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Where are we ? =
Five major sections of this course

‘ [ Regression (supervised) T

U Classification (supervised)
O Unsupervised models

U Learning theory

O Graphical models

10/28/15 2
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http://scikit-learn.org/stable/tutorial/machine learning map/

Choosing the right estimator

classification scikit-learn

algorithm cheat-sheet

‘predicting

category

few features
should be
important

number of
categories
known

NoT
WORKING
NO

o1
WORKING
YEs

o
-
structure

0

dimensionality
reduction
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Scikit-learn : Regression

Linear model o
fitted by regression
minimizing a
regularized
empirical loss
with SGD

few features
should be
important
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Scikit-learn : Classification

approximate the
explicit feature
mappings that
correspond to
certain kernels

NOT
WORKING

classification

o combine the
predictions of
several base
estimators built
with a given
learning algorithm
in order to improve
generalizability /
robustness over a
single estimator. (1)
averaging / bagging
2) boosting

Linear classifiers
(SVM, logistic
regression...) with
SGD training.

Dr. Yanjun Qi / UVA CS 6316 / f15

next after classification ?

number of
categories
known

dimensionality

structure reduction

Bayes-Net
HMM
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Today

» Decision Tree (DT):
»Tree representation

» Brief information theory

» Learning decision trees

» Bagging

» Random forests: Ensemble of DT

> More about ensemble

10/28/15
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A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana
Alexandru Niculescu-Mizil

CARUANAQCS.CORNELL.EDU
ALEXN@CS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods
have been introduced in the last decade. Un-
fortunately, the last comprehensive empiri-
cal evaluation of supervised learning was the
Statlog Project in the early 90’s. We present
a large-scale empirical comparison between
ten supervised learning methods: SVMs,
neural nets, logistic regression, naive bayes,
memory-based learning, random forests, de-
cision trees, bagged trees, boosted trees, and
boosted stumps. We also examine the effect
that calibrating the models via Platt Scaling
and Isotonic Regression has on their perfor-
mance. An important aspect of our study is

Al i € otk € o At L

This paper presents results of a large-scale empirical
comparison of ten supervised learning algorithms us-
ing eight performance criteria. We evaluate the perfor-
mance of SVMs, neural nets, logistic regression, naive
bayes, memory-based learning, random forests, deci-
sion trees, bagged trees, boosted trees, and boosted
stumps on eleven binary classification problems using
a variety of performance metrics: accuracy, F-score,
Lift, ROC Area, average precision, precision/recall
break-even point, squared error, and cross-entropy.
For each algorithm we examine common variations,
and thoroughly explore the space of parameters. For
example, we compare ten decision tree styles, neural
nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine

EXNISIIIS U D NI LU DUNDRI PRI, RO 1) LV SN R |

Proceedings of the 23rd International

10/28/15

Conference on Machine Learning (ICML "06).
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A study comparing Classifiers
=>» 11 binary classification problems / 8 metrics

Top 8 Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)
o Models
CAL ACC FSC LFT ROC APR BEP RMS MXE MEAN OPT-SEL
BST-DT PLT .843* 779 .939 .963 .938 .929% .880 .896 .896 917
RF PLT | .872*%  .805 .934* | 957 .931 .930 .851 .858 .892 .898
BAG-DT - .846 .781 .938*% | .962*%  .937*  .918 .845 872 .887* .899
BST-DT S0 | .826%  .860*  .929% | .952 921 .925% | .854 .815 .885 917*
RF = .872 .790 .934* | 957 .931 .930 .829 .830 .884 .890
BAG-DT PLT | .841 774 938* | .962*  .937* 918 .836 .852 .882 .895
RF 1SO .861* .861 923 .946 910 .925 .836 776 .880 .895
BAG-DT 1SO .826 .843*  .933* | .954 .921 915 .832 791 877 .894
SVM PLT 824 .760 895 938 .8Y¥ 913 831 836 862 .880
ANN - .803 762 .910 .936 .892 .899 .811 .821 .854 .885
SVM 1S0 .813 .836*%  .892 .925 .882 911 .814 .744 .852 .882
ANN PLT 815 748 910 .936 .892 .899 .783 785 .846 875
ANN 1SO .803 .836 .908 .924 .876 .891 777 718 .842 .884
BST-DT - .834* 816 .939 .963 .938 .929% | 598 .605 .828 .851
KNN PLT | .757 707 .889 .918 872 872 742 764 815 .837
KNN - .756 .728 .889 .918 872 872 .729 718 .810 .830
KNN 1S0 755 758 .882 .907 .854 .869 .738 .706 .809 .844
BST-STMP | PLT | .724 .651 .876 .908 .853 .845 .716 .754 791 .808
SVM - 817 .804 .895 .938 .899 913 514 467 .781 .810
BST-STMP | 1SO .709 744 .873 .899 .835 .840 .695 .646 .780 .810
BST-STMP - 741 .684 .876 .908 .853 .845 .394 .382 710 726
DT 1S0 .648 654 .818 .838 .756 778 .590 .589 .709 774
10/28/15 9

Dr. Yanjun Qi / UVA CS 6316 / f15

Where are we ? =

Three major sections for classification

* We can divide the Iar%e variety of classification
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., logistic regression, support vector machine, decisionTree

2. Generative:
- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

10/28/15 10
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X, X, X, C

A Dataset for

classification

fiXi—ic

N _-_ -

Output as Discrete

Class Label
C,C, ...,C.

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns, except the last]
Target/outcome/response/label/dependent variable: special column to be predicted [ last column ]

10/28/15

11

Dr. Yanjun Qi / UVA CS 6316 / f15 C

Example

ample: Play Tennis

PlayTennis: training examples
[y C

10/28/15

Day Outlook  Temperature ~ Humidity =~ Wind | PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes }
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No

[ D7 Overcast Cool Normal Strong Yes }
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes

{ D12 Overcast Mild High Strong Yes }
D13 Overcast Hot Normal Weak Yes }
D14 Rain Mild High Strong No

12
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Anatomy of a decision tree

Each node is a test on
one feature/attribute

-

/

/
sunny

-

high normal true false

Leaves are the
Yes Yes | decisions

10/28/15 13

rain Possible attribute values

overcast
of the node
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Anatomy of a decision tree

Each node is a test on
|_- @ — one attribute \

overcast ain  Possible attribute values
‘ of the node

Your data sunny

ge'issmaller @
[ < [+
TN \

high normal true false

‘ ‘ Leaves are the
Yes Yes | decisions

10/28/15 14
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Apply Model to Test Data:
To ‘play tennis’ or not.

A new test example:
(Outlook=£rair) and \
(Windy==false)

Pass it on the trae
overcast ‘ -> Decision is
‘ 4

Yes

-

/
sunny

10/28/15 15
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Apply Model to Test Data:
To ‘play tennis’ or not.

(Outlook ==overcast) ->yes
(Outlook==rain) anq,(wfndy==false) ->yes
es \

0ut|ook==sun,ny)%nd (Humidity=normal) ->y

IIYESl’

sunny
‘ overcast

10/28/15 16




Dr. Yanjun Qi / UVA CS 6316 / f15

Decision trees

‘ * Decision trees represent a disjunction of \
conjunctions of constraints on the attribute

values of instances.

* (Outlook ==overcast)

J OR

* ((Outlook==rain) and (Windy==false))

. OR

* ((Outlook==sunny) and (Humidity=normal))

* => yes play tennis

10/28/15 17
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Representation

Y=((A and B) or ((not A) and C))

false @ false @

10/28/15 18
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Same concept / different representation

|7 /.\ Y=((A and B) or ((not A) and C)) T
G\D—t WM ﬂu Qj

false true false rue
1\
1 0
false false @

10/28/15 19

Dr. Yanjun Qi / UVA CS 6316 / f15

Which attribute to select for splitting?

the distribution of
each class (not attribute)

This i{ bad splitting... ’

10/28/15 20
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How do we choose which

attribute to split ?
ich attribute should be used as the test? @

high normal

Intuitively, you would prefer the

yes yes
one that separates the training e S

yes yes
examples as much as possible. no yes

no yes

no yes
@ 10 10
temperature
false true P

sunny overcast

yes cool
es es

yes b b
oy yes yes
o yes yes y::
no yes no yes
i~ yes no y

no no o

no
10/28/15 21
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Today

|7 » Decision Tree (DT): T

» Tree representation
» Brief information theory
» Learning decision trees
» Bagging
» Random forests: Ensemble of DT

> More about ensemble

10/28/15 22
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Information gain is one criteria to
decide on which attribute for splitting

™ imagie .

— 1. Someone is about to tell you your own name

— 2. You are about to observe the outcome of a dice roll

— 2. You are about to observe the outcome of a coin flip

— 3. You are about to observe the outcome of a biased coin flip

e Each situation have a different amount of
uncertainty as to what outcome you will observe.

10/28/15 23
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Information ‘ /

 Information: ;
* =» Reduction in uncertainty (amount of surprise in the outcome

p(x)

If the probability of this event happening is small and it happens,
the information is large. ~ )

> Observing the outcome of a coin flip —— [ =-log,1/2=1
is head

» Observe the outcome of adiceis 6 ——  J— —log,1/6=2.58

10/28/15 iii iii
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Entropy

‘ . The expected amount of information when observing the \

output of a random variable X

HOO) = EQO0) = 3 pe)1(6) O ple) oz, p(3)

If the X can have 8 outcomes and all are equally likely

H(X)z—21/810g21/8:3

10/28/15 25
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Entropy

* |If there are k possible
outcomes

H(X)<log, k
B(y\/\yﬂ

* Equality holds when all
outcomes are equally likely 1

the 02 B
.
0 ¥
0 02 04 06 08 1
p1

e.g. for arandom

10/28/15 binary variable




Entropy Lower = better purity

‘ * Entropy measures the purity

10/28/15
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=

The distribution is less uniform
Entropy is lower
The nodeis

27

‘ o IG(X,Y)=H(Y)-H(Y|X)

Reduction in uncertainty of Y by knowing a feature

variable X

Information gain:
= (information before split) — (information after split)

= entropy(parent) — [average entropy(children)]

O

10/28/15

Fixed

the lower, the
better (children
nodes are purer)

Information gain

Dr. Yanjun Qi / UVA CS 6316 / f15

=

For IG, the
higher, the
better

28
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Conditional entropy

@—Epm)logz () N

H(Y | X=x)==2 p(y|x)log, p(y,|x)

Zp(x,.)H<Y|X=xj>

==Y p(x) X, p(y, |x))log, (3, x,)

10/28/15 29
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Example

tes Labels
Which one do we choose \

) \5 XLorxa? L/ (\) ~Z?@ﬂ2§({?)

: 1 {’F(q;ﬂzsﬁv T &
IG(X1,Y) = H(Y) - H(Y[X1) P(¥=~)=Sfto \— B

@ =-(5/10) log(5/10) -5/10log(5/10) =1

H(Y|X1)= P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)
= 4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)

S T I I
s
.++)
NN

N,

=0.39 é
Information gain (X1,Y)=1-0.39=0.61 A'-T &

NG
10/28/15 _ O 30
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Which one do we choose?

—T

2 T T + 2 One branch
T F + 2 i> T F + 2
Fo(TD |- 5 F T - 5
The other branch
F F + 1 F F + 1

Information gain (X1,Y)=0.61 = H(‘() -H (‘(l)(,\ = SM‘UW ,’PWQ[

Information gain (X2,Y)=0.12 <~ H (‘() -H ( X1

U 16wy

Rethr G4

Pick the variable which provides
the most information gain about Y :> Pick X1

10/28/15

=>» Then recursively choose next Xi on branches

31
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rainy false true

overcast

yes

yes yes
yes yes
yes yes
yes no
yes no
no no
no

10/28/15
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Decision Trees

‘ * Caveats: The number of possible values influences the \

information gain.

* The more possible values, the higher the gain (the more likely it is to
form small, but pure partitions)

* Other Purity (diversity) measures
— Information Gain

— Gini (population diversity) Zle Pk (1 — Pmk)
* where p,, is proportion of class k at node m

— Chi-square Test

10/28/15 33
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Overfitting

‘ * You can perfectly fit DT to any training data T

* Instability of Trees H'ﬁl'\ Ve &

o High variance (small changes in training set will
result in changes of tree model)

o Hierarchical structure =» Error in top split
propagates down

« Two approaches: — eMy 5+6P

— 1. Stop growing the tree when further splitting the data does not

yield an improvement
— 2. Grow a full tree, then e tree, by eliminating nqdes.
__,> W

10/28/15 34




X2

From ESL book Ch9 :

Classification and \

Regression Trees (CART) \

Xy

e Partition feature

space into set of

rectangles X1 <t

T
e Fit simple modelin )
. Xo < ta X1 < t3]
each partition
X2 < tg
Ry Ro Ra ’/_‘

Ry Rs

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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Summary: Decision trees

* Non-linear classifier
* Easy to use
* Easy to interpret

Susceptible to overfitting but can be avoided.

10/28/15 36
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Decision Tree /| Random Forest

...............................................

Classification
Task
v Partition 1;eature s?ace
i i into set of rectangles,
Representation i local smoothness
v ;
Score Function i Greedy to find partitions
v _; !
Search/Optimization | Split Purity measure / e.g.
i 1G / cross-entropy / Gini/ !
v : —
pmg%e;tsérs i Tree Model (s), i.e.
: space partition
10/28/15 37
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Today

|7 » Decision Tree (DT): T

» Tree representation
» Brief information theory
» Learning decision trees
» Bagging
» Random forests: Ensemble of DT
» More about ensemble

10/28/15 38
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[
Bagging

‘ * Bagging or bootstrap aggregation T

* atechnique for reducing the variance of an
estimated prediction function.

* Forinstance, for classification, a committee
of trees

* Each tree casts a vote for the predicted class.

10/28/15 39
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Bootstrap

‘ The basic idea: \

randomly draw datasets with replacement (i.e. allows duplicates)

from the training data, each sample the same size as the original
training set

U g _ cgaby _
R “ Var[S(Z) “ B (S(Z*") = 5%)
‘ ‘ Bootstrap
- samples
\\
_ D Trainjng
Z = (21,22,..., 2N) ~;1mpfw

10/28/15 40
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With vs Without Replacement

e Bootstrap with replacement can keep the
sampling size the same as the original size for
every repeated sampling. The sampled data
groups are independent on each other.

* Bootstrap without replacement cannot keep the
sampling size the same as the original size for
every repeated sampling. The sampled data
groups are dependent on each other.

10/28/15 41
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Bagging

Create bootstrap samples
‘ from the training data \
| -

M features >

N examples

10/28/15 42
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Bagging of DT Classifiers

)

BT (ineroar)
M features S
(merct) (i) (Notiseract) (fseac) (Hotinieac)

Take the
majority
vote

N examples

i Refit the model tg
each bootstrap

en
the behavior
over the B
replications.

10/28/15 43
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Bagging for Classification with 0,1 Loss

| B

* C(Classification with 0, 1 loss
— Bagging a good classifier can make it better.
— Bagging a bad classifier can make it worse.

— Can understand the bagging effect in terms of a consensus of
independent weak leaners and wisdom of crowds

10/28/15 44
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Peculiarities

‘ * Model Instability is good when bagging T

— The more variable (unstable) the basic model is, the more
improvement can potentially be obtained

Low-Variability methods (e.g. LDA) improve less than@h-
ariability methods)(e.g. decision trees)

* Load of'Redundancy

— Most predictors do roughly “the same thing”

10/28/15 45

Bagging : an\simulated example

N = 30 graining samples,
two classes and p =5 features,
Each feature N(O, 1) distribution and pairwise correlation .95
Response Y generated according to:
Pr(Y =1]z; <0.5) = 0.2 Pr(Y =1z, >0.5) =038
Test sample size of 2000
Fit classification trees to training set and bootstrap samples

B =200

ESL book / Example 8.7.1




Original Tree b=1 b=2
x.1<0.395 x1<0555 x2<0205

Five features
highly correlated

oM e ’—i_l ! with each other
10 . 0o 1

=>» No clear
difference with
picking up which
feature to split

Notice the
bootstrap reoss ra<ses

trees are Jj [
different than °
the original

1
tree I ! 0 ) 0 > 9 Sma” )
changes in
bt - bes the training
x1<0.395 x1<0.395 x3<0.985 Set W|“ result
Hj in different
' tree
1 1 0
0 1 0 0
e o o o =>» But these
trees are
b=9 b=10 b=11 .
x1<03s8 x1<0888 c1<0sss actually quite

' ' similar for
! classification
ESL book / Example 8.7.1 ‘[_F-\ !

o
ey

0.50
1

Consensus
0 Probabili
0 Original Tree i =>» For B>30, more trees
STt do not improve the
Q| bagging results
° Bagged Trees

=>» Since the trees
correlate highly to
each other and give
similar classifications

Test Error
0.35
1

0.30
1

0.25
1

0.20
I

Bdyes
T T T T T
0 50 100 150 200

Number of Bootstrap Samples

Consensus: Majority vote

Probability: Average distribution at terminal nodes

ESL book / Example 8.7.1




Bagging

 Slightly increases model space

— Cannot help where greater enlargement of
space is needed

* Bagged trees are correlated

— Use random forest to reducé correlation
between trees

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

|7 » Decision Tree (DT): T

» Tree representation
» Brief information theory
» Learning decision trees
» Bagging
» Random forests: special ensemble of DT
» More about ensemble

10/28/15 50
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Random forest classifier

‘ * Random forest classifier, _‘

— an extension to bagging
— which uses de-correlated trees.

10/28/15 51
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Random Forest Classifier

Create bootstrap samples
‘ from the training data \
_L-

M features

1]
1

10/28/15 52

N examples
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Random Forest CIaSS|ﬁer

-

M features

N examples

10/28/15 53
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Random Forest Classifier

Create decision tree

from each bootstrap sample
o IR

—_— N
P

— N

() () () ()

M features

N examples

10/28/15 54
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Random Forest Classifier

N .
M features —-— - \-xﬂ’\ T

Take he
majority
vote

N examples

10/28/15 55

Random Forests

For each of our B bootstrap samples

Form a tree in the following manner
Given p dimensions, pick m of them
Split only according to these m dimensions
(we will NOT consider the other p-m dimensions)

Repeat the above steps i & ii for each split

Note: we pick a different set of m dimensions for each split
on a single tree
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3 aga
88;:1?! :
et 7 ol
g 4 :
£y M’Y"*Il-:.!w
°T:-. :;é;zs*%’
g'-:.:Lvaﬁ
3 ™ T
o ?Iég
==
~ 8
o | ==
b= -
B I —L

T 1 1 1 1T 1.1 T 1 1 17 T 1T 11
147 13 19 25 3 37 43 49

Number of Randomly Selected Splitting Variables m

FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x.

Page 598-599 In ESL book

10/28/15 57

Random Forests

Random forest can be viewed as a refinement of bagging with a
tweak of decorrelating the trees:

At each tree split, a random subset of m features out of all p
features is drawn to be considered for splitting

Some guidelines provided by Breiman, but be careful to choose
m based on specific problem:

m =p amounts to bagging
m = p/3 or log2(p) for regression
m = sqrt(p) for classification




Why correlated trees are not ideal ?

Random Forests try to reduce correlation
between the trees.

Why?

Why correlated trees are not ideal ?

Assuming each tree has variance o?

If trees are independently identically
distributed, then average variance is 6%/B




Why correlated trees are not ideal ?

Assuming each tree has variance o?

If simply identically distributed, then average
variance is

=l

As B - oo, second term - 0
Thus, the pairwise correlation always affects the variance

Why correlated trees are not ideal ?

How to deal?

If we reduce m (the number of dimensions we

actually consider),
then we reduce the pairwise|tree correlation

Thus, variance will be reduced.
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Today

|7 » Decision Tree (DT): T

» Tree representation
» Brief information theory
» Learning decision trees -
» Bagging —_ Di
» Random forests: Ensemble of DT — ()T

>I\/Iore@_nsemble)

10/28/15 63

e.g. Ensembles in practice

Each rating/sample:
+ <user, movie, date of grade, grade>
= 0~ Training set (100,480,507 ratings)
: :ﬂi'j’or.” ) ) /42 Qualifying set (2,817,131 ratings)=» winner
~ 1d() L

A )
V-L' e

Oct 2006 - 2009

— Training data is a set of users and ratings (1,2,3,4,5 stars) those users
have given to movies.

— Predict what rating a user would give to any movie

* $1 million prize for a 10% improvement over Netflix” s
current method (MSE =0.9514)




Team “Bellkor's Pragmatic

Chaos” defeated the team
Ensemble in practice ‘cnsembie*bysibmitting

just 20 minutes earlier! =
1 million dollar !

Rank Team Name Best Test Score % Improvement Best Submit Time
1 BellKor's Pragmatic Chaos @ 10.06 . 28
2 The Ensemble 10.08 2009072783622 )
3 Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31
5 Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
6 PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
7 BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
8 Dace_ 0.8612 9.59 2009-07-24 17:18:43
9 Feeds2 0.8622 9.48 2009-07-12 13:11:51
10 BigChaos 0.8623 947 2009-04-07 12:33:59
1 Opera Solutions 0.8623 947 2009-07-24 00:34.07
12 BellKor 0.8624 9.46 2009-07-26 17:19:11

The ensemble team =>»\blenders of multiple different methods

Dr. Yanjun Qi / UVA CS 6316 / f15
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