Fig. 2: Average AUC scores from TSK and SK on TFBS predictions
when varying hyperparameters(k,m). For each of the three data
ratios (1:1,1:2 and 1:3) about validation sets, a curve is shown to
describe the change in performance for SK and TSK with varying
(k,m) values. Parameter combination ofk=10 andm = 1, gives
the best performance for both SK and TSK. For each data ratio,TSK
outperforms the basic SK.

3.5 Baseline approaches used for comparison

For TFBS prediction tasks, we compare TSK to the following
baselines:

1) SK: represents the(k,m)-mismatch kernel implementation
adapted from [12]. We also ran spectrum kernel and found that
its performed worse than(k,m)-mismatch SK (See Section 4.1)

2) MEME: is the state-of-the-art TFBS prediction tool that scores
each sequence for potential TF binding events based on Position
Weight Matrices (PWMs). The PWMs are obtained from source
sequences using motif discovery algorithm MEME-ChIP [56]
and then these motifs are used for scoring individual target
sequences using AMA tool [57]. These tools are part of the
MEME-Suite [58].

3) CISF: CISFINDER [59] is another state-of-the-art toolbox for
TFBS detection that uses an exhaustive search for DNA motifs
and outputs a Position Frequency Matrix (PFM). It then scores
each target sequence based on the generated PFM.

The source and target sequences for all above baselines are same as
those used in our TSK approach.

3.6 MHC PB Prediction Task

To demonstrate the generalization of our model, we implement TSK
on another group of cross-context prediction tasks: predict PB to
MHC proteins from mice to humans. The mouse and human datasets
are provided by the 2012 Machine Learning Competition in Immunol-
ogy [48]. The target human datasets have peptide bindings (PBs) for 5
different MHC molecules: HLA-A0201, HLA-B0702, HLA-B4403,
HLA-B5301 and HLA-5701; while for the source mouse domain we
select H2-Kb PB data. This leads to 5 different PB predictiontasks.
We present the details of these datasets in Table 3. Important data
statistics and hyperparameters of this task are listed as follows:
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Fig. 3: Comparison using average test AUC scores of 14 TF tasks
by comparing TFBS predictions under the Within-Context (“human
Context-Specific”) setting versus Cross-Context setting.As expected,
using the same SK approach, within-context setting achieves better
performance than SK under cross-context setting indicating that the
Cross-Context task is more difficult. Interestingly, our baseline SK
method outperforms the state-of-art tools MEME and CISFINDER
under the (easier) Within-Context (“human Context-Specific”) set-
ting.

• Dictionary size (d): Peptides are composed of 2 or more amino
acids. Thus, the dictionary size is much larger, withd=20, since
there exist 20 amino acids.

• Number of sequences (n): While the number of sequences
of source domain is 3184, the number of sequences in target
domain vary drastically for each MHC task. The details are
included in Table 3. The length of these peptide sequences varies
from 8 to 11 amino acids.

• Ratio of positive to negative samples in target data (r): The
datasets are from the 2012 competition [48]. The ratio between
positive sites (i.e. sites with naturally processed (eluted) peptide
binding to MHC-I complex) and the negative sites is already
skewed (details in table 3).

• String kernel hyperparameters (k,m): Hyperparameter tuning
was performed by training on mouse PB datasets and using
the training data of human tasks as the validation set. We vary
the length of the k-mer,k ∈ {5, 6, 7}, since the full sequence
lengths are much smaller compared to TFBS, and the number of
allowed mismatches,m ∈ {1, 2, 3}. Model evaluation is done
on human test datasets provided by the 2012 Machine Learning
Competition in Immunology [48].

• Baselines: Since no runnable tools exist for both oligo kernels
and GS kernels, we use (k,m)-mismatch kernels from [12] as a
baseline.

4 RESULTS

4.1 Choice of Basic Kernel: (k,m)-mismatch kernel

We select(k,m)-mismatch kernel as it allows mismatches during
k-mer matching of biological sequences. Such sequences are prone
to mutations like substitutions, insertions, or deletions. In Table 4
we present average AUC scores from 14 TF tasks for both(k,m)-
mismatch kernel and spectrum kernel. As expected, the inexact
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Fig. 4: Comparison using AUC scores across 5 tasks of MHC peptide
binding (PB) prediction. We use mouse dataset as source and human
dataset as target. TSK outperforms SK for 4 out of 5 cases.

matching of(k,m)-mismatch kernel is more effective and outper-
forms than the exact matching of spectrum kernel, making it anatural
choice for our TSK approach.

4.2 Evaluation of performance: TSK successfully trans-
fers knowledge across different species

Table 5 presents the test AUC scores from different approaches for
cross-context TFBS predictions of 14 selected TFs. For eachTF,
training was done on TFBS data from the mouse genome (source)and
testing data was obtained from the human genome (target). Weselect
k = 10 andm = 1 for SK and TSK based on validation set perfor-
mance (details in Section 4.3). TSK outperforms SK and two PWM
baselines for most of the cases and is generally robust for imbalanced
datasets (when r=1:2 and 1:3). Position Weight/Frequency Matrix
based approaches, MEME and CISFINDER, also perform well for
three TFs (USF2, RAD21 and SMC3). However, their performance
is worse than SK and TSK for majority of the TFs. MEME and
CISFINDER also exhibit a higher variance when considering all 14
TF prediction tasks.

Furthermore, we calculate the conservation scores for eachof
the 14 different TFs we used. The conservation scores indicate how
well conserved (or slowly evolving) individual positions of TFBS
sequences are, for a particular TF. Conservation scores arecalculated
for 100 basepair-length sequences. Segments obtained fromtop 2000
binding sites of all 14 TFs from the human genome. For these
sequences, a phyloP score for each nucleotide (total of 200,000) is
calculated using the Galaxy tool [60], [61], [62]. A positive phyloP
score denotes conservation (slow evolution) and a negativephyloP
score denotes acceleration (fast evolution) of the nucleotide. Thus,
after adding and normalizing the scores according to positively and
negatively scored nucleotides for each TF, we take their log(for
scaling) and subtract the acceleration scores from the conservation
scores. We then include information regarding fraction of non-
conserved nucleotides for each TF to our final score. Non-conserved
nucleotides are those nucleotides for which phyloP scores (positive
or negative) are not reported. We calculate this as a penaltyterm :

p =
log(Cn

Ct
)

100
(16)

The equation for calculating the final conservation score (CS) is:

CS = log(PosScore)− log(|NegScore|)− p (17)

whereCn is the count of non-conserved nucleotides andCt is the
count of total number of nucleotides(= 200, 000). PosScore
denotes normalized sum of all positive phyloP scores (quantifying
slow evolution) whileNegScore denotes normalized sum of all
negative phyloP scores (quantifying fast evolution). Conservation
scores for each TF are provided in the last column of Table 5.

For TFs that MEME and CISFINDER give high accuracy, we
observe that they also have high conservation scores. When the
conservation scores are not high, SK and TSK models perform
better. Thus, MEME and CISFINDER perform well on TFs with
strong sequence conservation across genomes. This indicates that
string kernel based approaches can be used to complement Position
Weight/Frequency Matrix based approaches.

It is important to note that TSK consistently outperforms SKeven
on more conserved TFs. This demonstrates that domain adaptation
technique helps to improve the basic string kernel for cross-context
sequence predictions.

4.3 Hyperparameter Selection: k = 10 and m = 1 gives
the best performance for TFBS prediction

(k,m)-mismatch string kernel requires the tuning of two hyper
parameters:k andm. Here,k is the length of the k-mer or substrings
being compared in kernel calculations andm is the number of
mismatches being allowed. We consideredk ∈ {8, 10, 12} and
m ∈ {1, 2, 3}. Figure 2 shows the effect of varyingk and m
parameters using average AUC scores (across 14 TF tasks) from
validation for all three considered data ratios. The combination (k=10,
m=1) achieves the best average AUC results on validation sets.
We observe that for each particular ratio, TSK always outperforms
basic SK on validation. We also find that valuek>10 decreases the
performance of SK and TSK.

4.4 Same context versus cross-context: Prediction of
TFBS within the target context is easier than cross-context

To justify the importance of domain adaptation, we also evaluate
baseline methods under the setting that train and test are within
the same target domain. That is, both the training and testing are
performed on human TFBS datasets4. In Figure 3, the prediction
performance, measured by average AUC test score, across 14 TF
tasks, of SK decreases when under cross-context setting (incompar-
ison to the prediction from within the same context). However, it is
worthwhile to point out that basic SK outperforms MEME and CISF
for TFBS when working within the same domain.

4.5 TSK is generalizable to other sequence-based predic-
tion tasks

In addition to TFBS prediction, we successfully implement TSK for
predicting PB to MHC-I complex by transferring knowledge across
species. Similar to TFBS prediction, we use the mouse (source)
dataset to train our model and then perform predictions (validation
and testing) on the human (target) dataset, i.e. a useful translational
setting. Our results indicate that TSK can be generalized toany cross-
context task that involves sequence-based classification.

4. We generate a new training set from human TFBS data (r=1:1)



10

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

5,1 5,2 5,3 6,1 6,2 6,3 7,1 7,2 7,3 

A
U

C
 S

c
o

re
 

(k,m) 

HLA-A0201 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

5,1 5,2 5,3 6,1 6,2 6,3 7,1 7,2 7,3 

A
U

C
 S

c
o

re
 

(k,m) 

HLA-B4403 

0.5 

0.55 

0.6 

0.65 

0.7 

5,1 5,2 5,3 6,1 6,2 6,3 7,1 7,2 7,3 

A
U

C
 S

c
o

re
 

(k,m) 

HLA-B5301 

0.4 

0.45 

0.5 

0.55 

0.6 

5,1 5,2 5,3 6,1 6,2 6,3 7,1 7,2 7,3 

A
U

C
 S

c
o

re
 

(k,m) 

SK TSK 

HLA-B5701 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

5,1 5,2 5,3 6,1 6,2 6,3 7,1 7,2 7,3 

A
U

C
 S

c
o

re
 

(k,m) 

HLA-B0702 

Fig. 5: Average AUC scores on validation sets from TSK and SK when varying hyperparameters(k,m) on all 5 MHC PB tasks. Different
best performingk andm values are selected across TSK and SK and across each task respectively.
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Fig. 6: Test AUC scores for the 5 MHC PB prediction tasks when
comparing the Within-Context (human “Context-Specific”) setting
versus Cross-Context setting. As expected, SK approach, under the
within-context setting, achieves better performance thanSK under
cross-context, indicating that Cross-Context tasks are more difficult.
Moreover, our mismatch SK baseline outperforms Generic String
Kernel [49] on 4 out of 5 tasks, making it a good choice for
implementation of TSK on this type of task.

• Evaluation of performance: As shown in Figure 4, TSK
performs better than the basic SK model on 4 out of 5 PB-
prediction tasks across species.

• Hyperparameter Selection: The hyperparamter tuning gave
best-performing hyperparameters that were different across 5
tasks as well as across TSK and SK approaches. Figure 5
presents tuning results for all 5 MHC PB prediction tasks, where
training was done on the mouse H2-Kb MHC PB dataset and
validation was done on train data for human provided by 2012
competition in Immunology [48]. Each task uses a different test
dataset for human model evaluation. The best performingk and
m values are selected for each task respectively.

• Same context versus cross-context: Once again, we observe

in Figure 6 that the task of PB prediction is easier when done
within the target (human) domain. That is, when both training
and test datasets are from human domain. In this setting, our
basic SK model (blue bars) gives good performance and even
outperforms GS kernel [49], the best team for 2012 competition
citemlcompimmune. This shows that SK is a good choice for
implementation of domain adaptation technique. The grey bar in
Figure 6 shows that the performance of basic SK decreased dras-
tically when predictions are made across contexts. Therefore,
indicating the need to propose TSK for cross-context settings.5

5 DISCUSSION

Determining how TF proteins interact with DNA to regulate context
specific gene regulation is essential for fully understanding bio-
logical processes and diseases. Most previous computational tools
for predicting TFBSs assume the same distribution across target
and source contexts. We, however, have shown that it is benefi-
cial to consider the distribution shift. The proposed TSK method
improves the performance of sequence-driven TFBS predictions by
accommodating differences among underlying sample distributions
and applying knowledge transfer from the source to target context.
We have also examined the imbalanced (positive to negative ratio)
data issue in the target domain, to ensure realistic and robust TFBS
predictions. Our experimental results indicate:

• TSK overall improves performance of string kernel on cross-
context TFBS predictions;

• TSK and SK outperform the state-of-the-art Position
Weight/Frequency Matrix based TFBS tools, especially for less
conserved TFs, and can be used as complementary tools to the
latter;

• TSK can be easily generalized to other sequence based predic-
tion tasks, e.g. prediction of PB to MHC-I complex molecules.

5. We also apply TSK to this within-context setting and get following AUC
scores: 0.8325 (HLA-A0201), 0.9233 (HLA-B0702), 0.9282 (HLA-B4403),
0.8599 (HLA-B5301) and 0.82 (HLA-B5701). Interestingly, we find that TSK
adapts and reduces the differences among the training and testing datasets and
gives slightly better performance on 3 out of 5 MHC PB prediction tasks (HLA-
A0201, HLA-B0702 and HLA-B4403). SK’s performance is represented by blue
bars in Figure 6
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The code for TSK has been made available at www.github.com/
QData/TransferStringKernel. TSK is a general sequence modeling
architecture. Therefore, our future plan is to extend TSK toa wider
variety of sequence based applications. We would also like to study
and compare implementation of other kernels from the stringkernel
family as components of the TSK approach. In the meantime, we
are aware of the limitations of TSK due to its high computational
complexity when handling datasets with a large number of source and
target samples. We plan to explore random sampling based techniques
to scale up TSK on “large-scale" sequence mining tasks.
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