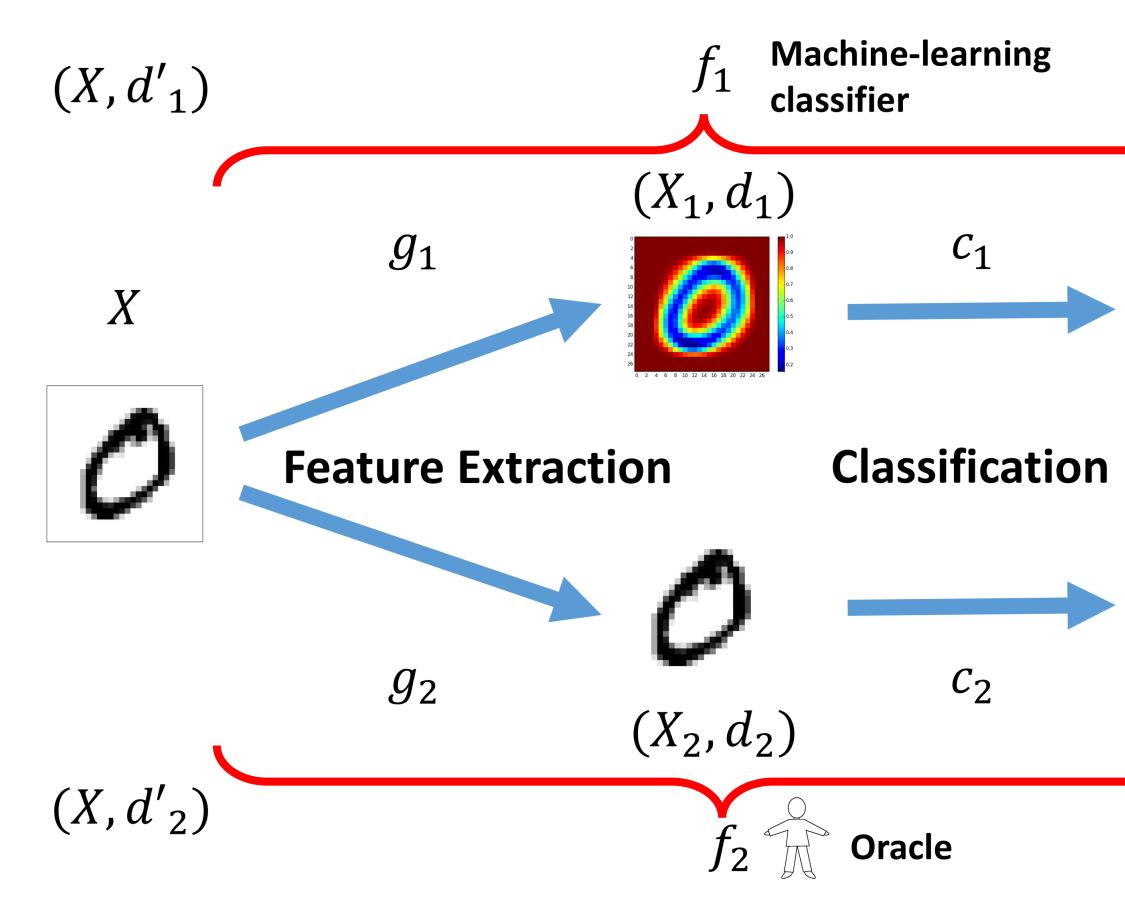


Problem Setting:



Define Adversarial Examples:

Find x's.t. $f_1(x) \neq f_1(x')$ $d_2(g_2(x), g_2(x')) < \delta_2$ $f_2(x) = f_2(x')$

Define (δ_2, η) -Strong-robustness:

 $\forall x, x' \in X$ $\mathbb{P}(f_1(x) = f_1(x') | f_2(x) = f_2(x'),$ $d_2(g_2(x), g_2(x')) < \delta_2) > 1 - \eta$

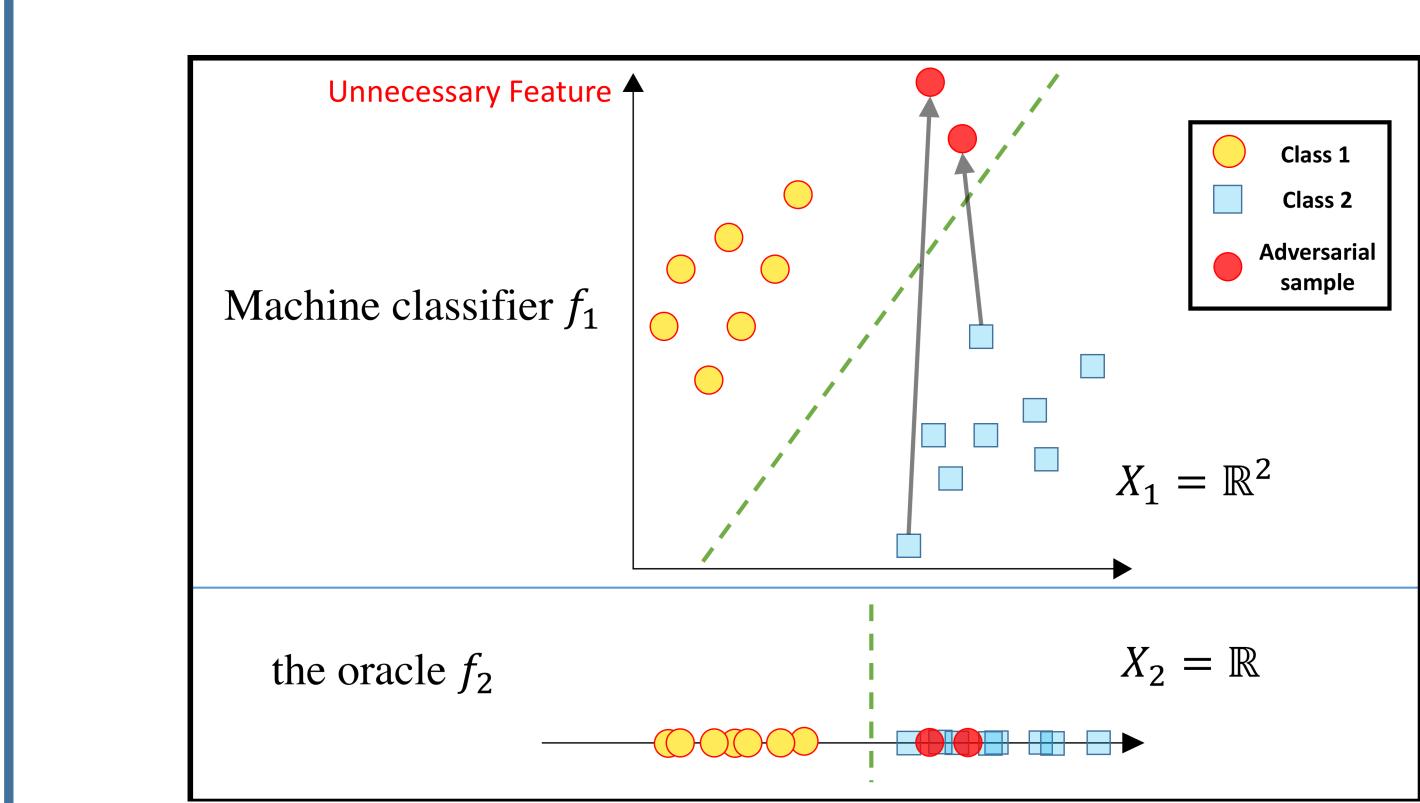
Sufficient Condition for Strong-robustness:

 $\forall x, x' \in X,$ $d_2(g_2(x), g_2(x')) < \delta_2 \Rightarrow d_1(g_1(x), g_1(x')) < \delta_1$

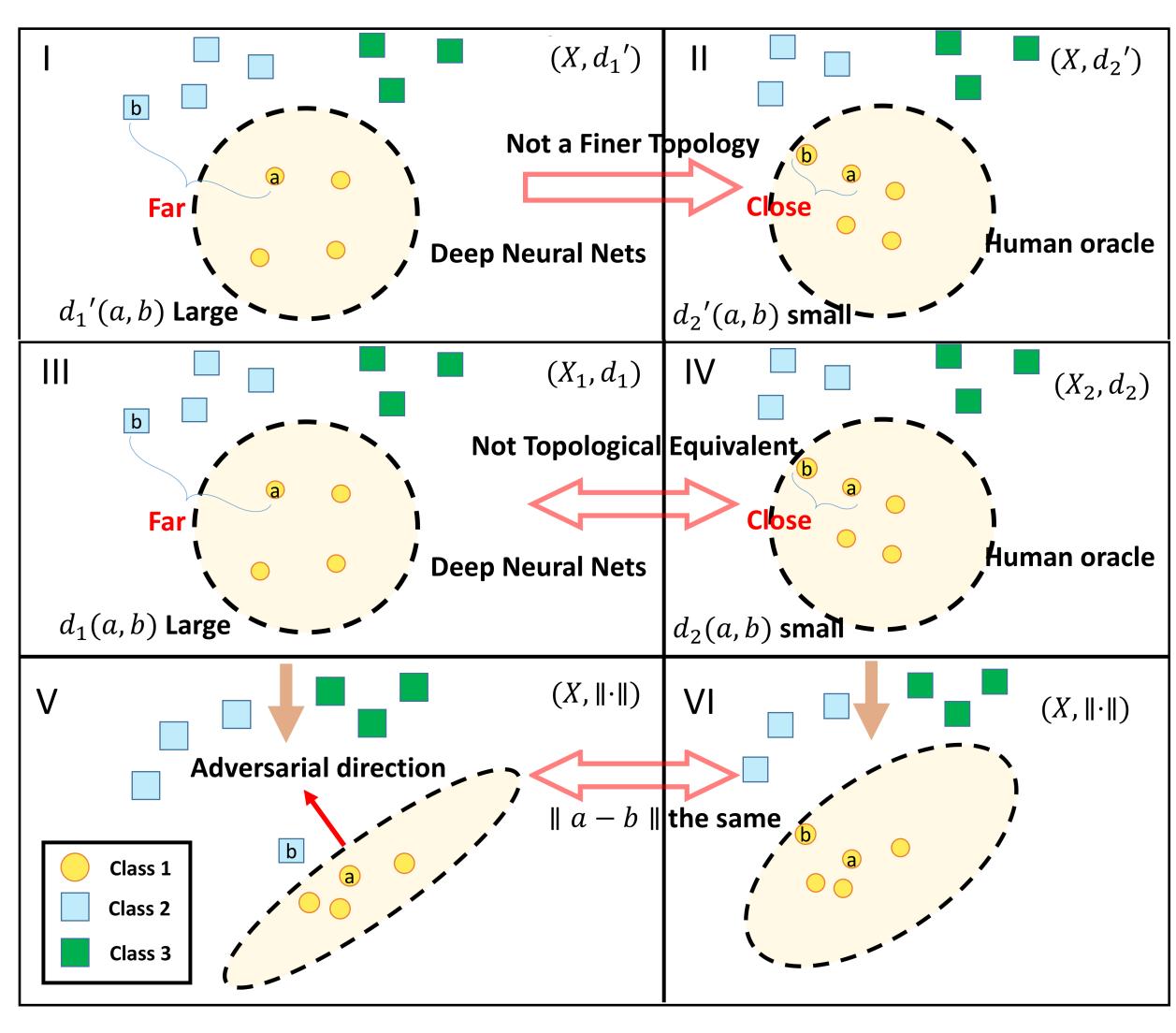
Strong-robustness for f_2

A THEORETICAL FRAMEWORK FOR ROBUSTNESS OF (DEEP) CLASSIFIERS UNDER ADVERSARIAL EXAMPLES Beilun Wang, Ji Gao and Yanjun Qi Department of Computer Science, University of Virginia

Why a classifier is vulnerable to adversarial samples.



Why DNN model is not strong-robust.



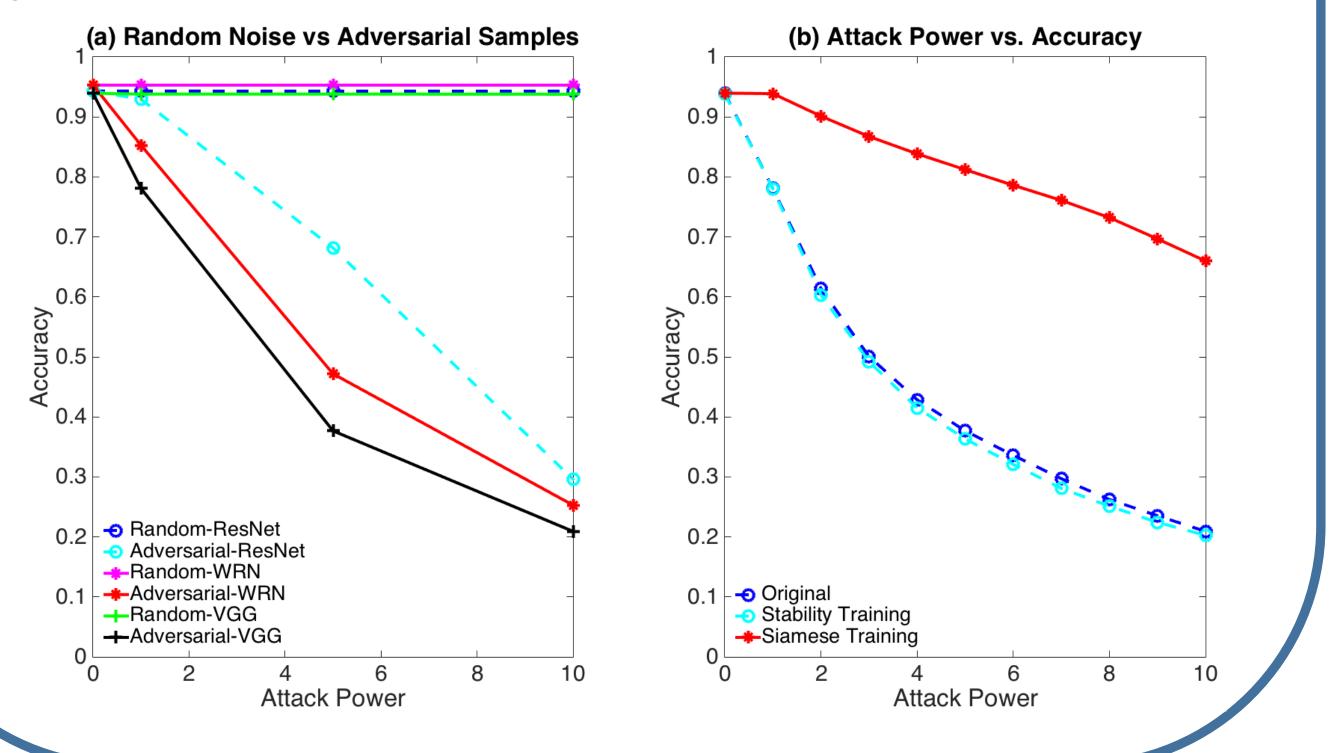
Towards Principled Understanding

Our theorems suggest a list of possible solutions that may improve the robustness of DNN classifiers against adversarial samples. Options include, like (1) learning a better g_1 ; (2) modifying unnecessary features (See Poster DeepMask-Tuesday Morning W18).

• For (1), the alternative method for hardening the DNN models is minimizing some loss functions $L_{f_1}(x, x')$ so that when $d_2(g_2(x), g_2(x')) < \epsilon$ (approximated by $(X, \|\cdot\|)$), this loss $L_{f_1}(x, x')$ is small. A table of comparing existing hardening solutions using this method is shown as following:

	x'	Loss $L_{f_1}(x, x')$	On Layer
Stability train- ing (Zheng et al., 2016)	random per- turbation	$KL(f_1(x), f_1(x'))$	Classification layer
(Miyato et al., 2016)	adversarial perturbation	$KL(f_1(x), f_1(x'))$	Classification layer
Adversarial train- ing(Goodfellow et al., 2014)	adversarial perturbation	$L(f_1(x'), f_2(x))$	Loss function
Large Adversarial training(Kurakin et al., 2016)	adversarial perturbation	$L(f_1(x'), f_2(x))$	Loss function
(Lee et al., 2015)	adversarial perturbation	$ \begin{array}{c c} \ & g_1(x) & - \\ g_1(x') \ _2 \end{array} $	Layer before classi- fication layer
Siamese Training	random per- turbation	$ \begin{array}{c} \ & g_1(x) & - \\ g_1(x') \ _2 \end{array} $	Layer before classi- fication layer

Experimental Evaluation:



Towards Principled Solutions (for DNNs):