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Announcements: Rough Plan

 HWS5 Grades + Solution / Will be posted in T
Collab this weekend

 HW6 Grades / Will be posted in Collab this
weekend

* Please check your grades of HW1-6 and the
midterm
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Announcements: Final

* Open Note / Open Book T

* No laptop / No Cell phone / No internet
access / No electronic devices

e Covering contents after midterm

— Practice with sample questions in HW6
— Review course slides carefully
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Today

‘  History of Al & Machine Learning T

[ Review of ML methods covered in
the course

12/4/14 4
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What are the goals of Al research?

12/4/14 .

5
.A Papalaskar

19405 A Bit Ofnﬁfg{%CF§01—01—6501—07
Advances in mathematical logic, information theory, concept of
neural computation
1943: McCulloch & Pitts Neuron
1948: Shannon: Information Theory
1949: Hebbian Learning
cells that fire together, wire together

1950s e
Early computers. Dartmouth conference coins the phrase “artificial
intelligence” and Lisp is proposed as the Al programming language
1950: Turing Test
1956: Dartmouth Conference
1958: Friedberg: Learn Assembly Code
1959: Samuel: Learning Checkers

3
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1960s

A.l. funding increased (mainly military). Famous quote: “Within a
generation ... the problem of creating 'artificial intelligence' will
substantially be solved.”

Early symbolic reasoning approaches.

Logic Theorist, GPS, Perceptrons
1969: Minsky & Papert “Perceptrons”

1970s
A.l. “winter” — Funding dries up as people realize this is a hard
problem!
Limited computing power and dead-end frameworks lead to
failures.

eg: Machine Translation Failure

12/4/14 7
From: M.A. Papalaskar
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1980s

Rule based “expert systems” used in medical / legal professions.

Bio-inspired algorithms (Neural networks, Genetic Algorithms).

Again: A.l. promises the world — lots of commercial investment
Expert Systems (Mycin, Dendral, EMYCIN Q (V)
Knowledge Representation and reasoning: Q‘

Frames, Eurisko, Cyc, NMR, fuzzy logic 0.0

Speech Recognition (HEARSAY, HARPY, HWIM)

P(B|A) P(A)
P(B)

P(A|B) =

Machine Learning:
1982: Hopfield Nets, Decision Trees, GA & GP.
1986: Backpropagation, Explanation-Based Learning

-

-
12/4/14 8
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1990s
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Some concrete successes begin to emerge. Al diverges into
separate fields: Computer Vision, Automated Reasoning, Planning
systems, Natural Language processing, Machine Learning...

...Machine Learning begins to overlap with statistics / probability

theory.

1992: Koza & Genetic Programming
1995: Vapnik: Support Vector Machines

e ©©
@
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@ / © vectors
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2000s
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First commercial-strength applications: Google, Amazon, computer games,
route-finding, credit card fraud detection, spam filters, etc...

‘ Tools adopted as standard by other fields e.g. biology \

12/4/14

Yarrow

Bellevue
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Introduction The 10 Technologies Past Years

2010s.... ?22?27?

2 10 BREAKTHROUGH
-2 TECHNOLOGIES 2013

DeepLearning

With massive
amounts of
comﬁutatlonal power,

machines can now
nize objects and

rec )
translate speech in
real time. Artificial
intelligence is finally

Temporary Social
Media

Messages that quickly
self-destruct could
enhance the privacy
of online
communications and
make people freer to

Prenatal DNA
Sequencing

Reading the DNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the
genetic problems or
musical aptitude of

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make

Baxter: The Blue-
Collar Robot

Rodney Brooks's
newest creation is
easy to interact with,
but the complex
innovations behind the
robot show just how
hard it is to get along

getting smart. - be spontaneous. - your unborn child? jet parts. - with people. -
Memory Implants Smart Watches Ultra-Efficient Solar Big Datafrom Cheap Supergrids
Power Phones
A maverick
neuroscientist Collecting and
believes he has Doubling the analyzing information
deciphered the code efficiency of a solar from simple cell

by which the brain
forms long-term
memories. Next:
testing a prosthetic
implant for people
suffering from long-
term memory loss.
12/4/14

The designers of the
Pebble watch realized
that a mobile phone is
more useful if you

don't have to take it

out of your pocket.

cell would completely
change the
economics of
renewable energy.
Nanotechnology just
might make it

possible. -

phones can provide

ﬁurpnsmgllnmghts into
ow e move

abou?%%% behave -

and even help us

understand the

spread of diseases. _,

A new high-power
circuit breaker could
finally make highly
efficient DC power
grids practical.

 Ableto

— perceive the world

— understand the world

* This needs
— Basic speech capabilities
— Basic vision capabilities
— Language understanding
— User behavior / emotion understanding
— Able to think ??

12/4/14
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How can we build more intelligent
computer / machine ?

12
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Plenty of Data

‘ * Text: trillions of words of English + other languages \

* Visual: billions of images and videos

* Audio: thousands of hours of speech per day

* User activity: queries, user page clicks, map requests, etc,
* Knowledge graph: billions of labeled relational triplets

Data-driven machine learning
methods have made machines /
computers much more intelligent

12/4/14 , 13
Dr. Jeff Dean’s talk
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Detour: our programming
assighments

* HW3: Semantic language understanding T
(sentiment classification on movie review text)

 HWS5: Visual object recognition (labeling
images about handwritten digits)

e Planned but omitted: Audio speech recognition
(HMM based speech recognition task )

12/4/14 14
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Samuel’ s definition of ML (1959)

 Arthur Samuel (1959). Machine Learning: T
Field of study that gives computers the ability
to learn without being explicitly programmed.

12/4/14 15
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Tom Mitchell (1998):
Well-posed Learning Problem

‘ A computer program is said to learn from
experience E with respect to some task T and
some performance measure P, if its
performance on T, as measured by P,
improves with experience E.

12/4/14 16
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Defining the Learning Task

‘ Improve on task, T, with respect to \
performance metric, P, based on experience, E.
T: Playing checkers

P: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors

P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while
observing a human driver.

T: Determine which students like oranges or apples
P: Percentage of students’ preferences guessed correctly
E: Student attribute data

12/4/14 17
From: M.A. Papalaskar
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Designing a Learning System

*Choose the training experience

* Choose exactly what is too be learned, i.e. the target function.

* Choose a learning algorithm to infer the target function from the
experience.

* Alearning algorithm will also determine a performance measure

Environment/
Experience

Knowledge

18
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Machine Learning in a Nutshell

Task

v
Representation
ML grew out of

v ) work in Al
Score Function

v Optimize a
Search/Optimization performance criterion
using example data or
v past experience,
Models,
Parameters

Aiming to generalize to
unseen data

19

|

What we have covered foreach™ "

Task

Representation

Score Function

Search/
Optimization

Models,
Parameters

12/4/14

component

Regression, classification, clustering, dimen-reduction

Linear func, nonlinear function (e.g. polynomial expansion), local
linear, logistic function (e.g. p(c|x)), tree, multi-layer, prob-density
family (e.g. Bernoulli, multinomial, Gaussian, mixture of
Gaussians), local func smoothness,

MSE, Hinge, log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for
Bayes classifier), cross-entropy, cluster points distance to centers,
variance,

Normal equation, gradient descent, stochastic GD, Newton, Linear
programming, Quadratic programming (quadratic objective with
linear constraints), greedy, EM, asyn-SGD, eigenDecomp

Regularization (e.g. L1, L2)

20




Yanjun Qi / UVA CS 4501-01-6501-07

A Typical Machine Learning Pipeline

‘ X Optimization

e.g. Data Cleaning  Task-relevant

Pre- Feature Feature
processing Extract Select

Low-level
sensing

Inference,

Prediction,
Recognition

Label
Collection

Evaluation

12/4/14 21
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Today

‘ O History of Machine Learning & Al T

[ Review of ML methods covered in
the course

12/4/14 22
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Where are we ? =
major sections of this course

‘ [ Regression (supervised) T

U Classification (supervised)
L Unsupervised models
U Learning theory

J-Graphicalmodels

12/4/14 23
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http://scikit-learn.org/stable/tutorial/machine learning map/

Scikit-learn algorithm cheat-sheet

scikit-learn
/“\) algorithm cheat-sheet

classification

NoT
nnnnnn

uuuuuuu

mmmmm

$ 3 kernel dimensionality
s .
reduction




http://scikit-learn.org/stable/
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scikit-learn

Machine Learning in Python

Classification

Identifying to which set of categories a new
observation belong to.

Applications: Spam detection, Image
recognition.

Algorithms: SVM, nearest neighbors, random
forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.

Applicati Visualization, I
efficiency

Algorithms: PCA, feature selection, non-
negative matrix factorization. — Examples

Regression

Predicting a continuous value for a new

example.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...
— Examples

Model selection

Comparing, validating and choosing parameters

and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.
— Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,
Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,

mean-shift, ...

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as
text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

— Examples

Linear SVM

Nearest Neighbors

Decision Tree Random Forest

Nearest Neluhbovs Linear SVM

Nearest Nelwlbors

Random Forest

Linear SVM

vy different assumptions on data
v different scalability profiles at training time

v different latencies at prediction time

v different model sizes (embedability in mobile devices)

12/4/14
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Naive Bayes

— Examples

Nalve Bayes

26

Olivier Grisel’s talk
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What we have covered (l)

O Supervised Regression models T
— Linear regression (LR)
— LR with non-linear basis functions
— Locally weighted LR
— LR with Regularizations

12/4/14 27
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X, X, X3 Y
S
1 A Dataset
L N
83 ("< 20 f—__“
. f i Xi—Y!
4
S5
Output Y as
Sg continuous values

» Data/points/instances/examples/samples/records: [ rows |

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]

12/4/14 28
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(1) Multivariate Linear Regression

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

y=f(x)=6,+ Hlxl + 92x2

12/4/14

Regression

Y= Weigh{ed linear sum
of X's

Least-squares

— 1

Linear algebra )

}

Regression
coefficients

- (
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(2) Multivariate Linear Regression with basis Expansion

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

12/4/14

Regression

Y= Weigh{ed linear sum
of (X basis expansion)

Least-squares

— 1

Linear algebra

}

Regression
coefficients

F=0,+ 0,0,(x)=p(x)0

30
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(3) Locally Weighted / Kernel Regression

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

12/4/14

...............................................

Regression

Y = local weighted linear
sumof X's

Least-squares

— |

Linear algebra

Local Regression
coefficients
(conditioned on
each test point)

min EK (x,,xo)[y, ()~ B T

a(xg).B(xy)

l_

f(xo) a(xo)+/3(xo)x0 .
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(4) Regularized multivariate linear regression

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

12/4/14

...............................................

Regression

Y= Welgh{ed linear sum
of X's

Least-squares

Linear algebra +
Regularization

|

Regularized Regression
coefficients

minJ(f) = E(Y Y) +)LE/3

32




Yanjun Qi / UVA CS 4501-01-6501-07

What we have covered (ll)

O Supervised Classification models T
— Support Vector Machine
— Bayes Classifier
— Logistic Regression
— K-nearest Neighbor
— Random forest / Decision Tree
— Neural Network (e.g. MLP)
— *Feature selection

12/4/14 33
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X, X, X, C

A Dataset for

|7 classiﬁcation—‘

fiXi—ic |

Output as Discrete
Class Label
C,C, ...,C,

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns, except the last]
Target/outcome/response/label/dependent variable: special column to be predicted [ last column ]

12/4/14 34
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(1) Support Vector Machine

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

classification
| Kxo=ewew
Kernel Func K(xi, xj)

Margin + Hinge
Loss (olptional)

12/4/14

QP with Dual form
Dual Weights .
w= ) axy,
..................... r.l ..--.--......l..--.-......
argmin Ep 2+CE £
b i=1

subject to Vx. € Dtrain: y, (xi W+ b) =1—g

argmaxP(C k1X)= argmaxP(X C)= argma PXTEYWPCY
(2) Bayes Classmer

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

classification

1

Prob. models p(X|C) :
P(X,.}t,

EPE with 0-1 loss, with :
Log likelihood(optional) !

X,1C)

Many options

Prob. Models’
Parameter

B i
B (W = truelc,)= p,,

12/4/14

2no, 20
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(3) Logistic Regression

ottt e et 1
'

Task classification
v .
Representation Lo 'Oddls(Y) = linear

v

Score Function

unction of X’ s

EPE, with conditional |
Log-likelihood ;

 / _i '

Searchloi:timization Iterative (Ngwton) method
Models, Logistic
Parameters weights

l+e 37

12/4/14
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(4) K-Nearest Neighbor

-
'

Task classification
v 1
Representation Local Smoothness
M EPE wit£ L2 loss 9

Score Function

conditional mean

v
Searchloi:timization NA
Models, Training
Parameters Samples

38
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(5) Decision Tree / Random Forest

Classification
Task ;
d Partition feature splaace
; i into set of rectangles,
Representation local smoothness
Score Function | Greedy to find partitions |
v _é '
Search/Optimization § SGpIit Purity measure / e.g. |
i 1G/ cross-entropy / Gini/ :
nggneeltsérs Tree Model (s), i.e.
space partition
12/4/14 39
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Anatomy of a decision tree

/v Each node is a test on
one feature/attribute

/

sunn
y rain Possible attribute values
overcast
‘ of the node
Yes
high normal true false

Yes

Leaves are the
Yes | decisions

12/4/14 40




Decision trees

‘ * Decision trees represent a disjunction of
conjunctions of constraints on the attribute

values of instances.
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=

(Outlook ==overcast)
J OR

Q OR

* => yes play tennis

((Outlook==rain) and (Windy==false))

((Outlook==sunny) and (Humidity=normal))

12/4/14

41

Information gain

‘ o IG(X_i,Y)=H(Y)-H(Y|X_i)

Yanjun Qi / UVA CS 4501-01-6501-07

=

Reduction in uncertainty by knowing a feature X_i

Information gain:

= (information before split) — (information after split)

= entropy(parent) — [average entropy(children)]

PN

Fixed the lower, the
better (children

nodes are purer)

12/4/14

For IG, the
higher, the
better

42




From ESL book Ch9 :

Classification and

Regression Trees (CART)

e Partition feature
space into set of
rectangles

e Fit simple modelin
each partition

o o
- -
X,
X1<ty
1
X2 < ta X1 < t3
X2 < tg
Ry R R3

Ry Rs

Ry

R3

Ry

!
‘ W
i

I
I

|

‘l‘?/l"ﬁ’[

m/{'w

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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Random Forest Classifier

M features

N examples

12/4/14

—
- feighbor
Function Similart

Neighbor
process similar

{

N\

=

Neighbor
process similar
ighbor
Function Sinilari

)

4

&D

-y

(i) () (i)

J

Take he
majority
vote
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(6) Neural Network

Task

v

Representation

v

Score Function

12/4/14

...............................................

Classification
| Regression

Multilayer Network
topology

' conditional Log-likelihood , |
' Cross-EItropy | MSE

 Z _i
Searchloi:timization SGD / Backprop
Models, NN network
Parameters Weights

45

where

Draw a
logistic
regression
unit as:

12/4/14
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Logistic regression

‘ Logistic regression could be illustrated as a module \

On input x, it outputs y:

Summing
function

1
l4e Output
S |—y=P(Y=1]|X,0)
Activation
function

46
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Multi-Layer Perceptron (MLP)

String a lot of logistic units together. Example: 3 layer network:

y
G
+1
Layer 1 Layer 2
12/4/14 input hidden output 47
Output units Yanjun Qi / UVA CS 4501-01-6501-07

When for multi-class classification
(last output layer: softmax layer)

When multi-class output, last layer is \

softmax output layer = a
multinomial logistic regression unit

12/4/14
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Backpropagation

® Back-propagation training algorithm

Network activation
Forward Step

PR Error propagation
Backward Step

12/4/14 49
Layer 1 Layer 2

to train this layered network. The stacked layers:in-our

network can be written in a more general form of multi-level func-
tions:

Ix = fr(fr—1(...(f1(x))...)),

where [« denotes the loss on a single example x

for sigmoid unit o,
its derivative is,
o’ (h) = o(h) * (1 - o(h))

For instance =» for regression

input

E(y, §)

12/4/14 @1 @2 93 64 50




f,,i € [1, T], the derivative for updating its parameter set*@y ds-o’
using the delta rule:

oL _ ofr  of
80,  of, ~ 00;’

and the first factor on the right can be recursively calculated:
8fT . 8fT % 8fi+1
Note that f and 6 are usually vectors
SO a‘?,fT and 85 are Jacobian matri-

ces, and “X” is matrix mult1phcat10n
“ -4
_Qf I
3 9f3 otpct ovrsy

Dr. Ql’s CIKM 2012 paper/talk o

12/4/14

for ; = 1 to Maxlter do fanjun i/ UVA C5 450101650107
if converge then
break
end if
X,y <— random sampled data point and label
calculate loss [(x; y)
cumulative <— 1

for. =Ttoldo Error propagation
ol of; Backward Step
\cumulatlve\
80, 91
0, — 0,
30
cumulative < cumulative * 8? 1

end for
1%(1 fOl‘ Dr. QI's CIKM 2012 paper/talk .
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Deep Learning Way:
Learning features / Representation from data

Inference: T
Low-evel Pre- Feature Feature s
‘ E-EN-E B
\ )
|

Feature Engineering

v Most critical for accuracy

v Account for most of the computation for testing
v Most time-consuming in development cycle

v' Often hand-craft and task dependent in practice

Feature Learning

v’ Easily adaptable to new similar tasks
v’ Layerwise representation

v’ Layer-by-layer unsupervised training
12/4/14 v’ Layer-by-layer supervised training

Yanjun Qi / UVA CS 4501-01-6501-07

DESIGN ISSUES for Deep NN

‘ e Data representation T

e Network Topology

e Network Parameters

® Training
e Scaling up with graphics processors
e Scaling up with Asynchronous SGD

e Validation

12/4/14 54
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ImageNet Challenge 2014

* |In the mean time Pierre
Sermanet had joined other
people from Google Brain

A e Es

* Monster model: GooglLeNet at-d
[=]
now at 6.7% error rate -
lé*rﬂ
Dr. Jeff Dean’s talk ~ Olivier Grisel’s talk
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(7) Feature Selection

‘ e Thousands to millions of low level features: T

select the most relevant one to build better,
faster, and easier to understand learning
machines.

12/4/14 4 56
From Dr. Isabelle Guyon
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(7) Feature Selection

Task Dimension Reduction
| |
Representation | n/a
v H .
Score Function § Many possible
| options
 Z _i
Searchloi:timization Greedy (mostly)
Models, Reduced
Parameters 5 subset of
i features
12/4/14 57
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Feature Selection

|7—Filtering approach: T
ranks features or feature subsets independently of the

predictor (classifier).

* ...using univariate methods: consider one variable at a time
* ...using multivariate methods: consider more than one variables at a time

— Wrapper approach:
uses a classifier to assess (many) features or feature subsets.

— Embedding approach:

uses a classifier to build a (single) model with a subset of

features that are internally selected.
12/4/14 58/54
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What we have covered (lll)

‘ [ Unsupervised models _‘

— Dimension Reduction (PCA)
— Hierarchical clustering

— K-means clustering
— GMM/EM clustering

12/4/14 59
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X, X, X,

s, An unlabeled
|7 s2 Dataset X —‘

S3

Sq a data matrix of n observations on

p variables x;,x,,...x,
Ss
Sé

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]

12/4/14 60
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(0) Principal Component Analysis

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

12/4/14

Dimension Reduction

1

Gaussian assumption

Direction of maximum
variance

Eigen-decomp

!

Principal
components

61
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Algebraic Interpretation — 1D

* Given n points in a p dimensional space, for large p, how does \
one project on to a 1 dimensional space?

* Choose a line that fits the data so the points are spread out

well along the line

12/4/14

From Dr. S. Narasiﬁrznhan




Yanjun Qi / UVA CS 4501-01-6501-07

Algebraic Interpretation — 1D

‘ * Minimizing sum of squares of distances to the line is the same \

as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras.

max( v X" Xv), sujectto VIV =1

X: p*1 vector
s v: p*1 vector

assuming data
is centered

63
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PCA Eigenvectors =2 Principal Components

— |

5 T I I

2nd Principal

Component, i, . Ist Principal
.l ) Component, u,
3 [ —

12/4/14 64
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PCA & Gaussian Distributions.

e PCAis similar to learning a Gaussian T
distribution for the data.

* Dimension reduction occurs by ignoring the
directions in which the covariance is small.

12/4/14 65
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PCA Limitations

‘ e The direction of maximum variance is not
always good for classification

not ideal for discrimination ) —e @

:

12/4/1 i er
4/14 First PC From Prof. Derek Hoiem
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What we have covered (lll)

‘ [ Unsupervised models _‘

— Dimension Reduction (PCA)
— Hierarchical clustering

— K-means clustering
— GMM/EM clustering
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What is clustering?

‘- Find groups (clusters) of data points such that data points in a \
group will be similar (or related) to one another and different from

(or unrelated to) the data points in other groups

Inter-cluster

Intra-cluster distances are

distances are maximized
minimized

12/4/14 68
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Issues for clustering

What is a natural grouping among these objects? _‘
— Definition of "groupness"
« What makes objects “related”?
— Definition of "similarity/distance"
* Representation for objects
— Vector space? Normalization?
* How many clusters?
— Fixed a priori?
— Completely data driven?
* Avoid “trivial” clusters - too large or small
* Clustering Algorithms
— Partitional algorithms
— Hierarchical algorithms

e Formal foundation and convergence

12/4/14 69
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Clustering Algorithms

Partitional algorithms iz 7 \

— Usually start with a random % 08 ‘
(partial) partitioning B | “e )

— Refine it iteratively N'a’ ) 4 %’A ¥

* K means clustering
* Mixture-Model based clustering

e Hierarchical algorithms
— Bottom-up, agglomerative
— Top-down, divisive

12/4/14 70
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(1) Hierarchical Clustering

Task Clustering

| |
Representation | n/a
' |
; | No c+early
Score Function § defined loss
 Z _i
T i greedy bottom-up (or
Searchloi:tlmlzatlon . top-down)
leylrg%eeltsérs Dendrogram
| (tree)
12/4/14 71
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Example: single link

‘ 1 23 45 12) 3 4 5 (123) 4 5 \

1[0
1.2)[0

51 o (12) 1,230
330 4070

306 30
41970

4010 9 7 0 S [5 40
5185 40

519 8540

d(1,2,3),(4,5) =min{ d(1,2,3),4 9d(1,2,3),5} =5
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(2) K-means Clustering

N

A

Task

y

Representation

y

Score Function

\

y

Searchloi:timization

Models,
Parameters

Clustering

1

n/a

Sum-of-square
distance to centroid

K-means (special
case of EM) algorithm

Cluster
membership &
centroid

73
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K-means Clustering: Step 2
- Determine the membership of each data points

< <o \
4 < ”’
k, ® o
3
o
o
¢ ‘ ® ¢
® f ¢
1 \ 2 ; 2
X ¢ ® o °
ks °®
0 T T 1 T
0 1 2 3 4 5
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(3) GMM Clustering

Task

v

Representation

A 4

Score Function

v

Searchloi:timization

Models,
Parameters
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Clustering

!

Mixture of Gaussians

l

Likelihood

1

EM algorithm

Each point’s soft
membership &
mean / covariance
per cluster

par=x)=3 plr=x,p=p)= 3 plu=p)p(x=xp1=p,)

H;

H;

- 1
= p(u=p)
FEJ J (zﬂ)p/Z |EJ

12/4/14

1 r - r
V2 CXP(—E(X—MJ.)ZJ. l(x_Auj)
|
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Expectation-Maximization
for training GMM

e Start:

|7_

of the K clusters

"Guess" the centroid y, and covariance 3

Yanjun Qi / UVA CS 4501-01-6501-07

of each_‘

° LOO p each cluster, revising both the mean (centroid position) and covariance (shape)

. . ® L=1 o ® L=4 . ®
et Q A ﬁ @
.. . % ) % )
e N }5 <:::> '- . .- s
(a) (c) (d) (e)
L=6 L=8 L=10 L=12 .

12/4/14

76




Yanjun Qi / UVA CS 4501-01-6501-07

What we have covered (IV)

‘ 1 Learning theory / Model selection T

— K-folds cross validation
— Expected prediction error
— Bias and variance tradeoff
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Evaluation Choice:
e.g. 10 fold Cross Validation

model P1 P2 P3 P4 P5 P6 P7

* Divide datainto [,
10 equal pieces |.
* 9 pieces as 3
training set, the |.
rest 1 as testset |-
* Collect the :
scores from the |-
diagonal :

12/4/14
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Expected prediction error (EPE)

Consider
sample
population

‘ EPE(f)=E(L(Y, f(X))) = f L(y, f(x))Pr(dx,dy)

« For L2 loss: cq.- (- £ Preax.ay)

under L2 loss, best estimator for EPE (Theoretically) is :

Conditional
mean  f(x) =E(Y| X =x)

€.g. KNN NN methods are the direct implementation (approximation )

« For O-1 loss: L(k, 2) =1-6,
G(X)=C, if
Pr(C, I X=x)= mEaCxPr(gIX =X)

12/a14 Bayes Classifier 79
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Bias-Variance Trade-off

‘ E(MSE) = noise? + bias? + variance T
/ \ \ Error due to

Unavoidable Error due to variance of training
error incorrect samples
assumptions

See the ESL book for explanations of bias-variance ...
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nGEd to make assumptiémﬁ(léuvf 45051{501707
are able to generalize

‘ » Components of generalization error \
— Bias: how much the average model over all training sets differ fro
the true model?

» Error due to inaccurate assumptions/simplifications made by the
model

— Variance: how much models estimated from different training sets
differ from each other

» Underfitting: model is too “simple” to represent all the
relevant class characteristics
— High bias and low variance
— High training error and high test error

» Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
— Low bias and high variance

1241~ LOW training error and high test error o
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Bias-Variance Trade-off

‘ y Sample? * Models with too few \
! parameters are inaccurate

o« /o because of a large bias (not
enough flexibility).

* Models with too many
parameters are inaccurate
because of a large variance
(too much sensitivity to the
sample randomness).
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Bias-Variance Tradeoff / Model Selection

—

¥

underfit region Training Sample

=

e
o High Bias Low Bias

ﬁ Low Variance High Variapce
S

o

=

=

8 Test Sam

o

Ay

overfit ;bion

Low

Model Complexity

12/4/14 83

High

High variance

Typical learning curve for high variance:

error
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Test error

Desired performance

Training error

m (training set size)

e Test error still decreasing as m increases. Suggests larger training set will help.

e Large gap between training and test error.

12/4/14 * Low training error and high test error
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How to reduce variance?

=

* Choose a simpler classifier

e Regularize the parameters

* Get more training data

* Try smaller set of features

12/4/14
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High bias

Typical learning curve for high bias:

12/4/14

Test error

error

Training error

Desired performance

m (training set size)

e Even training error is unacceptably high.
¢ Small gap between training and test error.

High training error and high test error 86
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How to reduce Bias ?

e N

- Get additional features
- Try adding basis expansions, e.g. polynomial

- Try more complex learner
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For instance, if trying to solve “spam

detection” using
M 1

L2 - logistic regression, implemented with gradient descent.

Fixes to try: If performance is not as desired

— Try getting more training examples. Fixes high variance.

— Try a smaller set of features. Fixes high variance.

— Try a larger set of features. Fixes high bias.

— Try email header features. Fixes high bias.

— Run gradient descent for more iterations. Fixes optimization algorithm.
— Try Newton’s method. Fixes optimization algorithm.

Fixes optimization objective.
Fixes optimization objective.

— Use a different value for A.
— Try using an SVM.
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