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Last Lecture Recap

* Linear model is an approximation —‘

* Three ways to moving beyond linearity
—LR with non-linear basis functions
—Locally weighted linear regression

—Regression trees and Multilinear
Interpolation (later)
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(1) LR with non-linear basis functions

* LR does not mean we can only deal with —‘

linear relationships .
y=0o+ " 0,¢(x)=0"¢(x)

* We are free to design (non-linear) features
(e.g., basis function derived) under LR

where the ¢(x) are fixed basis functions (also define
Polx) = 1).
* E.g.: polynomial regression:

P(x) = I_l, x, x° ,x3j

9/9/14

(1) LR With basis functions™ ===~
e.g. polynomial regression
lflssue: Overfitting OR underfitting —‘

y=0,+0x Y =0y + O, + O,x° y=2j=ol9jx’
Generalisation: learn function /
hypothesis from past data in order K-fold Cross
to “explain”, “predict”, “model” or Validation !!!!

o014 “control” new data examples
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(2) Locally weighted linear regression

*| The algorithm: IR R PSR —
J(e)-zg(w ) | -

Instead of minimizing

1 n
now we fit ¢ to minimize J () =§2Wi(x,~rg—yi)2

<xi-x>2) SR

Where do w,'s come from? Wi = exp(— 272

* where x is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (errors on)
training examples that are close to the query point
(than those that are further away from the query)

9/9/14
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Parametric vs. non-parametric

* Locally weighted linear regression is a non-parametric
algorithm.

* The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

— because it has a fixed, finite number of parameters (the \theta),
which are fit to the data;

— Once we've fit the \theta and stored them away, we no longer need
to keep the training data around to make future predictions.

— In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

* The term "non-parametric" (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows with linearly the size of the training set.

9/9/14
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Today

U A bit more about Linear Regression Extension—‘

U Linear regression with predefined RBF basis
O Locally weighted regression

O An Exemplar Application of Regression
U Linear Regression Models with Regularization
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(1) Linear regression with
predefined RBF basis functions

T
Hx -y )t -x-2t “UXx-4l|

Y(x) = e o, t e 03

date pair (x: 73
\/\7 %

WK(M =4 xe 1)
: = -
] T A 3 _q-°s X

@(x) = [Lk(x,1,1),k(x,2,1),k(x,4,1)]

9/9/14
Dr. Nando de Freitas’s tutorial slide
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Issue: Choices of Basis Functions:
=» Good and Bad RBFs

Blue dots denote

* A good 2D RBF g

. " C nter
<§\Q/

\/ A 1./

\?j/ﬁ\ \ "} Sphere of
significant

N influence of
center

A bad 2D RBFs
ON
oo
O
ojoa OO

10

(2) Locally weighted regression

* aka locally weighted regression, locally T
linear regression, LOESS,

X

Figuwre 2: Inlocally weighted regression, points are weighted by proximity to the current x in question using
akemel A regression is then computed using the weighted points.
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(2) Locally weighted
linear regression

o]

o
o 0
o
2
kernel too wide — includes nonlinear region

H‘”’{fﬁdkernel just right
kernel too narrow — excludes some of linear reg

X
Figure 3: The estimator vaniance is minimized when the kemel includes as many training points as can be
accommodated by the model. Here the linear LOESS model 1s shown. Too large a kemel includes points that

degrade the fit; too small a kernel neglects points that increase confidence in the fit.

(2) Locally weighted EEp—

only one

I|near reg reSS|On feature variable

| Separate weighted least squares at each target
N

pOInt XO: a(){]’)li/jl’(lx )EKA(xoaxi)[yi —O!(XO) _ﬁ(xo)xi]2

F(x) = a(x) + Blxy)x,

* b(x)"=(1,x); B: Nx2 regression matrix with th row
T-
PO 1, (x,) = diag (K, (g x) i = .oy N

F(xy)=b(x,)" (B"W(x,)B)" B"W(x,)y

<:> LR F0x)=(x)'6 =) (X'X) X5
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Kernel Methods

(2). One More = Local Weighted
Polynomial Regression

"F- ocal polynomial fits of any degree d i T
a(xo),/zfgg,lj=1,...,di2Kﬁ(xo’xl') Vi _a(xo)—;ﬁj(xo)xij]
]Ap(xo) = a(x,)+ EilﬂAJ(XO)x({
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TYPICAL MACHINE LEARNING SYSTEM

‘ Optimization

e.g. Data Cleaning  Task-relevant

Low-level Pre- Feature Feature
sensing processing Extract Select

Inference,
Prediction,
Recognition

Label
Collection

Evaluation

8/26/14 14
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Today

U A bit more about Linear Regression Extension—‘

U Linear regression with predefined RBF basis
O Locally weighted regression

O An Exemplar Application of Regression

U Linear Regression Models with Regularization
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e.g. A Practical Application of
Regression Model

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{maheshj,dipanjan, kgimpel, nasmith}@cs.cmu.edu

Abstract

We consider the problem of predicting a
movie’s opening weekend revenue. Previous
work on this problem has used metadata about
a movie—e.g., its genre, MPAA rating, and
cast—with very limited work making use of
text about the movie. In this paper, we use
the text of film critics’ reviews from several
sources to predict opening weekend revenue.
We describe a new dataset pairing movie re-
views with metadata and revenue data, and
show that review text can substitute for meta-

9/9/14 data, and even improve over it, for prediction. 16
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% Use metadata and critics' reviews to predict
opening weekend revenues of movies

% Feature analysis shows what aspects of \

reviews predict box office success

1718 Movies, released 2005-2009

Metadata (genre, rating, running time,
actors, director, etc.): www.metacritic.com

% Critics’ reviews (~7K): Austin Chronicle,
Boston Globe, Entertainment Weekly, LA
Times, NY Times, Variety, Village Voice

% Opening weekend revenues and number of

o914 opening screens: www.the-numbers.com

Yanjun Qi / UVA CS 4501-01-6501-07

Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

% Linear regression with the elastic net (Zou
and Hastie, 2005)
A =

2
6 = argmin B (yi — (Bo + w;r,@)) + AP(B)
6=(0,@8) <" ;.

P(B) = X8, (31 - )82 +alf;1)

J

Use linear regression to directly predict the opening weekend gross
earnings, denoted y, based on features x extracted from the movie
metadata and/or the text of the reviews. 18
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l angramin

the text

Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

1| Lexical n-grams (1,2,3)

Il Part-of-speech n-grams (1,2,3)

] Dependency relations (nsubj,advmod,...)
U.S. origin, running time, budget (log),

# of opening screens, genre, MPAA

Meta| rating, holiday release (summer,
Christmas, Memorial day,... ), star power

(Oscar winners, high-grossing actors) )

9/9/14 19
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www.drk.cs.cmu.edu/movies-data

to movies

The feature weights can be
directly interpreted as U.S. blooper

dollars contributed to the poop
predicted value y” by each Will Smith
occurrence of the feature. /

torso

documentary

running time N
philosophical
bogeyman

this series

straightforward midlife crisis

/N

arthouse

is rated R anticipation

I T T T 1
-10° —-10" 0 10t 10°
feature weight in dollars

9/11/14
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Today

U A bit more about Linear Regression Extension T
U Linear regression with predefined RBF basis
ULocally weighted regression

O An Exemplar Application of Regression

U Linear Regression Model with Regularizations
U Ridge Regression
U Lasso Regression

9/9/14 21
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Review: Vector norms

A norm of a vector ||x|| is informally a measure of

’—the “length” of the vector. —‘

n 1/p
z]lp = (Z \"’i|p)
1=1

— Common norms: L;, L, (Euclidean)

n

n
ol =D laal -l = | a2
i=1

1=1

- I-infinity
|||o0 = max; |a]

8/28/14 22
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Review: Vector Norm (L2, when p=2)

] B

[ ® p ® [

- - ° ° - ° - °
° * L ° - - x - - - -
[ J [ J ® o )
® ) ® ) °
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Review: Normal equation for LR

e Write the cost function in matrix form:
1&, 1 i
J(9)=§Z(xig_yi) - Xll - yl
-2 (x6-5Y (x0-3) X=| TN Ty 2
=%(afxfxa-ﬁfxfy-yfxmyfy) — x' - v,

To minimize J(6), take derivative and set to

zero: - —
N Tffnfnilefahins Assume .
that X’ Xis
o = (Xrl)l()‘l X'y invertible

9/2/14

9/11/14
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(1) Ridge Regression / L2

-‘ If not invertible, a solutlon is to add a small eIemenT‘
to diagonal
Y = ﬁo+ﬁ1 X+ +ﬁp X, Basic Model,

B =(x" X+M) X'y

» The ridge estimator is solution from @
B = argmin(y - XB) (y-XpB)+ A" B

* Equivalently . - :
L = argmin(y - Xp)" (y - XPB)
subject to 2/3’]2 <y

25
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Objective Function’s Contour lines
from Ridge Regression

B

Elements of Statistical Learning, by Hastie,

Tibshirani and Friedman 2%

9/11/14
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Linear Methods for Regression

(1) Ridge Regression / L2
’-7T e parameter/1> 0 penalizes /3j proportional—‘

to its size /3

« Solution is /3’,1 (XTX"‘/U) XT

* where | is the identity matrix.
. Note/1 = 0 gives the least squares estimator;

e if J — oo, then /JgeO

9/11/14 27

Linear Methods for Regression

(2) Lasso (least absolute shrinkage
and selection operator) / L1

* The lasso is a shrinkage method like ridg;‘
but acts in a nonlinear manner on the
outcome y.

* The lasso is defined by
B = argmin(y - XB)" (y- X )
subject to E‘/J)j ‘ <s

9/11/14 28
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Linear Methods for Regression

Lasso (least absolute shrinkage
and selection operator)

* Notice that ridge penalty 2/32 is replaced

by 3 18)]

* Due to the nature of the constraint, if tuning
parameter is chosen small enough, then the

lasso will set some coefficients exactly to zero.

9/11/14 29

Lasso (least absolute
shrinkage and selection

P
3‘“0—ngmm{ (vi— Bo— Y xiiBj)" /\ZH|}
j=1

b | =
||‘M/

* Suppose in 2 dimension 2y
- B=(B; B,) / 5/

* | By [+] B, [=const ”i/iﬂ’ff//

* | By |+]- B, |=const N

* | -By [+] B, |=const
* | -By [+] -B, | =const

Elements of Statistical Learning, by Hastie, i
Tibshirani and Friedman

9/11/14
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Elements of Statistical Learning, by Hastie, Linear Methods for Regression
Tibshirani and Friedman

(3) A family of shrinkage estimators

’7 f =argmin Eil (v, -x B) —‘

subject to E‘/}j‘q <s

» for g >=0, contours of constant value of ¥ |5/’
are shown for the case of two inputs.

FIGURE 3.12. Contours of constant value of Zj |B;|? for given values of q.
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In the example:
Hybrid of Ridge and Lasso

|Elastic Net regularization' —‘

B = argmin [ly — XBII? + 181> + Al

e The ¢, part of the penalty generates a sparse model.

e The quadratic part of the penalty
— Removes the limitation on the number of selected variables;
— Encourages grouping effect;

— Stabilizes the #; regularization path.

9/9/14 32
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LaSSO Tibshirani and Friedman R|dge
Estimator | Regression — |
1 e ANEY
s s
ﬁ] I31

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and B? + B2 < t2, respectively,
while the red ellipses are the contours of the least squares error function.
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A L1 regularization B L2 regularization

" \

Ho Ho

\ T2

[le|ly lw||2

due to the nature of L_1 norm, the
viable solutions are limited to the
corners, which are on one axis only - in
the above case x1. Value of x2 = 0. This
means that the solution has eliminated
o914 the role of x2 leading to sparsity u

9/11/14
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Summary:
Regularized multivariate linear regression

’7.Mode|: 2 p —‘

Y=0+0,x++p,x,

2

* LR estimation: min SSE = E(Y—Y)
2

n A )4
+ LAss0 esimation: min SSE - E(Y—Y) )

= 7=

n A\2 )4
* Ridge regression estimation: minSSE = (Y - Y) it 2/3]2

il =1

"
Error on data + Regularization
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Extra

* Not required, though roughly covered —‘
during class

—Subgradient
—Coordinate descent based learning for Lasso

9/9/14 36
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Elements of Statistical Learning, by Hastie

Tibshirani and Friedman

Ridge
Regression

Coefficients
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Elements of Statistical Learning, by Hastie,

Tibshirani and Friedman

Lasso
Estimator
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FIGURE 8.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ 37 |B;]. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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Today’s Recap

O A bit more about Linear Regression Extension T

U Linear regression with predefined RBF basis
U Locally weighted regression

U An Exemplar Application of Regression
U Text based movie open weekend revenue prediction

U Linear Regression Models with Regularization
U Ridge Regression
U Lasso
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