UVA CS 4501 - 001 / 6501 - 007

Introduction to Machine Learning and Data Mining

Lecture 1: Logistics & Intro

Yanjun Qi / Jane

University of Virginia Department of Computer Science

8/26/14

_

Yanjun Qi / UVA CS 4501-01-6501-07

Welcome

- CS 4501 001; cross-listed as 6501 007
- Introduction to Machine Learning and Data Mining
- TuTh 3:30pm-4:45pm, Thornton Hall E316
- Course Website
 - http://www.cs.virginia.edu/yanjun/teach/2014f/
 - Uva Collab course page for homework submissions

Today

Course Logistics

My background
Basics of machine learning
Application and History of MLDM

Yanjun Qi / UVA CS 4501-01-6501-07

Course Staff

- Instructor: Prof. Yanjun Qi
 - QI: /ch ee/
 - You can call me professor "Jane"
- TA: Nicholas Janus, (ncj2ey@virginia.edu)
- TA: Beilun Wang (<u>bw4mw@virginia.edu)</u>
- TA office hours: Monday 4:00-6:00pm @ Rice 504
- My office hours: Grab me right after a lecture

8/26/14 4

Course Logistics

- Course email list has been setup. You should have received emails already!
- Policy, the grade will be calculated as follows:
 - Assignments (60%, SIX total, each 10%)
 - mid-term (20%)
 - Final exam (20%)

8/26/14

Yanjun Qi / UVA CS 4501-01-6501-07

Course Logistics

- Midterm: Oct 16, one hour in class
- Final exam: Dec 9, two hours (tentative)
- Six assignments (each 10%)
 - Due Sept 16, Sept 30, Oct 14, Nov 4, Nov 18, Dec 2
 - For homework-6
 - 4501-001 programming;
 - 6501-007 course mini-project;
 - three extension days policy (check course website)

Course Logistics

- Policy,
 - Homework should be submitted electronically through UVaCollab
 - Homework should be finished individually
 - Due at the **beginning of class** on the due date
 - In order to pass the course, the average of your midterm and final must also be "pass".

8/26/14

Yanjun Qi / UVA CS 4501-01-6501-07

Course Logistics

- · Recommended books for this class is:
 - Elements of Statistical Learning, by Hastie,
 Tibshirani and Friedman. (Book PDF available online)
 - Pattern Recognition and Machine Learning, by Christopher Bishop.
- My slides if not mentioned in my slides, it is not an official topic of the course

Course Logistics

Background Needed

- Calculus and Basic linear algebra.
- Statistics is recommended.
- Students should already have good programming skills, i.e. 2150 as prerequisite.
- We will review "linear algebra" and "probability" in class

8/26/14

Yanjun Qi / UVA CS 4501-01-6501-07

Today

- ☐ Course Logistics
- My background
- ☐ Basics of machine learning & Application
- Application and History of MLDM

About Me

Education:

- PhD from School of Computer Science, Carnegie
 Mellon University (@ Pittsburgh, PA) in 2008
- BS in Department of Computer Science, Tsinghua Univ. (@ Beijing, China)
 - My accent PATTERN : /l/, /n/,/ou/, /m/
- Research interests:
 - Machine Learning, Data Mining, Biomedical Informatics

8/26/14

Yanjun Qi / UVA CS 4501-01-6501-07

About Me

- Five Years' of Industry Research Lab in the past:
 - 2008 summer 2013 summer, Research Scientist in IT industry (Machine Learning Department, NEC Labs America @ Princeton, NJ)
 - 2013 Fall Present, Assistant Professor, Computer Science, UVA

Industry + Academia

8/26/14

12

Today

- ☐ Course Logistics
- My background
- **☐** Basics of MLDM
- Application and History of MLDM

8/26/14

OUR DATA-RICH WORLD

- Biomedicine
 - Patient records, brain imaging, MRI & CT scans, \dots
 - Genomic sequences, bio-structure, drug effect info, ...
- Science
 - Historical documents, scanned books, databases from astronomy, environmental data, climate records, ...
- Social media
 - Social interactions data, twitter, facebook records, online reviews, ...
- Business
 - Stock market transactions, corporate sales, airline traffic, ...
- Entertainment
 - Internet images, Hollywood movies, music audio files, ...

Yanjun Qi / UVA CS 4501-01-6501-07 BIG DATA CHALLENGES • Data capturing (sensor, smart devices, medical instruments, et al.) • Data transmission • Data storage e.g. cloud computing • Data management · High performance data processing • Data visualization Data security & privacy (e.g. multiple individuals) this course Data analytics **O**How can we analyze this big data wealth? **O**E.g. Machine learning and data mining 15

BASICS OF MACHINE LEARNING

- "The goal of machine learning is to build computer systems that can learn and adapt from their experience." Tom Dietterich
- "Experience" in the form of available data examples (also called as instances, samples)
- Available examples are described with properties (data points in feature space X)

8/26/14 17

$e.g.\ SUPERVISED\ LEARNING^{\text{Yanjun Qi/UVACS 4501-01-6501-07}}$

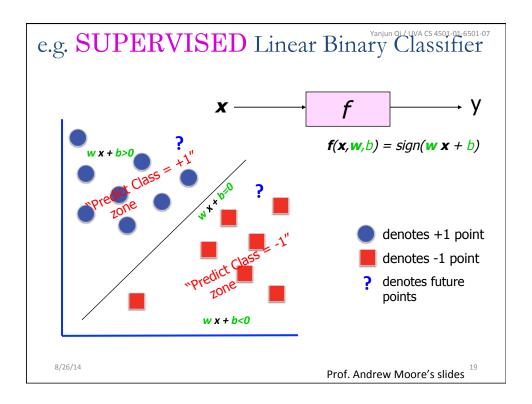
- Find function to map input space X to output space Y $f: X \longrightarrow Y$
- So that the difference between y and f(x) of each example x is small.

e.g.

I believe that this book is not at all helpful since it does not explain thoroughly the material . it just provides the reader with tables and calculations that sometimes are not easily understood ...

Input X: e.g. a piece of English text

8/26/14



Basic Concepts

Yanjun Qi / UVA CS 4501-01-6501-07

• Training (i.e. learning parameters | w,b|)

- Training set includes
 - available examples $x_1, ..., x_L$
 - available corresponding labels $y_1, ..., y_L$
- Find (**w**,b) by minimizing loss (i.e. difference between y and f(x) on available examples in training set)

(W, b) = argmin
$$\sum_{i=1}^{L} \ell(f(x_i), y_i)$$

Basic Concepts

Yanjun Qi / UVA CS 4501-01-6501-07

- Testing (i.e. evaluating performance on "future" points)
 - Difference between true y_2 and the predicted $f(x_2)$ on a set of testing examples (i.e. *testing set*)
 - Key: example x_2 not in the training set
- Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

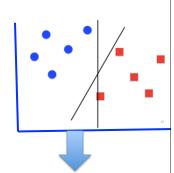
8/26/14

Basic Concepts

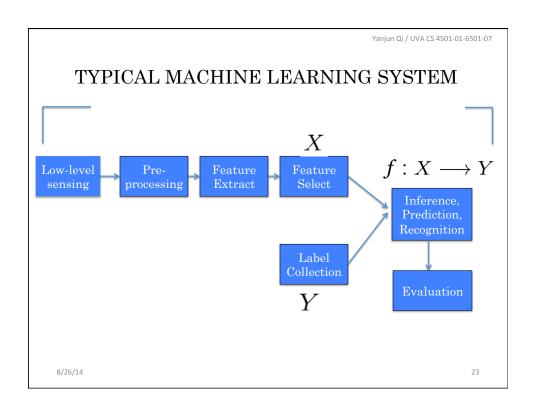
Yanjun Qi / UVA CS 4501-01-6501-07

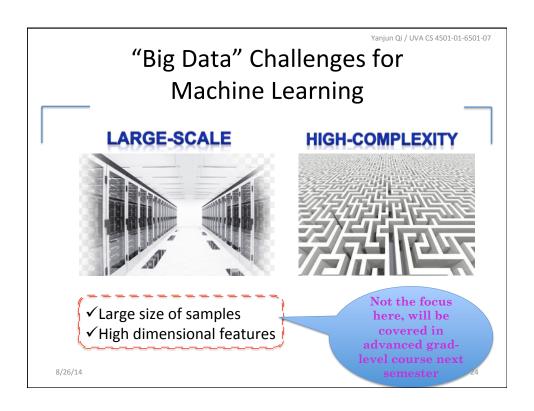
• Loss function

- e.g. hinge loss for binary classification task
- e.g. pairwise ranking loss for ranking task (i.e. ordering examples by preference)



- Regularization
 - E.g. additional information added
 - on loss function to control model





Large-Scale Machine Learning: SIZE MATTERS

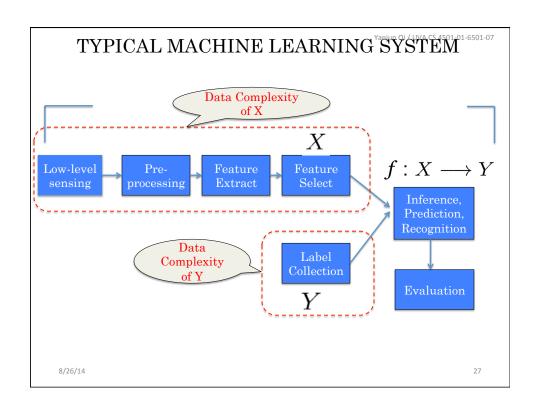
LARGE-SCALE

Those are not different numbers, those are different mindsets!!!

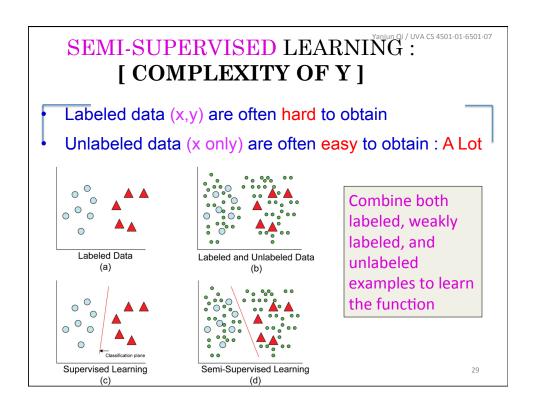
• One thousand data instances

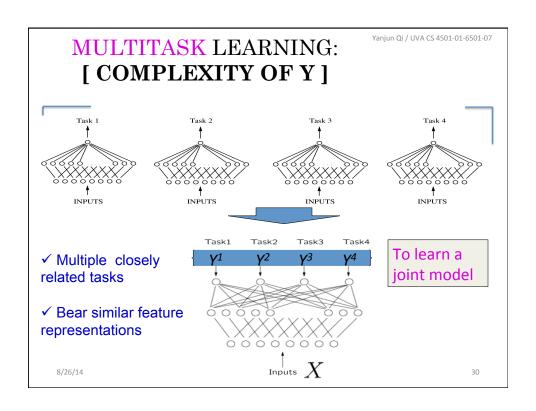
- One million data instances
- One billion data instances
- One trillion data instances

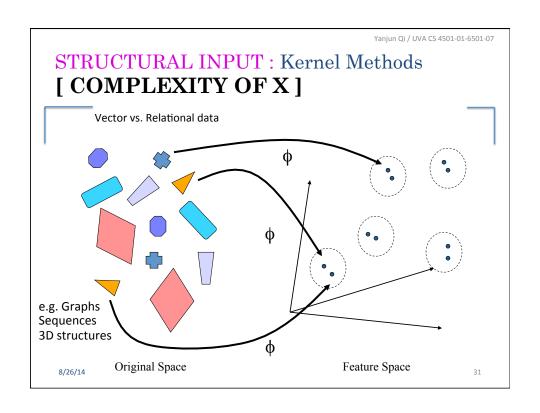
8/26/14

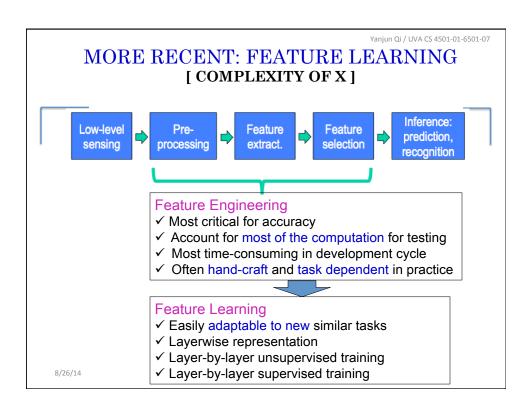




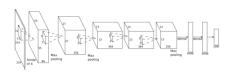








DEEP LEARNING / FEATURE LEARNING : [COMPLEXITY OF X]



72%, 2010

74%, 2011

85%, 2012 89%, 2013

Deep Convolution Neural Network (CNN) just won (as Best systems) on "very large-scale" ImageNet competition 2012 and 2013

(training on 1.2 million images [X] vs.1000 different word labels [Y])

- 2013, Google Acquired Deep Neural Networks Company headed by Utoronto "Deep Learning" Professor Hinton
- 2013, Facebook Built New Artificial Intelligence Lab headed by NYU

 "Deep Learning" Professor LeCun

 Prof. Hinton's slides

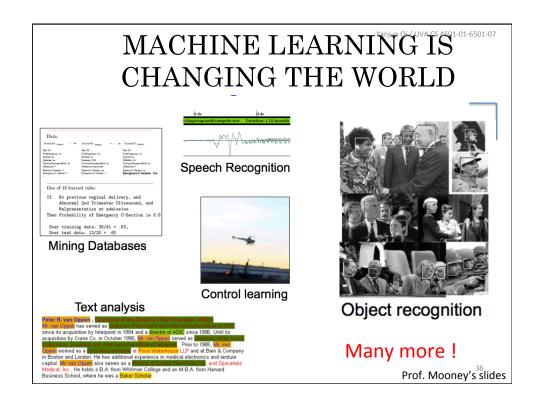
Yanjun Qi / UVA CS 4501-01-6501-07

Today

- Course Logistics
- My background
- ☐ Basics of machine learning & Data Mining
- Application and History of MLDM

8/26/14 34





MACHINE LEARNING IN COMPUTER SCIENCE

- Machine learning is already the preferred approach for
 - Speech recognition, natural language processing
 - Computer vision
 - Medical outcome analysis
 - Robot control ...
- Why growing?
 - Improved learning algorithms
 - Increased data capture, new sensors, networking
 - Systems/Software too complex to control manually
 - **–**

8/26/14

Prof. Mooney's slides

ranjun Qi / OVA CS 4501-01-6501-07

Terminology: Some (Near-)Synonyms

- Machine learning
- · Data mining
- Pattern recognition
- Computational statistics
- •

8/26/14

Prof. Gray's slides

Some bigger concepts that ML is part of:

- Statistics (e.g. includes hypothesis testing)
- Data analysis (e.g. includes visualization)
- Artificial intelligence (e.g. includes planning)
- Applied mathematics, computational science (e.g. includes optimization)

8/26/14

Prof. Gray's slides

Yanjun Qi / UVA CS 4501-01-6501-07

HISTORY OF MACHINE LEARNING

- 1950s
 - Samuel's checker player
 - Selfridge's Pandemonium
- 1960s
 - Neural networks: Perceptron
 - Pattern recognition
 - Learning in the limit theory
 - Minsky and Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Winston's arch learner
 - Expert systems and the knowledge acquisition bottleneck
 - Quinlan's ID3
 - Michalski's AQ and soybean diagnosis
 - Scientific discovery with BACON
 - Mathematical discovery with AM

8/26/14

Prof. Mooney's slides

HISTORY OF MACHINE LEARNING (CONT.)

- 1980s:
 - Advanced decision tree and rule learning
 - Explanation-based Learning (EBL)
 - Learning and planning and problem solving
 - Utility problem
 - Analogy
 - Cognitive architectures
 - Resurgence of neural networks (connectionism, backpropagation)
 - Valiant's PAC Learning Theory
 - Focus on experimental methodology
- 1990s
 - Data mining
 - Adaptive software agents and web applications
 - Text learning
 - Reinforcement learning (RL)
 - Inductive Logic Programming (ILP)
 - Ensembles: Bagging, Boosting, and Stacking

- Bayes Net learning

Prof. Mooney's slides

Yanjun Qi / UVA CS 4501-01-6501-07

HISTORY OF MACHINE LEARNING (CONT.)

- 2000s
 - Support vector machines
 - Kernel methods
 - Graphical models
 - Statistical relational learning
 - Transfer learning
 - Sequence labeling
 - Collective classification and structured outputs
 - Computer Systems Applications
 - Compilers
 - Debugging
 - Graphics
 - · Security (intrusion, virus, and worm detection)
 - Email management
 - Personalized assistants that learn
 - Learning in robotics and vision

8/26/14

Prof. Mooney's slides

HISTORY OF MACHINE LEARNING (CONT.)

• 2010s

- Speech translation, voice recognition (e.g. SIRI)
- Google search engine uses numerous machine learning techniques (e.g. grouping news, spelling corrector, improving search ranking, image retrieval,)
- 23 and me (scan sample of person genome, predict likelihood of genetic disease, ...)
- IBM waston QA system
- Machine Learning as a service (e.g. google prediction API, bigml.com,)
- IBM healthcare analytics
- **–**

8/26/14

Prof. Mooney's slides

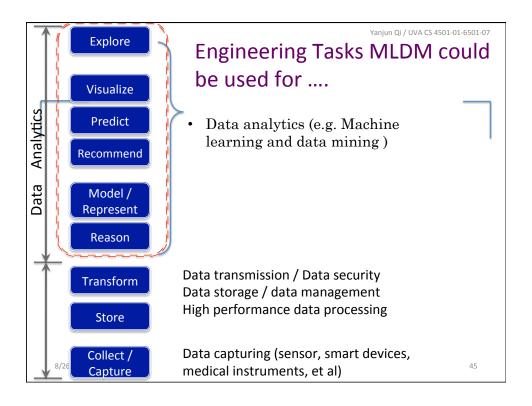
Yanjun Qi / UVA CS 4501-01-6501-07

When to use Machine Learning (Adapt to / learn from data)?

- 1. Extract knowledge from data
 - Relationships and correlations can be hidden within large amounts of data
 - The amount of knowledge available about certain tasks is simply too large for explicit encoding (e.g. rules) by humans
- 2. Learn tasks that are difficult to formalise
 - Hard to be defined well, except by examples
- 3. Create software that improves over time
 - New knowledge is constantly being discovered.
 - Rule or human encoding-based system is difficult to continuously re-design "by hand".

8/26/14

14



Today Recap

Course Logistics
My background
Basics of machine learning & Application
Training / Testing / Supervised Learning
Application and History of MLDM

References

Prof. Andrew Moore's slides
Prof. Raymond J. Mooney's slides
Prof. Alexander Gray's slides