UVA CS 4501 - 001 / 6501 - 007 Introduction to Machine Learning and Data Mining

Lecture 26: History / Review

Yanjun Qi / Jane, , PhD

University of Virginia
Department of
Computer Science

Yanjun Qi / UVA CS 4501-01-6501-07

Announcements: Rough Plan

- HW5 Grades + Solution / Will be posted in Collab this weekend
- HW6 Grades / Will be posted in Collab this weekend
- Please check your grades of HW1-6 and the midterm

Announcements: Final

- Open Note / Open Book
- No laptop / No Cell phone / No internet access / No electronic devices
- Covering contents after midterm
 - Practice with sample questions in HW6
 - Review course slides carefully

12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

Today

- ☐ History of AI & Machine Learning
- ☐ Review of ML methods covered in the course

What are the goals of AI research?

Artifacts that THINK like HUMANS

Artifacts that THINK RATIONALLY

Artifacts that ACT like HUMANS

Artifacts that ACT RATIONALLY

12/4/14

From: M.A. Papalaskar

1940s

A Bit of History

Advances in mathematical logic, information theory, concept of neural computation

- 1943: McCulloch & Pitts Neuron
- 1948: Shannon: Information Theory
- 1949: Hebbian Learning
 - cells that fire together, wire together

1950s

Early computers. Dartmouth conference coins the phrase "artificial intelligence" and Lisp is proposed as the AI programming language

- 1950: Turing Test
- 1956: Dartmouth Conference
- 1958: Friedberg: Learn Assembly Code
- 1959: Samuel: Learning Checkers

12/4/14

From: M.A. Papalaskar

1960s

A.I. funding increased (mainly military). Famous quote: "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved."

Early symbolic reasoning approaches.

Logic Theorist, GPS, Perceptrons

1969: Minsky & Papert "Perceptrons"

1970s

A.I. "winter" – Funding dries up as people realize this is a hard problem!

Limited computing power and dead-end frameworks lead to failures.

eg: Machine Translation Failure

12/4/14

7

From: M.A. Papalaskar

Yanjun Qi / UVA CS 4501-01-6501-07

1980s

Rule based "expert systems" used in medical / legal professions. Bio-inspired algorithms (Neural networks, Genetic Algorithms). Again: A.I. promises the world – lots of commercial investment

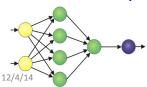
Expert Systems (Mycin, Dendral, EMYCIN Knowledge Representation and reasoning: Frames, Eurisko, Cyc, NMR, fuzzy logic Speech Recognition (HEARSAY, HARPY, HWIM)

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Machine Learning:

1982: Hopfield Nets, Decision Trees, GA & GP.

1986: Backpropagation, Explanation-Based Learning



From: M.A. Papalaskar

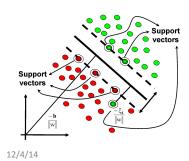
1990s

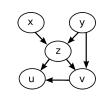
Some concrete successes begin to emerge. Al diverges into separate fields: Computer Vision, Automated Reasoning, Planning systems, Natural Language processing, **Machine Learning**...

...Machine Learning begins to overlap with statistics / probability theory.

1992: Koza & Genetic Programming

1995: Vapnik: Support Vector Machines





$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

From: M.A. Papalaskar

Yanjun Qi / UVA CS 4501-01-6501-07

2000s

First commercial-strength applications: Google, Amazon, computer games, route-finding, credit card fraud detection, spam filters, etc...

Tools adopted as standard by other fields e.g. biology

From: M.A. Papalaskar

2010s.... ??????

Yanjun Qi / UVA CS 4501-01-6501-07

How can we build more intelligent computer / machine?

- Able to
 - perceive the world
 - understand the world
- This needs
 - Basic speech capabilities
 - Basic vision capabilities
 - Language understanding
 - User behavior / emotion understanding
 - Able to think ??

Plenty of Data

- Text: trillions of words of English + other languages
- Visual: billions of images and videos
- Audio: thousands of hours of speech per day
- User activity: queries, user page clicks, map requests, etc,
- Knowledge graph: billions of labeled relational triplets
-

Data-driven machine learning methods have made machines / computers much more intelligent

Dr. Jeff Dean's talk

Yanjun Qi / UVA CS 4501-01-6501-07

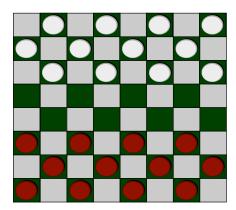
13

Detour: our programming assignments

- HW3: Semantic language understanding (sentiment classification on movie review text)
- HW5: Visual object recognition (labeling images about handwritten digits)
- Planned but omitted: Audio speech recognition (HMM based speech recognition task)

Samuel's definition of ML (1959)

 Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.



12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

Tom Mitchell (1998): Well-posed Learning Problem

A computer program is said to learn from experience **E** with respect to some task **T** and some performance measure **P**, if its performance on **T**, as measured by **P**, improves with experience **E**.

Defining the Learning Task

Improve on task, T, with respect to performance metric, P, based on experience, E.

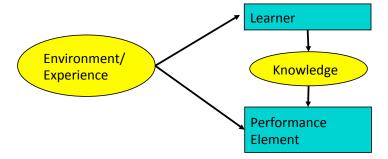
- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Determine which students like oranges or apples
- P: Percentage of students' preferences guessed correctly
- E: Student attribute data

12/4/14 From: M.A. Papalaskar

Yanjun Qi / UVA CS 4501-01-6501-07

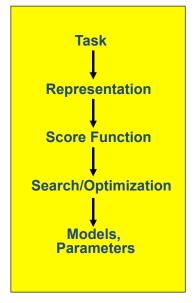
Designing a Learning System

- Choose the training experience
- Choose exactly what is too be learned, i.e. the target function.
- Choose a *learning algorithm* to infer the target function from the experience.
- A learning algorithm will also determine a performance measure



18

Machine Learning in a Nutshell



ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

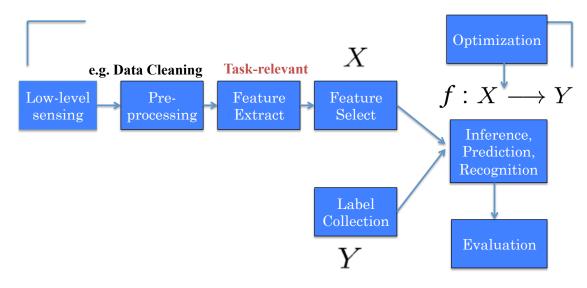
12/4/14

What we have covered for each component

	Task	Regression, classification, clustering, dimen-reduction
	Representation	Linear func, nonlinear function (e.g. polynomial expansion), local linear, logistic function (e.g. $p(c x)$), tree, multi-layer, prob-density family (e.g. Bernoulli, multinomial, Gaussian, mixture of Gaussians), local func smoothness,
	Score Function	MSE, Hinge, log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for Bayes classifier), cross-entropy, cluster points distance to centers, variance,
	Search/ Optimization	Normal equation, gradient descent, stochastic GD, Newton, Linear programming, Quadratic programming (quadratic objective with linear constraints), greedy, EM, asyn-SGD, eigenDecomp
	Models, Parameters	Regularization (e.g. L1, L2)

Yanjun Qi / UVA CS 4501-01-6501-07

A Typical Machine Learning Pipeline



12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

Today

- ☐ History of Machine Learning & Al
- ☐ Review of ML methods covered in the course

Yanjun Qi / UVA CS 4501-01-6501-07

Where are we? \rightarrow major sections of this course

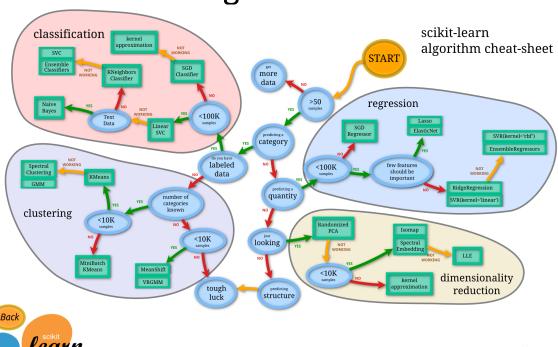
- ☐ Regression (supervised)
- ☐ Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

12/4/14 23

Yanjun Qi / UVA CS 4501-01-6501-07

http://scikit-learn.org/stable/tutorial/machine learning map/

Scikit-learn algorithm cheat-sheet



http://scikit-learn.org/stable/

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image

Algorithms: SVM, nearest neighbors, random forest, ... – Examples

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

- Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,
Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,
mean-shift.... – Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. — Example:

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning **Modules**: *grid search*, *cross validation*, *metrics*.

Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Examples

Yanjun Qi / UVA CS 4501-01-6501-07



- ✓ different assumptions on data
- √ different scalability profiles at training time
- √ different latencies at prediction time
- √ different model sizes (embedability in mobile devices)

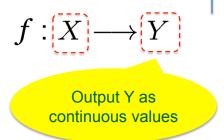
What we have covered (I)

- ☐ Supervised Regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations

12/4/14 27

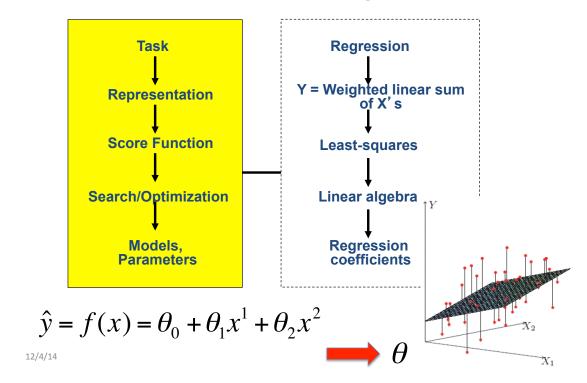
Yanjun Qi / UVA CS 4501-01-6501-07

A Dataset



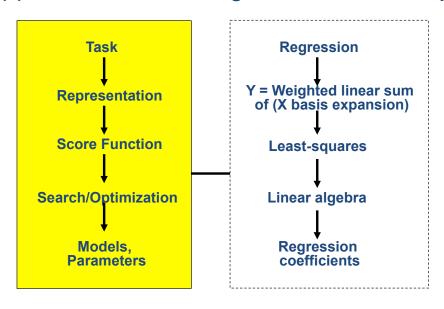
- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

(1) Multivariate Linear Regression



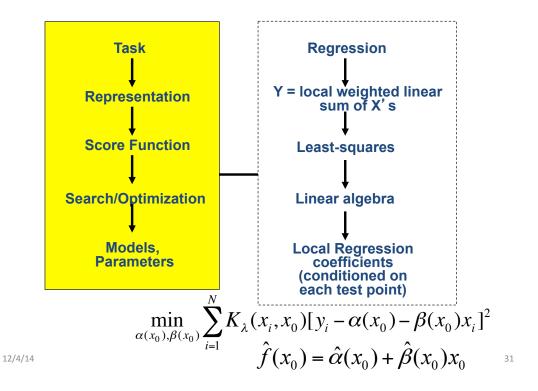
Yanjun Qi / UVA CS 4501-01-6501-07

(2) Multivariate Linear Regression with basis Expansion



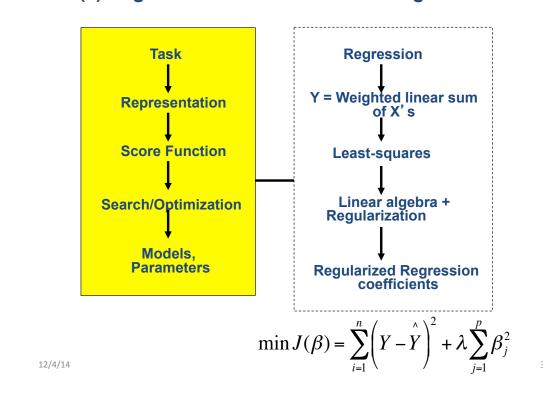
$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)\theta$$

(3) Locally Weighted / Kernel Regression



Yanjun Qi / UVA CS 4501-01-6501-07

(4) Regularized multivariate linear regression



What we have covered (II)

■ Supervised Classification models

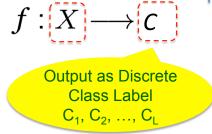
- Support Vector Machine
- Bayes Classifier
- Logistic Regression
- K-nearest Neighbor
- Random forest / Decision Tree
- Neural Network (e.g. MLP)
- *Feature selection

12/4/14

X₁ X₂ X₃ C

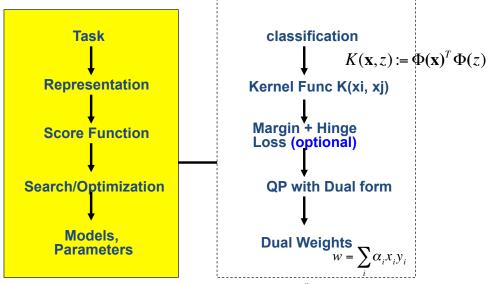
Yanjun Qi / UVA CS 4501-01-6501-07

A Dataset for classification



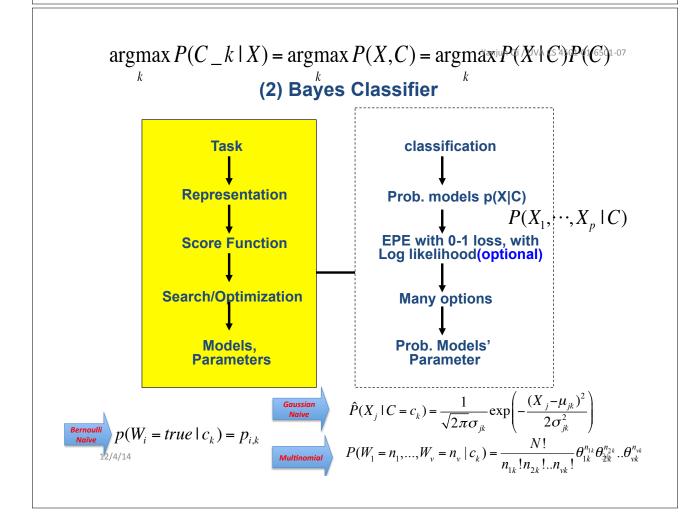
- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
 Target/outcome/response/label/dependent variable: special column to be predicted [last column]

(1) Support Vector Machine



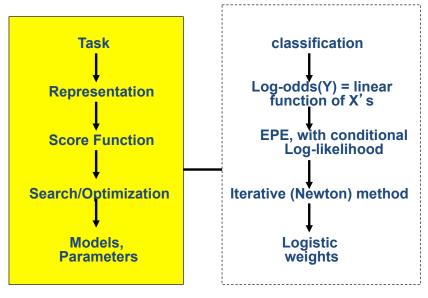
 $\underset{\mathbf{w},b}{\operatorname{argmin}} \sum_{i=1}^{p} w_i^2 + C \sum_{i=1}^{n} \varepsilon_i$

subject to $\forall \mathbf{x}_i \in Dtrain : y_i(\mathbf{x}_i \cdot \mathbf{w} + b) \ge 1 - 3\varepsilon_i$



Yanjun Qi / UVA CS 4501-01-6501-07

(3) Logistic Regression

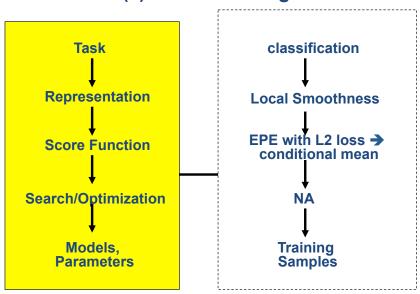


$$P(c=1|x) = \frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}$$

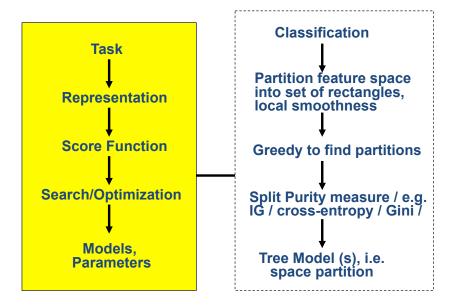
12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

(4) K-Nearest Neighbor



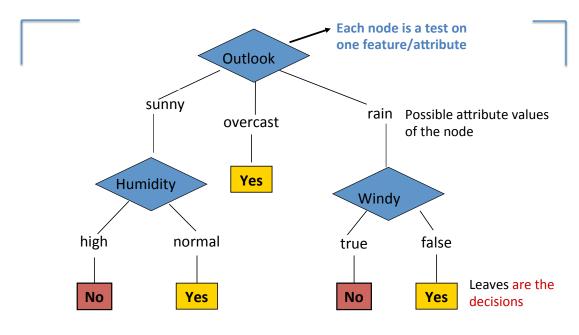
(5) Decision Tree / Random Forest



12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

Anatomy of a decision tree



Decision trees

 Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.

```
    (Outlook ==overcast)
    OR
    ((Outlook==rain) and (Windy==false))
    OR
    ((Outlook==sunny) and (Humidity=normal))
    => yes play tennis
```

12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

Information gain

• IG(X_i,Y)=H(Y)-H(Y|X_i)

Reduction in uncertainty by knowing a feature X_i

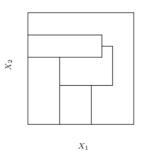
Information gain:

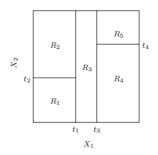
- = (information before split) (information after split)
- = entropy(parent) [average entropy(children)]

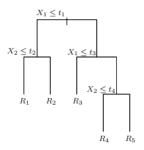
From ESL book Ch9:

Classification and Regression Trees (CART)

- **Partition feature** space into set of rectangles
- Fit simple model in each partition







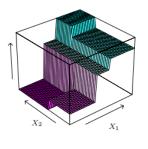
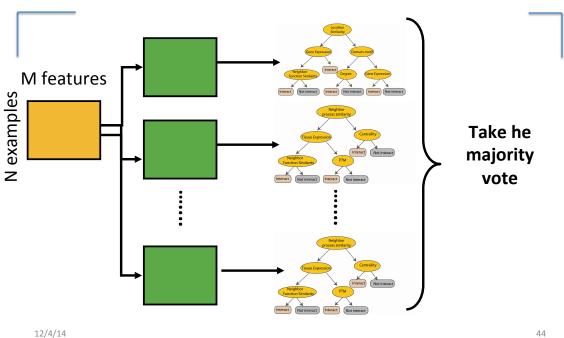


FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data. Top left panel shows a general partition that cannot be obtained from recursive binary splitting. Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective plot of the prediction surface appears in the bottom right panel.

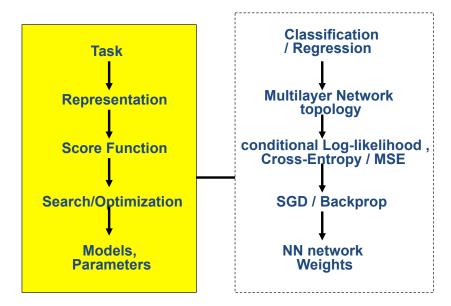
Yanjun Qi / UVA CS 4501-01-6501-07

Random Forest Classifier



Yanjun Qi / UVA CS 4501-01-6501-07

(6) Neural Network



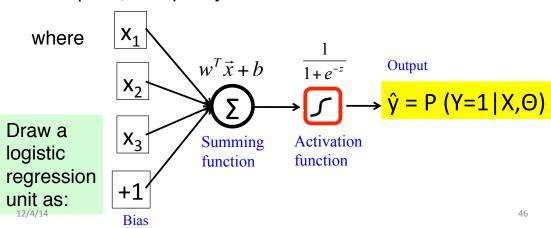
12/4/14 45

Yanjun Qi / UVA CS 4501-01-6501-07

Logistic regression

Logistic regression could be illustrated as a module

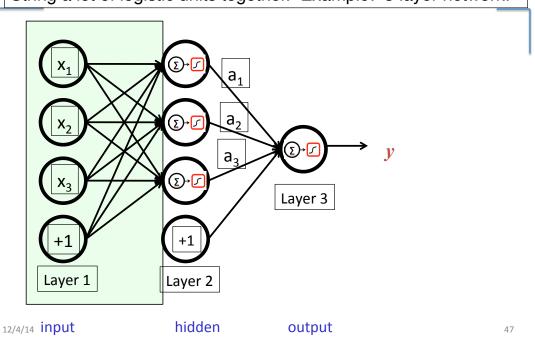
On input x, it outputs ŷ:

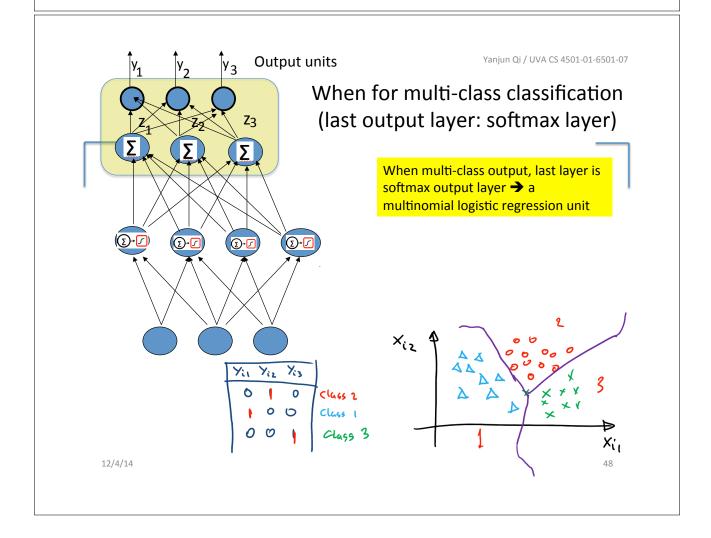


Yanjun Qi / UVA CS 4501-01-6501-07

Multi-Layer Perceptron (MLP)

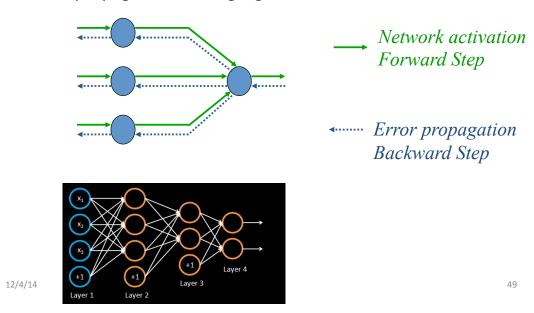
String a lot of logistic units together. Example: 3 layer network:





Backpropagation

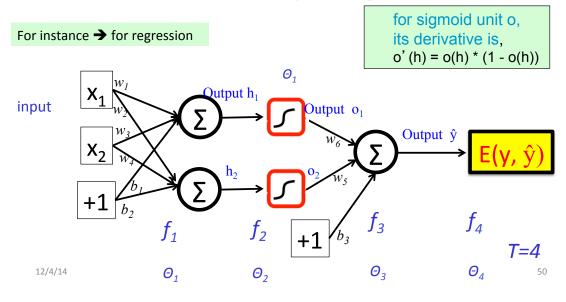
• Back-propagation training algorithm



to train this layered network. The stacked layers in our network can be written in a more general form of multi-level functions:

$$l_{\mathbf{x}} = \mathbf{f}_T(\mathbf{f}_{T-1}(...(\mathbf{f}_1(\mathbf{x}))...)),$$

where $l_{\mathbf{x}}$ denotes the loss on a single example \mathbf{x}



 $\mathbf{f}_i, i \in [1, T]$, the derivative for updating its parameter vset of $\boldsymbol{\theta}_i$ of \mathbf{s}_i or using the delta rule:

$$rac{\partial l}{\partial oldsymbol{ heta}_i} = \left[rac{\partial \mathbf{f}_T}{\partial \mathbf{f}_i}
ight] imes rac{\partial \mathbf{f}_i}{\partial oldsymbol{ heta}_i},$$

and the first factor on the right can be recursively calculated:

$$egin{aligned} egin{aligned} rac{\partial \mathbf{f}_T}{\partial \mathbf{f}_i} = rac{\partial \mathbf{f}_T}{\partial \mathbf{f}_{i+1}} imes rac{\partial \mathbf{f}_{i+1}}{\partial \mathbf{f}_i}. \end{aligned}$$

Note that **f** and θ are usually vectors

so $\frac{\partial \mathbf{f}_T}{\partial \mathbf{f}_{i+1}}$ and $\frac{\partial \mathbf{f}_i}{\partial \boldsymbol{\theta}_i}$ are Jacobian matri-

ces, and "x" is matrix multiplication.

e.g.
$$\frac{\partial f_4}{\partial f_3} = \frac{\partial \left(\mathcal{J} - \hat{\mathcal{Y}} \right)^2}{\partial f_3} + \frac{\partial \left(\mathcal{J} - \hat{\mathcal{Y}} \right$$

12/4/14

Dr. Ql's CIKM 2012 paper/ta

Yanjun Qi / UVA CS 4501-01-6501-07

for j = 1 to MaxIter do if converge then break end if

> $\mathbf{x}, y \leftarrow \text{random sampled data point and label}$ calculate loss $l(\mathbf{x}; y)$

cumulative $\leftarrow 1$

$$\begin{array}{l} \textbf{for } i = \textbf{T} \text{ to } 1 \textbf{ do} \\ \frac{\partial l}{\partial \boldsymbol{\theta}_i} \leftarrow \text{cumulative} * \frac{\partial \mathbf{f}_i}{\partial \boldsymbol{\theta}_i} \\ \boldsymbol{\theta}_i \leftarrow \boldsymbol{\theta}_i - \lambda \frac{\partial l}{\partial \boldsymbol{\theta}_i} \\ \text{cumulative} \leftarrow \text{cumulative} * \frac{\partial \mathbf{f}_{i+1}}{\partial \mathbf{f}_i} \end{array}$$

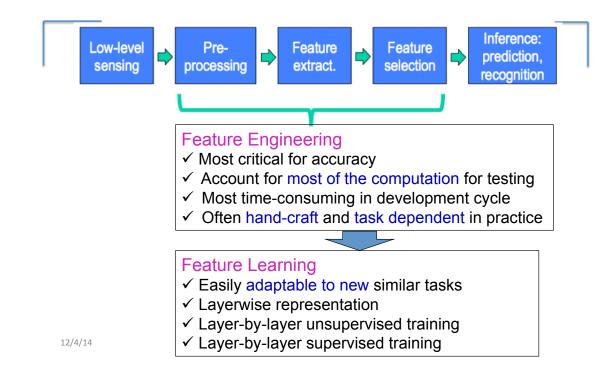
end for

¹²end for

Dr. Ql's CIKM 2012 paper/talk 52

Yanjun Qi / UVA CS 4501-01-6501-07

Deep Learning Way: Learning features / Representation from data



Yanjun Qi / UVA CS 4501-01-6501-07

DESIGN ISSUES for Deep NN

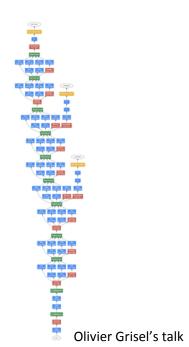
- Data representation
- Network Topology
- Network Parameters
- Training
 - Scaling up with **graphics processors**
 - Scaling up with Asynchronous SGD

Validation

12/4/14 54

ImageNet Challenge 2014

- In the mean time Pierre Sermanet had joined other people from Google Brain
- Monster model: GoogLeNet now at 6.7% error rate

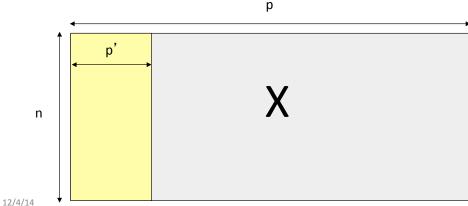


Dr. Jeff Dean's talk

Yanjun Qi / UVA CS 4501-01-6501-07

(7) Feature Selection

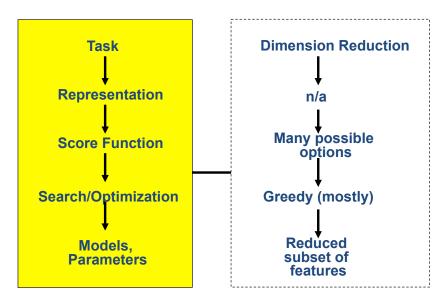
 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.



From Dr. Isabelle Guyon

56

(7) Feature Selection



12/4/14 57

Yanjun Qi / UVA CS 4501-01-6501-07

Feature Selection

- Filtering approach:

ranks features or feature subsets independently of the predictor (classifier).

- ...using univariate methods: consider one variable at a time
- ...using multivariate methods: consider more than one variables at a time

– Wrapper approach:

uses a classifier to assess (many) features or feature subsets.

– Embedding approach:

uses a classifier to build a (single) model with a subset of features that are internally selected.

12/4/14 58/54

What we have covered (III)

- Unsupervised models
 - Dimension Reduction (PCA)
 - Hierarchical clustering
 - K-means clustering
 - GMM/EM clustering

12/4/14 59

Yanjun Qi / UVA CS 4501-01-6501-07

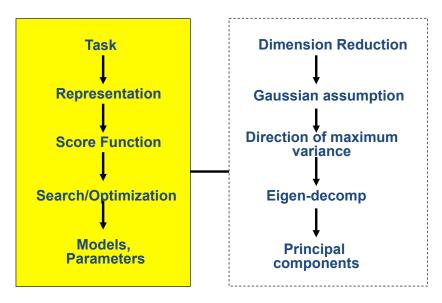
An unlabeled Dataset X

a data matrix of n observations on p variables $x_1, x_2, ..., x_p$

Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns]

(0) Principal Component Analysis

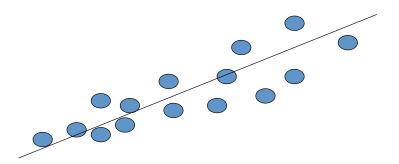


12/4/14

Yanjun Qi / UVA CS 4501-01-6501-07

Algebraic Interpretation – 1D

 Given n points in a p dimensional space, for large p, how does one project on to a 1 dimensional space?

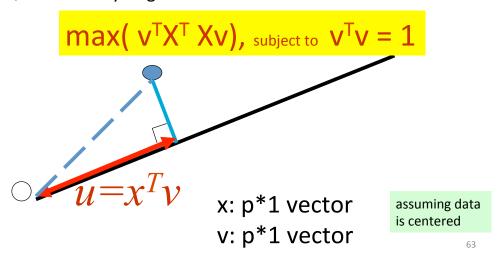


 Choose a line that fits the data so the points are spread out well along the line

12/4/14 From Dr. S. Narasimhan

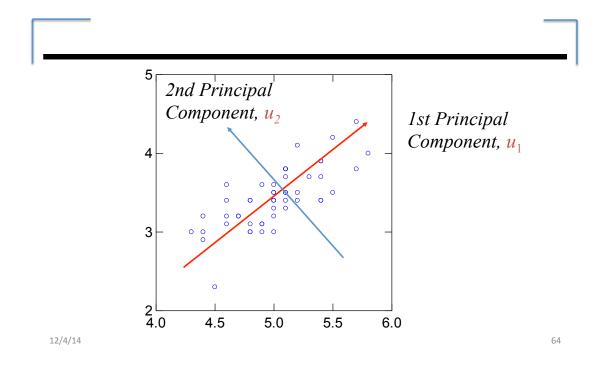
Algebraic Interpretation - 1D

• Minimizing sum of squares of distances to the line is the same as maximizing the sum of squares of the projections on that line, thanks to Pythagoras.



Yanjun Qi / UVA CS 4501-01-6501-07

PCA Eigenvectors → Principal Components



PCA & Gaussian Distributions.

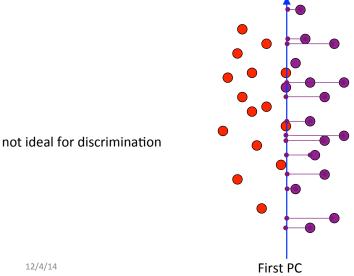
- PCA is similar to learning a Gaussian distribution for the data.
- Dimension reduction occurs by ignoring the directions in which the covariance is small.

12/4/14 65

Yanjun Qi / UVA CS 4501-01-6501-07

PCA Limitations

 The direction of maximum variance is not always good for classification



12/4/14

From Prof. Derek Hoiem

What we have covered (III)

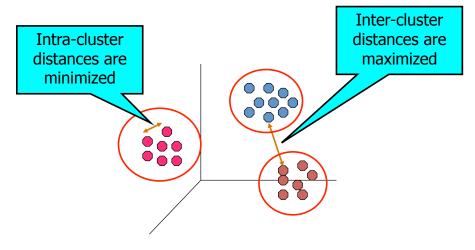
- Unsupervised models
 - Dimension Reduction (PCA)
 - Hierarchical clustering
 - K-means clustering
 - GMM/EM clustering

12/4/14 67

Yanjun Qi / UVA CS 4501-01-6501-07

What is clustering?

 Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups



12/4/14 68

Issues for clustering

- What is a natural grouping among these objects?
 - Definition of "groupness"
- What makes objects "related"?
 - Definition of "similarity/distance"
- Representation for objects
 - Vector space? Normalization?
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too large or small
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
- Formal foundation and convergence

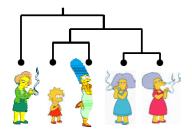
69

Yanjun Qi / UVA CS 4501-01-6501-07

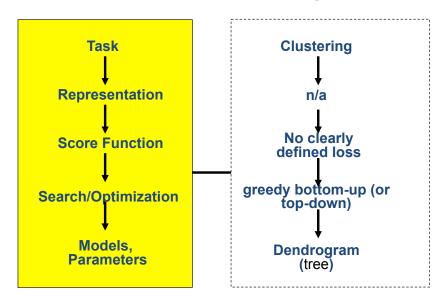
Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - · K means clustering
 - · Mixture-Model based clustering

- Bottom-up, agglomerative
- Top-down, divisive



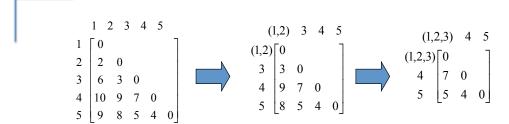
(1) Hierarchical Clustering

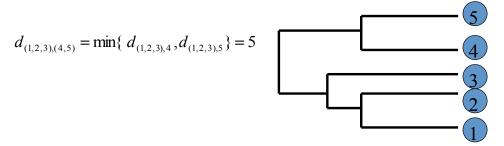


12/4/14 71

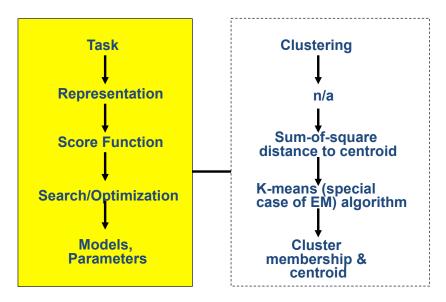
Yanjun Qi / UVA CS 4501-01-6501-07

Example: single link





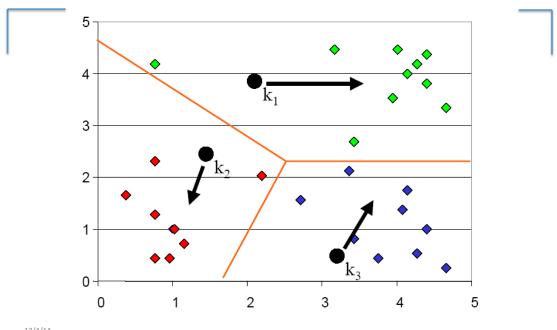
(2) K-means Clustering



12/4/14 73

Yanjun Qi / UVA CS 4501-01-6501-07

K-means Clustering: Step 2 - Determine the membership of each data points

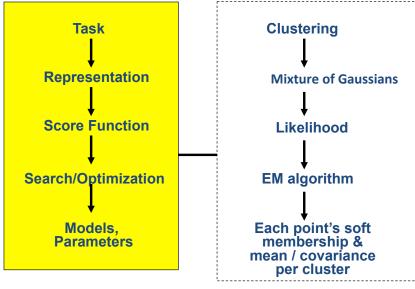


12/4/14

74

(3) GMM Clustering

Yanjun Qi / UVA CS 4501-01-6501-07



$$p(\vec{x} = x_i) = \sum_{\mu_j} p(\vec{x} = x_i, \vec{\mu} = \mu_j) = \sum_{\mu_j} p(\vec{\mu} = \mu_j) p(\vec{x} = x_i \mid \vec{\mu} = \mu_j)$$

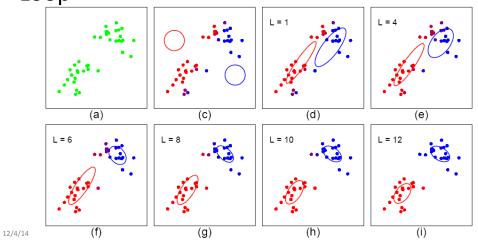
$$= \sum_{\mu_j} p(\vec{\mu} = \mu_j) \frac{1}{(2\pi)^{p/2} |\sum_j|^{1/2}} \exp\left(-\frac{1}{2}(\vec{x} - \mu_j) \sum_j^{-1} (\vec{x} - \mu_j)\right)$$

12/4/14

Expectation-Maximization for training GMM

Yanjun Qi / UVA CS 4501-01-6501-07

- Start:
 - "Guess" the centroid $\mu_{\mathbf{k}}$ and covariance $\Sigma_{\mathbf{k}}$ of each of the K clusters
- Loop each cluster, revising both the mean (centroid position) and covariance (shape)



76

What we have covered (IV)

- ☐ Learning theory / Model selection
 - K-folds cross validation
 - Expected prediction error
 - Bias and variance tradeoff

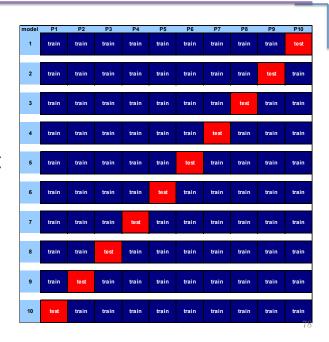
12/4/14 77

Yanjun Qi / UVA CS 4501-01-6501-07

Evaluation Choice:

e.g. 10 fold Cross Validation

- Divide data into 10 equal pieces
- 9 pieces as training set, the rest 1 as test set
- Collect the scores from the diagonal



Expected prediction error

 $EPE(f) = E(L(Y, f(X))) = \int L(y, f(x)) \Pr(dx, dy)$

• For L2 loss: e.g. = $\int (y - f(x))^2 \Pr(dx, dy)$

under L2 loss, best estimator for EPE (Theoretically) is:

Conditional f(x) = E(Y | X = x)

e.g. KNN NN methods are the direct implementation (approximation)

• For 0-1 loss: $L(k, \ell) = 1 - \delta_{kl}$ $Pr(C_k \mid X = x) = \max_{g \in C} Pr(g \mid X = x)$

Bayes Classifier 12/4/14

79

Yanjun Qi / UVA CS 4501-01-6501-07

Bias-Variance Trade-off

 $E(MSE) = noise^2 + bias^2 + variance$ Error due to Unavoidable Error due to variance of training incorrect error samples assumptions

See the ESL book for explanations of bias-variance ...

need to make assumptions that are able to generalize

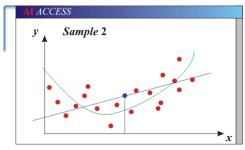
- · Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance

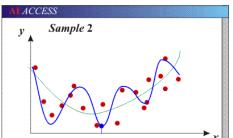
12/4/14— Low training error and high test error

81 Slide credit: L. Lazebnik

Yanjun Qi / UVA CS 4501-01-6501-07

Bias-Variance Trade-off



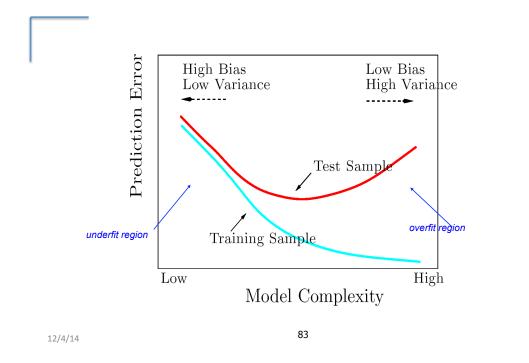


- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample randomness).

12/4/14 82

Yanjun Qi / UVA CS 4501-01-6501-07

Bias-Variance Tradeoff / Model Selection



Yanjun Qi / UVA CS 4501-01-6501-07

High variance

Typical learning curve for high variance:

- Test error still decreasing as m increases. Suggests larger training set will help.
- Large gap between training and test error.
- Low training error and high test error

84

Yanjun Qi / UVA CS 4501-01-6501-07

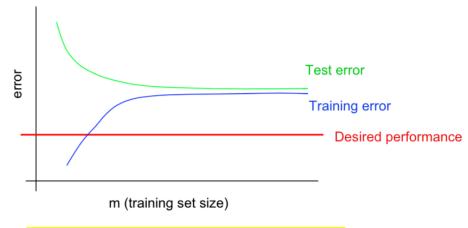
How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data
- Try smaller set of features

12/4/14 Slide credit: D. Hoiem

High bias

Typical learning curve for high bias:



- Even training error is unacceptably high.
- Small gap between training and test error.

High training error and high test error

Slide credit: A. Ng

How to reduce Bias?

- E.g.
- Get additional features
- Try adding basis expansions, e.g. polynomial
- Try more complex learner

12/4/14 87

Yanjun Qi / UVA CS 4501-01-6501-07

For instance, if trying to solve "spam detection" using

L2 - logistic regression, implemented with gradient descent.

Fixes to try: If performance is not as desired

- Try getting more training examples.

- Try a smaller set of features.
- Try a larger set of features.
- Try email header features.
- Run gradient descent for more iterations.
- Try Newton's method.
- Use a different value for λ.
- Try using an SVM.

Fixes high variance.

Fixes high variance.

Fixes high bias.

Fixes high bias.

Fixes optimization algorithm.

Fixes optimization algorithm.

Fixes optimization objective.

Fixes optimization objective.

References

- ☐ Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- ☐ Prof. M.A. Papalaskar's slides
- ☐ Prof. Andrew Ng's slides