Welcome

• CS 6316 Machine Learning
 – MoWe 3:30pm-4:45pm,
 – Mechanical Engr Bldg 341

• Your UVA collab: Course 6316 page
Today

- **Course Logistics**
- My background
- Basics and rough content plan
- Application and History

Course Staff

- **Instructor:** Prof. Yanjun Qi
 - QI: /ch ee/
 - You can call me “professor”, “professor Jane”, “professor Qi”;

- **TA:** Ritambhara Singh <rs3zz@virginia.edu>
- TA office hours: Wed 5pm-6pm @ Rice 504
- My office hours: Thur 5pm-6pm @ Rice 503
Course Logistics

• Course email list has been setup. You should have received emails already!

• Policy, the grade will be calculated as follows:
 – Assignments (50%, **Five** total, each 10%)
 – In-class quizzes (10%, multiple)
 – mid-term (20%)
 – Final project (20%)

Course Logistics

• Midterm: late Oct or mid Nov., 75mins in class
• Final project:
 – proposal + report + in-class presentation
• Five assignments (each 10%)
 – Due Sept 16, Sept 30, Oct 14, Nov 4, Nov 28
 – **three** extension days policy (check course website)
• Multiple in-class quizzes (total 10%)
 – About 10 small quizzes
 – Randomly distributed over the whole semester
Course Logistics

• Policy,
 – Homework should be submitted electronically through UVaCollab
 – Homework should be finished individually
 – Due at midnight on the due date
 – In order to pass the course, the average of your midterm and final must also be "pass".

Course Logistics

• Text books for this class is:
 – NONE

• My slides – if it is not mentioned in my slides, it is not an official topic of the course
Course Logistics

• **Background Needed**
 – Calculus, Basic linear algebra, Basic probability and Basic Algorithm
 – Statistics is recommended.
 – Students should already have good programming skills, i.e. python is required for all programming assignments

 – We will review “linear algebra” and “probability” in class

Today

- Course Logistics
- **My background**
- Basics and rough content plan
- Application and History
About Me

• Education:
 – PhD from School of Computer Science, Carnegie Mellon University (@ Pittsburgh, PA) in 2008
 – BS in Department of Computer Science, Tsinghua Univ. (@ Beijing, China)
 • My accent PATTERN: /l/, /n/, /ou/, /m/

• Research interests:
 – Machine Learning, Data Mining, Biomedical applications

8/31/15
Today

- Course Logistics
- My background
- Basics and Rough content plan
- Application and History

OUR DATA-RICH WORLD

• Biomedicine
 – Patient records, brain imaging, MRI & CT scans, ...
 – Genomic sequences, bio-structure, drug effect info, ...

• Science
 – Historical documents, scanned books, databases from astronomy, environmental data, climate records, ...

• Social media
 – Social interactions data, twitter, facebook records, online reviews, ...

• Business
 – Stock market transactions, corporate sales, airline traffic, ...

• Entertainment
 – Internet images, Hollywood movies, music audio files, ...
BIG DATA CHALLENGES

• Data capturing (sensor, smart devices, medical instruments, et al.)
• Data transmission
• Data storage
• Data management
• High performance data processing
• Data visualization
• Data security & privacy (e.g. multiple individuals)
•

• Data analytics
 ○ How can we analyze this big data wealth?
 ○ E.g. Machine learning and data mining

Drowning in data, Starving for knowledge
BASICS OF MACHINE LEARNING

• “The goal of machine learning is to build computer systems that can learn and adapt from their experience.” – Tom Dietterich

• “Experience” in the form of available data examples (also called as instances, samples)

• Available examples are described with properties (data points in feature space X)

e.g. SUPERVISED LEARNING

• Find function to map input space X to output space Y

\[f : X \rightarrow Y \]

• So that the difference between \(y \) and \(f(x) \) of each example \(x \) is small.

Input X: e.g. a piece of English text

Output Y: \{1/Yes, -1/No\}

e.g. Is this a positive product review?
e.g. SUPERVISED Linear Binary Classifier

\[f(x, w, b) = \text{sign}(w^T x + b) \]

- **Training** (i.e. learning parameters \(w, b \))
 - Training set includes
 - available examples \(x_1, \ldots, x_L \)
 - available corresponding labels \(y_1, \ldots, y_L \)
 - Find \((w, b) \) by minimizing loss (i.e. difference between \(y \) and \(f(x) \) on available examples in training set)

\[
(W, b) = \arg\min_{w, b} \sum_{i=1}^{L} \ell(f(x_i), y_i)
\]

Basic Concepts
Basic Concepts

- **Testing** (i.e. evaluating performance on “future” points)
 - Difference between true y_j and the predicted $f(x_j)$ on a set of testing examples (i.e. testing set)
 - Key: example x_j not in the training set

- **Generalisation**: learn function / hypothesis from past data in order to “explain”, “predict”, “model” or “control” new data examples

Basic Concepts

- **Loss function**
 - e.g. hinge loss for binary classification task
 \[
 \sum_{i=1}^{L} \ell(f(x_i), y_i) = \sum_{i=1}^{L} \max(0, 1 - y_i f(x_i))
 \]
 - e.g. pairwise ranking loss for ranking task (i.e. ordering examples by preference)

- **Regularization**
 - E.g. additional information added on loss function to control model
 \[
 C \sum_{i=1}^{L} \ell(f(x_i), y_i) + \frac{1}{2} \|w\|^2
 \]
TYPICAL MACHINE LEARNING SYSTEM

- Low-level sensing
- Pre-processing
- Feature Extract
- Feature Select
- Inference, Prediction, Recognition
- Label Collection
- Evaluation

$f : X \rightarrow Y$

“Big Data” Challenges for Machine Learning

- LARGE-SCALE
- HIGH-COMPLEXITY

✓ Large size of samples
✓ High dimensional features

Not the focus, will be covered in advanced-level course
Large-Scale Machine Learning:

SIZE MATTERS

- One thousand data instances
- One million data instances
- One billion data instances
- One trillion data instances

Those are not different numbers, those are different mindsets !!!

8/31/15

BIG DATA CHALLENGES FOR MACHINE LEARNING

Most of this course

The situations / variations of both X (feature, representation) and Y (labels) are complex!

✓ Complexity of X
✓ Complexity of Y
TYPICAL MACHINE LEARNING SYSTEM

Low-level sensing → Pre-processing → Feature Extract → Feature Select

Data Complexity of X

Inference, Prediction, Recognition

Evaluation

Label Collection

Data Complexity of Y

\(f : X \rightarrow Y \)

UNSUPERVISED LEARNING:

[COMPLEXITY OF Y]

- No labels are provided (e.g. No Y provided)
- Find patterns from unlabeled data, e.g. clustering

e.g. clustering => to find “natural” grouping of instances given un-labeled data
STRUCTURAL OUTPUT LEARNING:

[COMPLEXITY OF Y]

- Many prediction tasks involve output labels having structured correlations or constraints among instances.

<table>
<thead>
<tr>
<th>Structured Dependency between Examples</th>
<th>Sequence</th>
<th>Tree</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input X</td>
<td>APAFSVSPASGACGPECA...</td>
<td>The dog chased the cat</td>
<td></td>
</tr>
<tr>
<td>Output Y</td>
<td>CCEEEEDCCCCCHBCC...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Many more possible structures between y_i, e.g. spatial, temporal, relational...

STRUCTURAL INPUT: Kernel Methods

[COMPLEXITY OF X]

- Vector vs. Relational data

- e.g. Graphs, Sequences, 3D structures,

Original Space Feature Space
MORE RECENT: FEATURE LEARNING
[COMPLEXITY OF X]

Deep Learning

Supervised Embedding

Layer-wise Pretraining

DEEP LEARNING / FEATURE LEARNING :
[COMPLEXITY OF X]

Feature Engineering
✓ Most critical for accuracy
✓ Account for most of the computation for testing
✓ Most time-consuming in development cycle
✓ Often hand-craft and task dependent in practice

Feature Learning
✓ Easily adaptable to new similar tasks
✓ Layerwise representation
✓ Layer-by-layer unsupervised training
✓ Layer-by-layer supervised training
Course Content Plan

Five major sections of this course

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- Graphical models
Scikit-learn: Regression

Linear model fitted by minimizing a regularized empirical loss with SGD

- SGD Regressor
- Lasso
- ElasticNet
- SVR(kernel='rbf')
- Ensemble Regressors

few features should be important

<100K samples

Scikit-learn: Classification

Approximate the explicit feature mappings that correspond to certain kernels

- SVC
- Ensemble Classifiers
- KNeighbors Classifier
- SGD Classifier

<100K samples

To combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability/robustness over a single estimator: (1) averaging/bagging (2) boosting

Linear classifiers (SVM, logistic regression...) with SGD training
Unsupervised Models

Today

- Course Logistics
- My background
- Basics and rough content plan
- Application and History
What can we do with the data wealth?

➤ REAL-WORLD IMPACT

- Business efficiencies
- Scientific breakthroughs
- Improve quality-of-life:
 - healthcare,
 - energy saving / generation,
 - environmental disasters,
 - nursing home,
 - transportation,
 - ...

When to use Machine Learning (Adapt to / learn from data)?

- 1. **Extract knowledge** from data
 - Relationships and correlations can be hidden within large amounts of data
 - The amount of knowledge available about certain tasks is simply too large for explicit encoding (e.g. rules) by humans

- 2. Learn tasks that are **difficult to formalise**
 - Hard to be defined well, except by examples

- 3. Create software that **improves over time**
 - New knowledge is constantly being discovered.
 - Rule or human encoding-based system is difficult to continuously re-design “by hand”.
MACHINE LEARNING IS CHANGING THE WORLD

MACHINE LEARNING IN COMPUTER SCIENCE

• Machine learning is already the preferred approach for
 – Speech recognition, natural language processing
 – Computer vision
 – Medical outcome analysis
 – Robot control …

• Why growing?
 – Improved machine learning algorithm
 – Increased data capture, new sensors, networking
 – Systems/Software too complex to control manually
 – Demand to self-customization for user, environment, ….
RELATED DISCIPLINES

- Artificial Intelligence
- Data Mining
- Probability and Statistics
- Information theory
- Numerical optimization
- Computational complexity theory
- Control theory (adaptive)
- Psychology (developmental, cognitive)
- Neurobiology
- Linguistics
- Philosophy

What are the goals of AI research?

- Artifacts that THINK like HUMANS
- Artifacts that THINK RATIONALLY
- Artifacts that ACT like HUMANS
- Artifacts that ACT RATIONALLY
How can we build more intelligent computer / machine?

• Able to
 – perceive the world
 – understand the world

• This needs
 – Basic speech capabilities
 – Basic vision capabilities
 – Language/semantic understanding
 – User behavior / emotion understanding
 – Able to think ??

R2-D2 and C-3PO
@ Star Wars – 1977

to serve human beings, and
fluent in "over six million forms of communication"
How can we build more intelligent computer / machine?

IBM Watson

- an artificial intelligence computer system capable of answering questions posed in natural language developed in IBM's DeepQA project.

Jeopardy Game

- Requires a Broad Knowledge Base

Apple Siri

- an intelligent personal assistant and knowledge navigator

8/31/15
How can we build more intelligent computer / machine?: Objective Recognition / Image Labeling

Deep Convolution Neural Network (CNN) won (as Best systems) on “very large-scale” ImageNet competition 2012 / 2013 / 2014 (training on 1.2 million images [X] vs. 1000 different word labels [Y])

- 2013, Google Acquired Deep Neural Networks Company headed by Utoronto “Deep Learning” Professor Hinton
- 2013, Facebook Built New Artificial Intelligence Lab headed by NYU “Deep Learning” Professor LeCun

Detour: planned programming assignments

• HW3: Semantic language understanding (sentiment classification on movie review text)

• HW4: Visual object recognition (labeling images about handwritten digits)

• HW5: Audio speech recognition (HMM based speech recognition task)
Today Recap

- Course Logistics
- My background
- Basics and rough content plan
- Application and History

Next lesson: Machine Learning in a Nutshell

- Task
- Representation
- Score Function
- Search/Optimization
- Models, Parameters

ML grew out of work in AI

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

Next lesson: Review of linear algebra and basic calculus
References

- Prof. Andrew Moore’s tutorials
- Prof. Raymond J. Mooney’s slides
- Prof. Alexander Gray’s slides
- Prof. Eric Xing’s slides
- http://scikit-learn.org/
- Prof. M.A. Papalaskar’s slides