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Abstract

An approach to semi-supervised learning is pro-
posed that is based on a Gaussian random field
model. Labeled and unlabeled data are rep-
resented as vertices in a weighted graph, with
edge weights encoding the similarity between in-
stances. The learning problem is then formulated
in terms of a Gaussian random field on this graph,
where the mean of the field is characterized in
terms of harmonic functions, and is efficiently
obtained using matrix methods or belief propa-
gation. The resulting learning algorithms have
intimate connections with random walks, elec-
tric networks, and spectral graph theory. We dis-
cuss methods to incorporate class priors and the
predictions of classifiers obtained by supervised
learning. We also propose a method of parameter
learning by entropy minimization, and show the
algorithm’s ability to perform feature selection.
Promising experimental results are presented for
synthetic data, digit classification, and text clas-
sification tasks.

1. Introduction

In many traditional approaches to machine learning, a tar-
get function is estimated using labeled data, which can be
thought of as examples given by a “teacher” to a “student.”
Labeled examples are often, however, very time consum-
ing and expensive to obtain, as they require the efforts of
human annotators, who must often be quite skilled. For in-
stance, obtaining a single labeled example for protein shape
classification, which is one of the grand challenges of bio-
logical and computational science, requires months of ex-
pensive analysis by expert crystallographers. The problem
of effectively combining unlabeled data with labeled data
is therefore of central importance in machine learning.

The semi-supervised learning problem has attracted an in-
creasing amount of interest recently, and several novel ap-
proaches have been proposed; we refer to (Seeger, 2001)
for an overview. Among these methods is a promising fam-
ily of techniques that exploit the “manifold structure” of the
data; such methods are generally based upon an assumption
that similar unlabeled examples should be given the same
classification. In this paper we introduce a new approach
to semi-supervised learning that is based on a random field
model defined on a weighted graph over the unlabeled and
labeled data, where the weights are given in terms of a sim-
ilarity function between instances.

Unlike other recent work based on energy minimization
and random fields in machine learning (Blum & Chawla,
2001) and image processing (Boykov et al., 2001), we
adopt Gaussian fields over a continuous state space rather
than random fields over the discrete label set. This “re-
laxation” to a continuous rather than discrete sample space
results in many attractive properties. In particular, the most
probable configuration of the field is unique, is character-
ized in terms of harmonic functions, and has a closed form
solution that can be computed using matrix methods or
loopy belief propagation (Weiss et al., 2001). In contrast,
for multi-label discrete random fields, computing the low-
est energy configuration is typically NP-hard, and approxi-
mation algorithms or other heuristics must be used (Boykov
et al., 2001). The resulting classification algorithms for
Gaussian fields can be viewed as a form of nearest neigh-
bor approach, where the nearest labeled examples are com-
puted in terms of a random walk on the graph. The learning
methods introduced here have intimate connections with
random walks, electric networks, and spectral graph the-
ory, in particular heat kernels and normalized cuts.

In our basic approach the solution is solely based on the
structure of the data manifold, which is derived from data
features. In practice, however, this derived manifold struc-
ture may be insufficient for accurate classification. We
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Figure 1. The random fi elds used in this work are constructed on
labeled and unlabeled examples. We form a graph with weighted
edges between instances (in this case scanned digits), with labeled
data items appearing as special ‘boundary” points, and unlabeled
points as ‘interior” points. We consider Gaussian random fi elds
on this graph.

show how the extra evidence of class priors can help classi-
fication in Section 4. Alternatively, we may combine exter-
nal classifiers using vertex weights or “assignment costs,’
as described in Section 5. Encouraging experimental re-
sults for synthetic data, digit classification, and text clas-
sification tasks are presented in Section 7. One difficulty
with the random field approach is that the right choice of
graph is often not entirely clear, and it may be desirable to
learn it from data. In Section 6 we propose a method for
learning these weights by entropy minimization, and show
the algorithm’s ability to perform feature selection to better
characterize the data manifold.

2. Basic Framework

We suppose there are [ labeled points (1,¥1),- - - , (i, y1),
and u unlabeled points x;y1,... , Ti4q; typically I < u.
Let n = [ + u be the total number of data points. To be-
gin, we assume the labels are binary: y € {0,1}. Consider
a connected graph G = (V, E) with nodes V' correspond-
ing to the n data points, with nodes L = {1,... ,{} corre-
sponding to the labeled points with labels y1, ... ,y;, and
nodes U = {{+1,...,l 4+ u} corresponding to the unla-
beled points. Our task is to assign labels to nodes U. We
assume an n X n symmetric weight matrix W on the edges
of the graph is given. For example, when z € R™, the
weight matrix can be

m o, )2
wij = exp (—Z %) (1)

d=1

where x;4 is the d-th component of instance x; represented
as a vector x; € R™, and 01,...,0,, are length scale
hyperparameters for each dimension. Thus, nearby points
in Euclidean space are assigned large edge weight. Other

weightings are possible, of course, and may be more appro-
priate when z is discrete or symbolic. For our purposes the
matrix W fully specifies the data manifold structure (see
Figure 1).

Our strategy is to first compute a real-valued function
f : V. — R on G with certain nice properties, and to
then assign labels based on f. We constrain f to take val-
ues f(i) = fi(i) = y; on the labeled data i = 1,... 1.
Intuitively, we want unlabeled points that are nearby in the
graph to have similar labels. This motivates the choice of
the quadratic energy function

B() =5 S ws (O -1G) @

To assign a probability distribution on functions f, we form
the Gaussian field ps(f) = e_Z(f) ,where (3 is an “inverse
temperature” parameter, and Zg is the partition function
Zg = fflL:fl exp (—BE(f)) df, which normalizes over

all functions constrained to f; on the labeled data.

It is not difficult to show that the minimum energy function
f = argming|, _s, E(f) is harmonic; namely, it satisfies
Af = 0 on unlabeled data points U, and is equal to f;
on the labeled data points L. Here A is the combinatorial
Laplacian, given in matrix formas A = D—W where D =
diag(d;) is the diagonal matrix with entries d; = 3_; wi;
and W = [w;;] is the weight matrix.

The harmonic property means that the value of f at each
unlabeled data point is the average of f at neighboring
points:

fG) = diij,-jf(i), forj=1+1,...,1+u (3

inj

which is consistent with our prior notion of smoothness of
f with respect to the graph. Expressed slightly differently,
f = Pf,where P = D~1W. Because of the maximum
principle of harmonic functions (Doyle & Snell, 1984), f is
unique and is either a constant or it satisfies 0 < f(j) < 1
forjeU.

To compute the harmonic solution explicitly in terms of
matrix operations, we split the weight matrix W (and sim-
ilarly D, P) into 4 blocks after the {th row and column:

| Wu Wi
Letting f = fi where f,, denotes the values on the un-
f
u

labeled data points, the harmonic solution A f = 0 subject
to f|r = fi is given by

fu = (Duu _Wuu)ilwulfl = (I_Puu)ilpulfl (5)
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Figure 2. Demonstration of harmonic energy minimization on two
synthetic datasets. Large symbols indicate labeled data, other
points are unlabeled.

In this paper we focus on the above harmonic function as a
basis for semi-supervised classification. However, we em-
phasize that the Gaussian random field model from which
this function is derived provides the learning framework
with a consistent probabilistic semantics.

In the following, we refer to the procedure described above
as harmonic energy minimization, to underscore the har-
monic property (3) as well as the objective function being
minimized. Figure 2 demonstrates the use of harmonic en-
ergy minimization on two synthetic datasets. The left figure
shows that the data has three bands, with [ = 3, u = 178,
and ¢ = 0.22; the right figure shows two spirals, with
| =2, u =184, and ¢ = 0.43. Here we see harmonic
energy minimization clearly follows the structure of data,
while obviously methods such as kNN would fail to do so.

3. Interpretation and Connections

As outlined briefly in this section, the basic framework pre-
sented in the previous section can be viewed in several fun-
damentally different ways, and these different viewpoints
provide a rich and complementary set of techniques for rea-
soning about this approach to the semi-supervised learning
problem.

3.1. Random Walks and Electric Networks

Imagine a particle walking along the graph G. Starting
from an unlabeled node 7, it moves to a node j with proba-
bility P;; after one step. The walk continues until the par-
ticle hits a labeled node. Then f(4) is the probability that
the particle, starting from node ¢, hits a labeled node with
label 1. Here the labeled data is viewed as an “absorbing
boundary” for the random walk.

This view of the harmonic solution indicates that it is
closely related to the random walk approach of Szummer
and Jaakkola (2001), however there are two major differ-
ences. First, we fix the value of f on the labeled points,
and second, our solution is an equilibrium state, expressed
in terms of a hitting time, while in (Szummer & Jaakkola,

2001) the walk crucially depends on the time parameter £.
We will return to this point when discussing heat kernels.

An electrical network interpretation is given in (Doyle &
Snell, 1984). Imagine the edges of G to be resistors with
conductance W. We connect nodes labeled 1 to a positive
voltage source, and points labeled 0 to ground. Then f,
is the voltage in the resulting electric network on each of
the unlabeled nodes. Furthermore f,, minimizes the energy
dissipation of the electric network G for the given f;. The
harmonic property here follows from Kirchoff’s and Ohm’s
laws, and the maximum principle then shows that this is
precisely the same solution obtained in (5).

3.2. Graph Kernels

The solution f can be viewed from the viewpoint of spec-
tral graph theory. The heat kernel with time parameter ¢
on the graph G is defined as K; = e~ 2. Here K;(i, ) is
the solution to the heat equation on the graph with initial
conditions being a point source at ¢ at time ¢ = 0. Kondor
and Lafferty (2002) propose this as an appropriate kernel
for machine learning with categorical data. When used in a
kernel method such as a support vector machine, the kernel
classifier fu(j) = Y icr @iyiK(i, j) can be viewed as a
solution to the heat equation with initial heat sources a;y;
on the labeled data. The time parameter ¢ must, however,
be chosen using an auxiliary technique, for example cross-
validation.

Our algorithm uses a different approach which is indepen-
dent of t, the diffusion time. Let A,, be the lower right
u X u submatrix of A. Since A,y = Dyy — Wy, it is the
Laplacian restricted to the unlabeled nodes in G. Consider
the heat kernel on this submatrix: K; = e tAuwu. Then
K ; describes heat diffusion on the unlabeled subgraph with
Dirichlet boundary conditions on the labeled nodes. The
Green'’s function G is the inverse operator of the restricted
Laplacian, GA,,, = I, which can be expressed in terms of
the integral over time of the heat kernel K ;:
oo oo
G = / K,dt = / e tAuudt = (Dyy — Wyu) ™ (6)
0 0

The harmonic solution (5) can then be written as

!
fu=GWufi or () =D viwwG(k,j)
=1 k

Expression (7) shows that this approach can be viewed as
a kernel classifier with the kernel G and a specific form of
kernel machine. (See also (Chung & Yau, 2000), where a
normalized Laplacian is used instead of the combinatorial
Laplacian.) From (6) we also see that the spectrum of G is
{\7'}, where {);} is the spectrum of A,,,,. This indicates
a connection to the work of Chapelle et al. (2002), who ma-
nipulate the eigenvalues of the Laplacian to create various



kernels. A related approach is given by Belkin and Niyogi
(2002), who propose to regularize functions on G by select-
ing the top p normalized eigenvectors of A corresponding
to the smallest eigenvalues, thus obtaining the best fit to f;
in the least squares sense. We remark that our f fits the
labeled data exactly, while the order p approximation may
not.

3.3. Spectral Clustering and Graph Mincuts

The normalized cut approach of Shi and Malik (2000) has
as its objective function the minimization of the Raleigh
quotient

_TAf X () - ()
- fTDf > dif(i)?

subject to the constraint f L 1. The solution is the second
smallest eigenvector of the generalized eigenvalue problem
Af = ADf. Yu and Shi (2001) add a grouping bias to
the normalized cut to specify which points should be in
the same group. Since labeled data can be encoded into
such pairwise grouping constraints, this technique can be
applied to semi-supervised learning as well. In general,
when W is close to block diagonal, it can be shown that
data points are tightly clustered in the eigenspace spanned
by the first few eigenvectors of A (Ng et al., 2001a; Meila
& Shi, 2001), leading to various spectral clustering algo-
rithms.

R(f) ®)

Perhaps the most interesting and substantial connection to
the methods we propose here is the graph mincut approach
proposed by Blum and Chawla (2001). The starting point
for this work is also a weighted graph G, but the semi-
supervised learning problem is cast as one of finding a
minimum s¢-cut, where negative labeled data is connected
(with large weight) to a special source node s, and positive
labeled data is connected to a special sink node ¢. A mini-
mum st-cut, which is not necessarily unique, minimizes the
L! objective function E;(f) = %E” wij | F(€) — fF(5)]
and corresponds to a function f : V. — {—1,+1}; the
solutions can be obtained using linear programming. The
corresponding random field model is a “traditional” field
over the label space {—1,+1}, but the field is pinned on
the labeled entries. Because of this constraint, approxima-
tion methods based on rapidly mixing Markov chains that
apply to the ferromagnetic Ising model unfortunately can-
not be used. Moreover, multi-label extensions are generally
NP-hard in this framework. In contrast, the harmonic so-
lution can be computed efficiently using matrix methods,
even in the multi-label case, and inference for the Gaussian
random field can be efficiently and accurately carried out
using loopy belief propagation (Weiss et al., 2001).

4. Incorporating Class Prior Knowledge

To go from f to labels, the obvious decision rule is to
assign label 1 to node 4 if f(i) > %, and label O other-
wise. We call this rule the harmonic threshold (abbreviated
“thresh” below). In terms of the random walk interpreta-
tion, if f(i) > %, then starting at ¢, the random walk is
more likely to reach a positively labeled point before a neg-
atively labeled point. This decision rule works well when
the classes are well separated. However in real datasets,
classes are often not ideally separated, and using f as is
tends to produce severely unbalanced classification.

The problem stems from the fact that W, which specifies
the data manifold, is often poorly estimated in practice and
does not reflect the classification goal. In other words, we
should not “fully trust” the graph structure. The class priors
are a valuable piece of complementary information. Let’s
assume the desirable proportions for classes 1 and O are ¢
and 1 — g, respectively, where these values are either given
by an “oracle” or estimated from labeled data. We adopt a
simple procedure called class mass normalization (CMN)
to adjust the class distributions to match the priors. Define
the mass of class 1 to be ), f,,(¢), and the mass of class 0
tobe >, (1— fu(é)). Class mass normalization scales these
masses so that an unlabeled point ¢ is classified as class 1
iff

A0 S0 = fu@)

This method extends naturally to the general multi-label
case.

> (1—gq) ©)

5. Incorporating External Classifiers

Often we have an external classifier at hand, which is con-
structed on labeled data alone. In this section we suggest
how this can be combined with harmonic energy minimiza-
tion. Assume the external classifier produces labels h,, on
the unlabeled data; h,, can be 0/1 or soft labels in [0, 1]. We
combine h,, with harmonic energy minimization by a sim-
ple modification of the graph. For each unlabeled node ¢ in
the original graph, we attach a “dongle” node which is a la-
beled node with value h;, let the transition probability from
1 to its dongle be 7, and discount all other transitions from ¢
by 1 — 7. We then perform harmonic energy minimization
on this augmented graph. Thus, the external classifier in-
troduces “assignment costs” to the energy function, which
play the role of vertex potentials in the random field. It
is not difficult to show that the harmonic solution on the
augmented graph is, in the random walk view,

fu=I =1 =n)Pu)” (L =n)Pufi +nhy)  (10)

We note that throughout the paper we have assumed the
labeled data to be noise free, and so clamping their values



makes sense. If there is reason to doubt this assumption, it
would be reasonable to attach dongles to labeled nodes as
well, and to move the labels to these new nodes.

6. Learning the Weight Matrix W/

Previously we assumed that the weight matrix W is given
and fixed. In this section, we investigate learning weight
functions of the form given by equation (1). We will learn
the o4’s from both labeled and unlabeled data; this will be
shown to be useful as a feature selection mechanism which
better aligns the graph structure with the data.

The usual parameter learning criterion is to maximize the
likelihood of labeled data. However, the likelihood crite-
rion is not appropriate in this case because the f values for
labeled data are fixed during training, and moreover likeli-
hood doesn’t make sense for the unlabeled data because we
do not have a generative model. We propose instead to use
average label entropy as a heuristic criterion for parameter
learning. The average label entropy H (f) of the field f is
defined as

I+u
Z Hi(f an
i=l+1

where H;(f(i)) = —f(i) log f (i) — (1— £ (7)) log(1— f (7))

is the entropy of the field at the individual unlabeled data
point i. Here we use the random walk interpretation of f,
relying on the maximum principle of harmonic functions
which guarantees that 0 < f(¢) < 1 fors > [+ 1. Small
entropy implies that f(¢) is close to O or 1; this captures
the intuition that a good W (equivalently, a good set of hy-
perparameters {o;}) should result in a confident labeling.
There are of course many arbitrary labelings of the data that
have low entropy, which might suggest that this criterion
will not work. However, it is important to point out that
we are constraining f on the labeled data—most of these
arbitrary low entropy labelings are inconsistent with this
constraint. In fact, we find that the space of low entropy
labelings achievable by harmonic energy minimization is
small and lends itself well to tuning the o4 parameters.

There is a complication, however, which is that H has a
minimum at 0 as 04 — 0. As the length scale approaches
zero, the tail of the weight function (1) is increasingly sen-
sitive to the distance. In the end, the label predicted for an
unlabeled example is dominated by its nearest neighbor’s
label, which results in the following equivalent labeling
procedure: (1) starting from the labeled data set, find the
unlabeled point x,, that is closest to some labeled point x;;
(2) label x,, with x;’s label, put z,, in the labeled set and re-
peat. Since these are hard labels, the entropy is zero. This
solution is desirable only when the classes are extremely
well separated, and can be expected to be inferior other-
wise.

This complication can be avoided by smoothing the tran-
sition matrix. Inspired by analysis of the PageRank algo-
rithm in (Ng et al., 2001b), we replace P with the smoothed
matrix P = e + (1 —¢) P, where U is the uniform matrix
with entries U;; = 1/(1 + u).

We use gradient descent to find the hyperparameters o4 that
minimize H. The gradient is computed as

(%d - qul ( )> Gg(d) (12)

i=Il+1

where the values 0f(i)/0o4 can be read off the vector
Ofv /004, which is given by

O _ (1_ P <6P““fu 6PZ’f) (13)

0oy

using the fact that dX~! = “1(dX)X~1. Both
APy, /004 and Py, /0o 4 are sub-matrices of apP /004 =
1- 5)37’;. Since the original transition matrix P is ob-
tained by normalizing the weight matrix W, we have that

Sw;; oY Bwiy
Opij _  Boy ~Pii 2on—1 o, (14)
60' - I+u
d En—l Win
Flnally, = 2wij(wai — z4)> /0.

In the above derivation we use f,, as label probabilities di-
rectly; that is, p(class(z;) = 1) = f, (). If we incorpo-
rate class prior information, or combine harmonic energy
minimization with other classifiers, it makes sense to min-
imize entropy on the combined probabilities. For instance,
if we incorporate a class prior using CMN, the probability
is given by

Fle q(u— 7 fu) fu(i)

f(i) = qu=>"f)fu@)+ 1 =) fu(l - fU(jS%S)

and we use this probability in place of f(i) in (11). The
derivation of the gradient descent rule is a straightforward
extension of the above analysis.

7. Experimental Results

We first evaluate harmonic energy minimization on a hand-
written digits dataset, originally from the Cedar Buffalo
binary digits database (Hull, 1994). The digits were pre-
processed to reduce the size of each image down to a
16 x 16 grid by down-sampling and Gaussian smooth-
ing, with pixel values ranging from 0 to 255 (Le Cun
et al., 1990). Each image is thus represented by a 256-
dimensional vector. We compute the weight matrix (1) with
o4 = 380. For each labeled set size [ tested, we perform
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Figure 3. Harmonic energy minimization on digits “1”’ vs. ‘2” (left) and on all 10 digits (middle) and combining voted-perceptron with

harmonic energy minimization on odd vs. even digits (right)
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Figure 4. Harmonic energy minimization on PC vs. MAC (left), baseball vs. hockey (middle), and MS-Windows vs. MAC (right)

10 trials. In each trial we randomly sample labeled data
from the entire dataset, and use the rest of the images as
unlabeled data. If any class is absent from the sampled la-
beled set, we redo the sampling. For methods that incorpo-
rate class priors ¢, we estimate ¢ from the labeled set with
Laplace (“add one”) smoothing.

We consider the binary problem of classifying digits “1”
vs. “2,” with 1100 images in each class. We report aver-
age accuracy of the following methods on unlabeled data:
thresh, CMN, 1NN, and a radial basis function classifier
(RBF) which classifies to class 1 iff W fi > Wy (1 — fi).
RBF and 1NN are used simply as baselines. The results are
shown in Figure 3. Clearly thresh performs poorly, because
the values of f,(j) are generally close to 1, so the major-
ity of examples are classified as digit “1”. This shows the
inadequacy of the weight function (1) based on pixel-wise
Euclidean distance. However the relative rankings of f,,(4)
are useful, and when coupled with class prior information
significantly improved accuracy is obtained. The greatest
improvement is achieved by the simple method CMN. We
could also have adjusted the decision threshold on thresh’s
solution f,,, so that the class proportion fits the prior g. This
method is inferior to CMN due to the error in estimating ¢,
and it is not shown in the plot. These same observations
are also true for the experiments we performed on several
other binary digit classification problems.

We also consider the 10-way problem of classifying digits
“0” through ’9’. We report the results on a dataset with in-
tentionally unbalanced class sizes, with 455,213,129, 100,
754, 970, 275, 585, 166, 353 examples per class, respec-
tively (noting that the results on a balanced dataset are sim-
ilar). We report the average accuracy of thresh, CMN, RBF,
and INN. These methods can handle multi-way classifica-
tion directly, or with slight modification in a one-against-all
fashion. As the results in Figure 3 show, CMN again im-
proves performance by incorporating class priors.

Next we report the results of document categorization ex-
periments using the 20 newsgroups dataset. We pick
three binary problems: PC (number of documents: 982)
vs. MAC (961), MS-Windows (958) vs. MAC, and base-
ball (994) vs. hockey (999). Each document is minimally
processed into a “tf.idf” vector, without applying header re-
moval, frequency cutoff, stemming, or a stopword list. Two
documents u, v are connected by an edge if u is among v’s
10 nearest neighbors or if v is among u’s 10 nearest neigh-
bors, as measured by cosine similarity. We use the follow-

ing weight function on the edges:
.
L u' ))
|ul[v]

1
Wyy = €XP <_m (

We use one-nearest neighbor and the voted perceptron al-
gorithm (Freund & Schapire, 1999) (10 epochs with a lin-

(16)



ear kernel) as baselines—our results with support vector ma-
chines are comparable. The results are shown in Figure
4. As before, each point is the average of 10 random tri-
als. For this data, harmonic energy minimization performs
much better than the baselines. The improvement from the
class prior, however, is less significant. An explanation for
why this approach to semi-supervised learning is so effec-
tive on the newsgroups data may lie in the common use of
quotations within a topic thread: document us quotes part
of document uq, us quotes part of us, and so on. Thus,
although documents far apart in the thread may be quite
different, they are linked by edges in the graphical repre-
sentation of the data, and these links are exploited by the
learning algorithm.

7.1. Incorporating External Classifiers

We use the voted-perceptron as our external classifier. For
each random trial, we train a voted-perceptron on the la-
beled set, and apply it to the unlabeled set. We then use the
0/1 hard labels for dongle values h,,, and perform harmonic
energy minimization with (10). We use n = 0.1.

We evaluate on the artificial but difficult binary problem
of classifying odd digits vs. even digits; that is, we group
“1,3,5,7,9” and “2,4,6,8,0” into two classes. There are 400
images per digit. We use second order polynomial kernel
in the voted-perceptron, and train for 10 epochs. Figure 3
shows the results. The accuracy of the voted-perceptron
on unlabeled data, averaged over trials, is marked VP in
the plot. Independently, we run thresh and CMN. Next we
combine thresh with the voted-perceptron, and the result
is marked thresh+VP. Finally, we perform class mass nor-
malization on the combined result and get CMN+VP. The
combination results in higher accuracy than either method
alone, suggesting there is complementary information used
by each.

7.2. Learning the Weight Matrix W

To demonstrate the effects of estimating W, results on a toy
dataset are shown in Figure 5. The upper grid is slightly
tighter than the lower grid, and they are connected by a few
data points. There are two labeled examples, marked with
large symbols. We learn the optimal length scales for this
dataset by minimizing entropy on unlabeled data.

To simplify the problem, we first tie the length scales in
the two dimensions, so there is only a single parameter o
to learn. As noted earlier, without smoothing, the entropy
approaches the minimum at O as ¢ — 0. Under such con-
ditions, the results of harmonic energy minimization are
usually undesirable, and for this dataset the tighter grid
“invades” the sparser one as shown in Figure 5(a). With
smoothing, the “nuisance minimum” at O gradually disap-
pears as the smoothing factor € grows, as shown in Figure
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Figure 5. The effect of parameter ¢ on harmonic energy mini-
mization. (a) If unsmoothed, H — 0 as 0 — 0, and the algorithm
performs poorly. (b) Result at optimal o = 0.67, smoothed with
€ = 0.01 (c) Smoothing helps to remove the entropy minimum.

5(c). When we set ¢ = 0.01, the minimum entropy is 0.898
bits at o = 0.67. Harmonic energy minimization under this
length scale is shown in Figure 5(b), which is able to dis-
tinguish the structure of the two grids.

If we allow a separate o for each dimension, parameter
learning is more dramatic. With the same smoothing of
e = 0.01, o, keeps growing towards infinity (we use
o, = 10' for computation) while o, stabilizes at 0.65,
and we reach a minimum entropy of 0.619 bits. In this
case o, — 00 is legitimate; it means that the learning al-
gorithm has identified the z-direction as irrelevant, based
on both the labeled and unlabeled data. Harmonic energy
minimization under these parameters gives the same clas-
sification as shown in Figure 5(b).

Next we learn ¢’s for all 256 dimensions on the “1” vs. “2”
digits dataset. For this problem we minimize the entropy
with CMN probabilities (15). We randomly pick a split of
92 labeled and 2108 unlabeled examples, and start with all
dimensions sharing the same ¢ = 380 as in previous ex-
periments. Then we compute the derivatives of o for each
dimension separately, and perform gradient descent to min-
imize the entropy. The result is shown in Table 1. As
entropy decreases, the accuracy of CMN and thresh both
increase. The learned o’s shown in the rightmost plot of
Figure 6 range from 181 (black) to 465 (white). A small o;
(black) indicates that the weight is more sensitive to varia-
tions in that dimension, while the opposite is true for large
o; (white). We can discern the shapes of a black “1” and
a white “2” in this figure; that is, the learned parameters



H (bits) CMN thresh
start | 0.6931 | 9725+0.73% | 9470 £ 1.19 %
end | 0.6542 | 98.56 +0.43% | 98.02+0.39 %

Table 1. Entropy of CMN and accuracies before and after learning
o’s on the “1” vs. ‘2” dataset.

- JJ-

Figure 6. Learned o’s for “1” vs. ‘2” dataset. From left to right:
average “1”, average ‘2”, initial ¢’s, learned o’’s.

exaggerate variations within class “1” while suppressing
variations within class “2”. We have observed that with
the default parameters, class “1” has much less variation
than class “2”; thus, the learned parameters are, in effect,
compensating for the relative tightness of the two classes in
feature space.

8. Conclusion

We have introduced an approach to semi-supervised learn-
ing based on a Gaussian random field model defined with
respect to a weighted graph representing labeled and unla-
beled data. Promising experimental results have been pre-
sented for text and digit classification, demonstrating that
the framework has the potential to effectively exploit the
structure of unlabeled data to improve classification accu-
racy. The underlying random field gives a coherent proba-
bilistic semantics to our approach, but this paper has con-
centrated on the use of only the mean of the field, which is
characterized in terms of harmonic functions and spectral
graph theory. The fully probabilistic framework is closely
related to Gaussian process classification, and this connec-
tion suggests principled ways of incorporating class priors
and learning hyperparameters; in particular, it is natural
to apply evidence maximization or the generalization er-
ror bounds that have been studied for Gaussian processes
(Seeger, 2002). Our work in this direction will be reported
in a future publication.
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