Dr. Yanjun Qi / UVA CS 6316 / f15

UVA CS 6316 - Fall 2015 Graduate: Machine Learning

Lecture 17: Decision Tree / Random Forest / Ensemble

Dr. Yanjun Qi

University of Virginia

10/28/15

Department of Computer Science

Dr. Yanjun Qi / UVA CS 6316 / f15

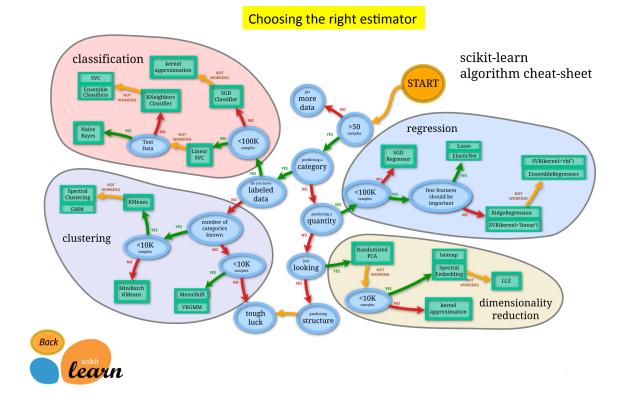
Where are we ? → Five major sections of this course

Regi	ression	(supervised)

- ☐ Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

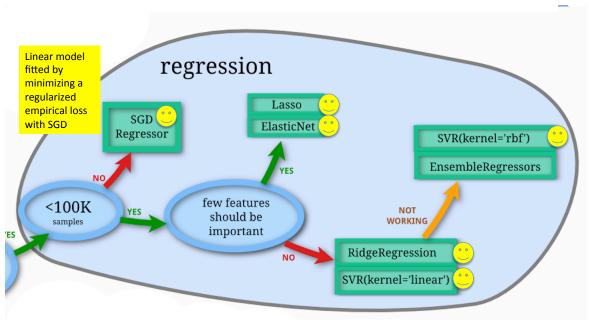
Dr. Yanjun Qi / UVA CS 6316 / f15

http://scikit-learn.org/stable/tutorial/machine_learning_map/



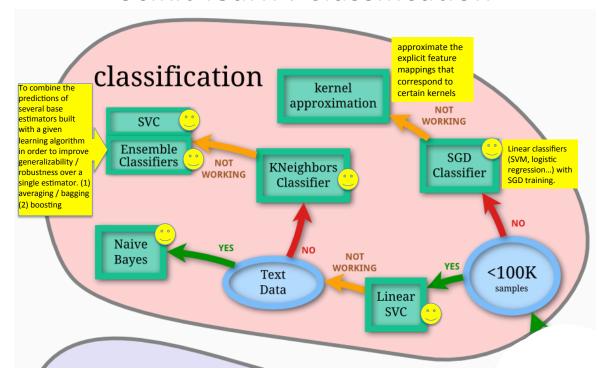
Yanjun Qi / UVA CS 4501-01-6501-07

Scikit-learn: Regression



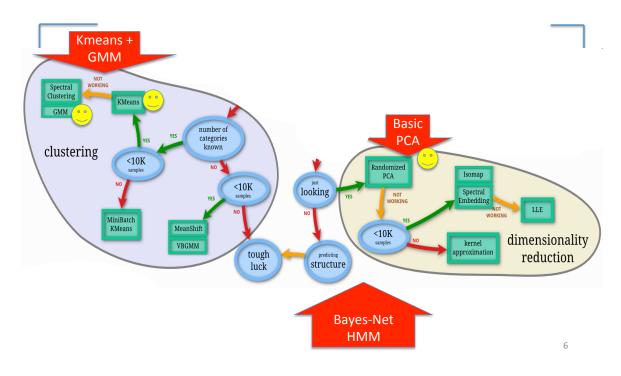
4

Scikit-learn: Classification



Dr. Yanjun Qi / UVA CS 6316 / f15

next after classification?



Today

- ➤ Decision Tree (DT):
 - >Tree representation
- ➤ Brief information theory
- > Learning decision trees
- ➤ Bagging
- > Random forests: Ensemble of DT
- ➤ More about ensemble

10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana Alexandru Niculescu-Mizil CARUANA@CS.CORNELL.EDU ALEXN@CS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods have been introduced in the last decade. Unfortunately, the last comprehensive empirical evaluation of supervised learning was the Statlog Project in the early 90's. We present a large-scale empirical comparison between ten supervised learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We also examine the effect that calibrating the models via Platt Scaling and Isotonic Regression has on their performance. An important aspect of our study is

This paper presents results of a large-scale empirical comparison of ten supervised learning algorithms using eight performance criteria. We evaluate the performance of SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps on eleven binary classification problems using a variety of performance metrics: accuracy, F-score, Lift, ROC Area, average precision, precision/recall break-even point, squared error, and cross-entropy. For each algorithm we examine common variations, and thoroughly explore the space of parameters. For example, we compare ten decision tree styles, neural nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine

Proceedings of the 23rd International Conference on Machine Learning (ICML `06).

A study comparing Classifiers

→ 11 binary classification problems / 8 metrics

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

Models												
	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL	
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917	
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898	
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899	
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*	
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890	
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895	
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895	
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894	1
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880	
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885	
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882	
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875	
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884	
BST-DT	_	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851	
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837	
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830	
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844	
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808	
SVM	_	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810	
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810	
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726	
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774	

10/28/15

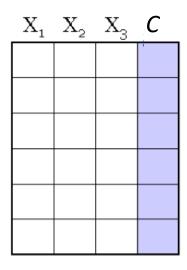
Dr. Yanjun Qi / UVA CS 6316 / f15

Where are we? \rightarrow Three major sections for classification

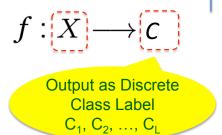
We can divide the large variety of classification approaches into roughly three major types

- Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, support vector machine, decisionTree
- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Dr. Yanjun Qi / UVA CS 6316 / f15



A Dataset for classification-



- Data/points/instances/examples/samples/records: [rows]
 Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
 Target/outcome/response/label/dependent variable: special column to be predicted [last column]

10/28/15 11

Dr. Yanjun Qi / UVA CS 6316 / f15 C

Example

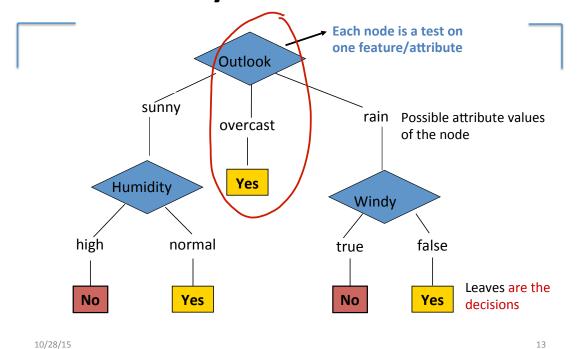
Example: Play Tennis

PlayTennis: training examples

	1	ig remme tera	minig exten	TIPICS		
Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Dr. Yanjun Qi / UVA CS 6316 / f15

Anatomy of a decision tree



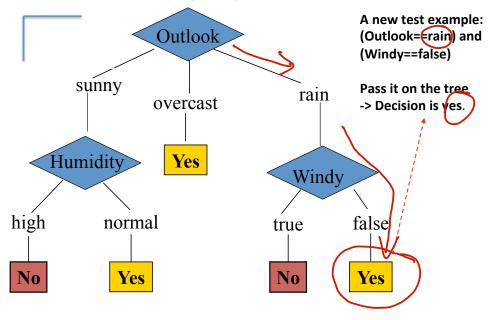
Dr. Yanjun Qi / UVA CS 6316 / f15

Anatomy of a decision tree



Apply Model to Test Data: Data:

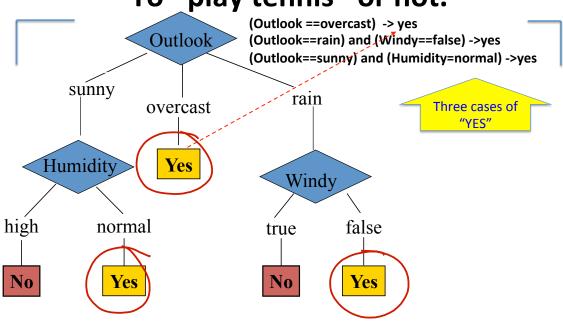
To 'play tennis' or not.



10/28/15

Apply Model to Test Data:

To 'play tennis' or not.



Decision trees

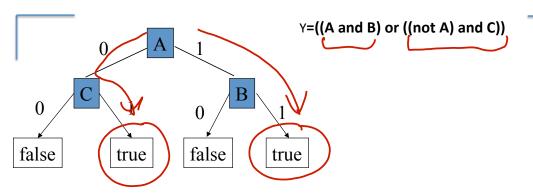
 Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.

```
    (Outlook ==overcast)
    OR
    ((Outlook==rain) and (Windy==false))
    OR
    ((Outlook==sunny) and (Humidity=normal))
    => yes play tennis
```

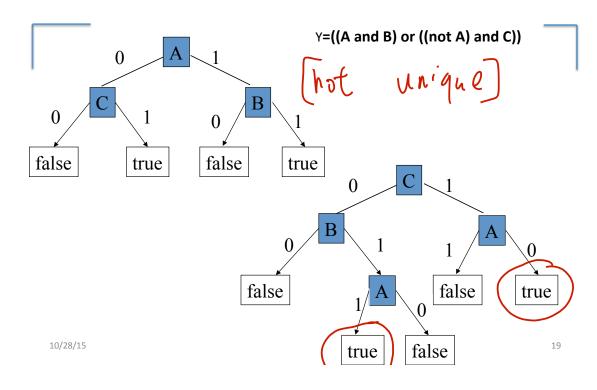
10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Representation

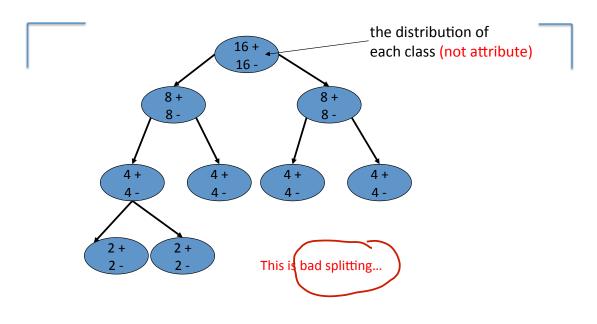


Same concept / different representation



Dr. Yanjun Qi / UVA CS 6316 / f15

Which attribute to select for splitting?

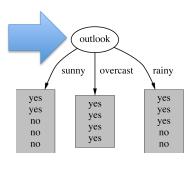


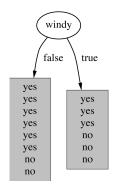
Dr. Yanjun Qi / UVA CS 6316 / f15

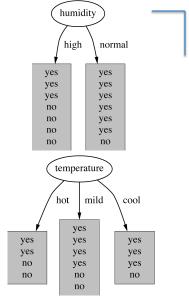
How do we choose which attribute to split?

Which attribute should be used as the test?

Intuitively, you would prefer the one that *separates* the training examples as much as possible.







10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

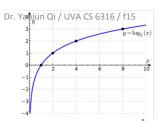
- Decision Tree (DT):
 - ➤ Tree representation
- ➤ Brief information theory
- Learning decision trees
- Bagging
- > Random forests: Ensemble of DT
- ➤ More about ensemble

Information gain is one criteria to decide on which attribute for splitting

- Imagine:
 - 1. Someone is about to tell you your own name
 - 2. You are about to observe the outcome of a dice roll
 - 2. You are about to observe the outcome of a coin flip
 - 3. You are about to observe the outcome of a biased coin flip
- Each situation have a different *amount of* uncertainty as to what outcome you will observe.

10/28/15

Information



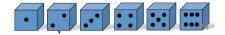
- Information:
- Reduction in uncertainty (amount of surprise in the outcome)

$$I(E) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

If the probability of this event happening is small and it happens, the information is large.

> Observing the outcome of a coin flip \longrightarrow $I = -\log_2 1/2 = 1$ is head

 \triangleright Observe the outcome of a dice is 6 \longrightarrow $I = -\log_2 1/6 = 2.58$



Entropy

• The *expected amount of information* when observing the output of a random variable X

$$H(X) = E(I(X)) = \sum_{i} p(x_i)I(x_i) = \sum_{i} p(x_i)\log_2 p(x_i)$$

If the X can have 8 outcomes and all are equally likely

$$H(X) = -\sum_{i} 1/8 \log_2 1/8 = 3$$

10/28/15

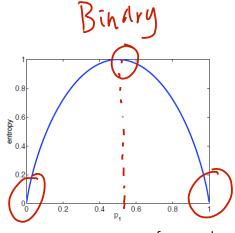
Dr. Yanjun Qi / UVA CS 6316 / f15

Entropy

If there are k possible outcomes

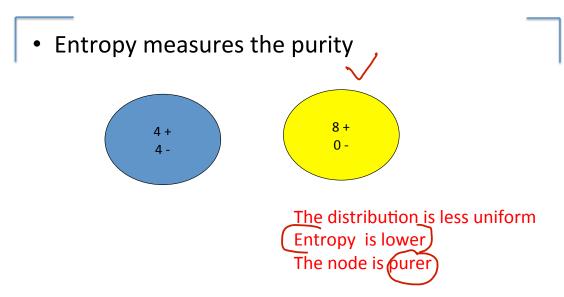
$$H(X) \le \log_2 k$$

- Equality holds when all outcomes are equally likely
- The more the probability distribution the deviates from uniformity, the lower the entropy



e.g. for a random binary variable

Entropy Lower → better purity



10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

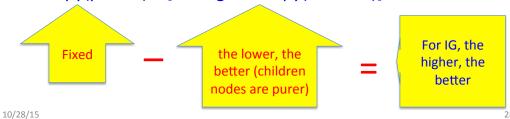
Information gain

• IG(X,Y)=H(Y)-H(Y|X)

Reduction in uncertainty of Y by knowing a feature variable X

Information gain:

- = (information before split) (information after split)
- = entropy(parent) [average entropy(children)]



Conditional entropy

$$H(Y) = -\sum_{i} p(y_i) \log_2 p(y_i)$$

$$H(Y \mid Y \mid y_i) = \sum_{i} p(y_i) \log_2 p(y_i)$$

$$H(Y | X = x_j) = -\sum_i p(y_i | x_j) \log_2 p(y_i | x_j)$$

$$H(Y|X) = \sum_{j} p(x_{j})H(Y|X = x_{j})$$

$$= -\sum_{j} p(x_{j}) \sum_{i} p(y_{i} | x_{j}) \log_{2} p(y_{i} | x_{j})$$

10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Example

	Attributes Labels								
١.	X1	X2	Υ	Count					
1	Т	Т	+	2					
	Ţ	F	\forall	2	/				
	F	Т	-	5					
	F	F	+	1					

Which one do we choose

X1 or X2?
$$H(Y) = -5p(y) ly(y)$$

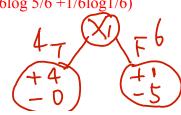
 $\int P(y=+) = 5/10 + 5$
 $P(y=-) = 5/10 - 5$

$$IG(X1,Y) = H(Y) - H(Y|X1)$$

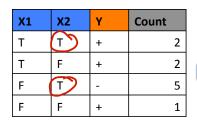
$$H(Y)$$
 = - (5/10) log(5/10) -5/10log(5/10) = 1
 $H(Y|X1)$ = $P(X1=T)H(Y|X1=T) + P(X1=F)H(Y|X1=F)$
= 4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)

= 0.39

Information gain (X1,Y)= 1-0.39=0.61



Which one do we choose?



Pick X1

One branch

The other branch

Information gain
$$(X1,Y)=0.61 = H(Y) - H(Y|X_1) \Rightarrow Smaller, purer$$

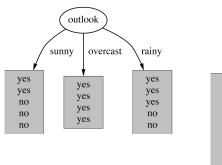
Information gain $(X2,Y)=0.12 = H(Y) - H(Y|X_2)$
Retter \$68

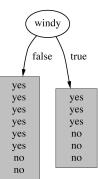
Pick the variable which provides the most information gain about Y

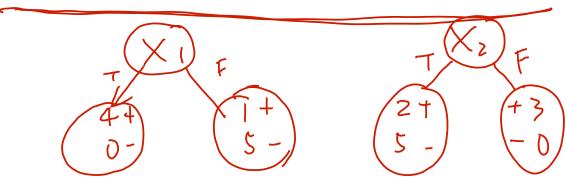
→ Then recursively choose next Xi on branches

10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15







Decision Trees

- **Caveats:** The number of possible values influences the information gain.
 - The more possible values, the higher the gain (the more likely it is to form small, but pure partitions)
- Other Purity (diversity) measures
 - Information Gain
 - Gini (population diversity) $\sum_{k=1}^K \hat{p}_{mk} (1-\hat{p}_{mk})$
 - where p_{mk} is proportion of class k at node m
 - Chi-square Test

10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Overfitting

- You can perfectly fit DT to any training data
- Instability of Trees

High Variance and training set will

- High variance (small changes in training set will result in changes of tree model)
- Hierarchical structure Error in top split propagates down
- Two approaches:

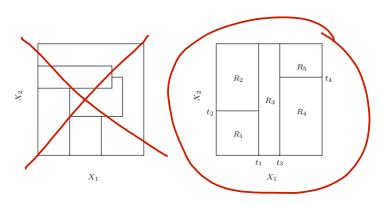
-> early stop

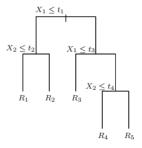
- 1. Stop growing the tree when further splitting the data does not yield an improvement
- 2. Grow a full tree, then prune the tree, by eliminating nodes.

From ESL book Ch9:

<u>Classification and</u> <u>Regression Trees (CART)</u>

- Partition feature space into set of rectangles
- Fit simple model in each partition





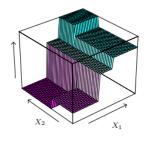


FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data. Top left panel shows a general partition that cannot be obtained from recursive binary splitting. Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective plot of the prediction surface appears in the bottom right panel.

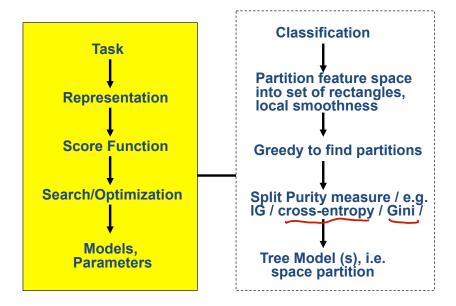
Dr. Yanjun Qi / UVA CS 6316 / f15

Summary: Decision trees

- Non-linear classifier
- Easy to use
- Easy to interpret
- Susceptible to overfitting but can be avoided.

Yanjun Qi / UVA CS 4501-01-6501-07

Decision Tree / Random Forest



10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

- ➤ Decision Tree (DT):
 - ➤ Tree representation
- ➤ Brief information theory
- ➤ Learning decision trees
- ➤ Bagging
- > Random forests: Ensemble of DT
- ➤ More about ensemble

Bagging

- Bagging or bootstrap aggregation
 - a technique for reducing the variance of an estimated prediction function.
- For instance, for classification, a committee of trees
 - Each tree casts a vote for the predicted class.

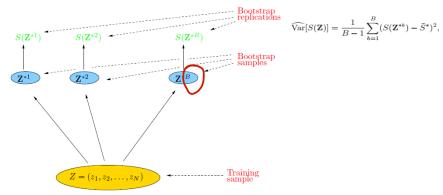
10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Bootstrap

The basic idea:

randomly draw datasets with replacement (i.e. allows duplicates) from the training data, each sample the same size as the original training set



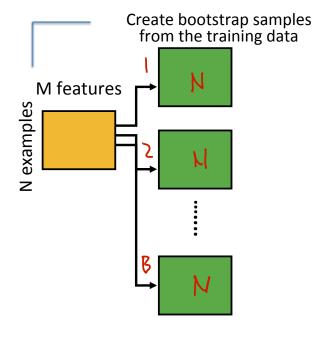
With vs Without Replacement

- Bootstrap with replacement can keep the sampling size the same as the original size for every repeated sampling. The sampled data groups are independent on each other.
- Bootstrap without replacement cannot keep the sampling size the same as the original size for every repeated sampling. The sampled data groups are dependent on each other.

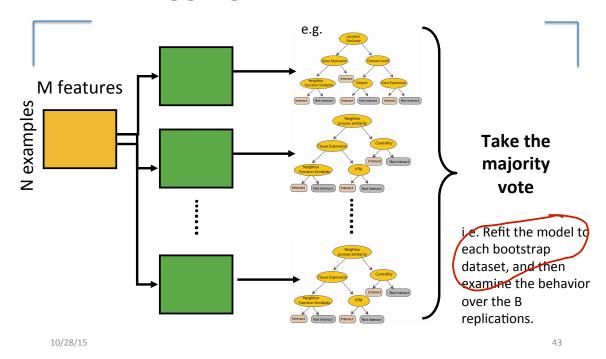
10/28/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Bagging



Bagging of DT Classifiers



Dr. Yanjun Qi / UVA CS 6316 / f15

Bagging for Classification with 0,1 Loss

- Classification with 0, 1 loss
 - Bagging a good classifier can make it better.
 - Bagging a bad classifier can make it worse.
 - Can understand the bagging effect in terms of a consensus of independent weak leaners and wisdom of crowds

Peculiarities

- Model Instability is good when bagging
 - The more variable (unstable) the basic model is, the more improvement can potentially be obtained

Low-Variability methods (e.g. LDA) improve less than High-Variability methods (e.g. decision trees)

- Load of Redundancy
 - Most predictors do roughly "the same thing"

10/28/15 45

Bagging: an simulated example

N = 30 training samples,

two classes and p = 5 features,

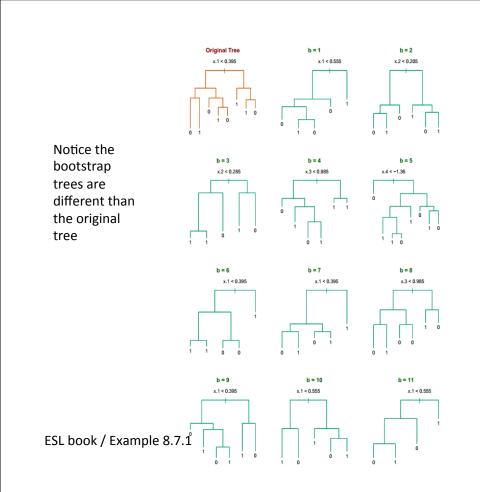
Each feature N(0, 1) distribution and pairwise correlation .95

Response Y generated according to:

$$Pr(Y = 1|x_1 \le 0.5) = 0.2$$
 $Pr(Y = 1|x_1 > 0.5) = 0.8$

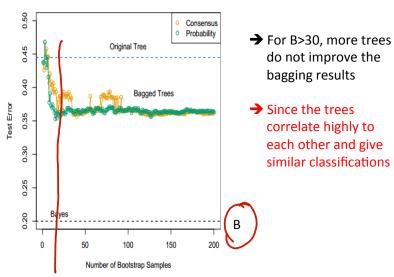
Test sample size of 2000

Fit classification trees to training set and bootstrap samples



Five features highly correlated with each other

- → No clear difference with picking up which feature to split
- → Small changes in the training set will result in different tree
- → But these trees are actually quite similar for classification



Consensus: Majority vote

Probability: Average distribution at terminal nodes

ESL book / Example 8.7.1

Bagging

- Slightly increases model space
 - Cannot help where greater enlargement of space is needed
- Bagged trees are correlated
 - Use random forest to reduce correlation between trees

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

- ➤ Decision Tree (DT):
 - ➤ Tree representation
- ➤ Brief information theory
- > Learning decision trees
- ➤ Bagging
- > Random forests: special ensemble of DT
- ➤ More about ensemble

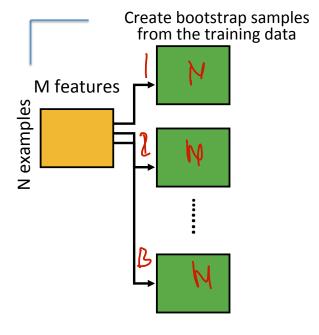
Random forest classifier

- Random forest classifier,
 - an extension to bagging
 - which uses de-correlated trees.

10/28/15

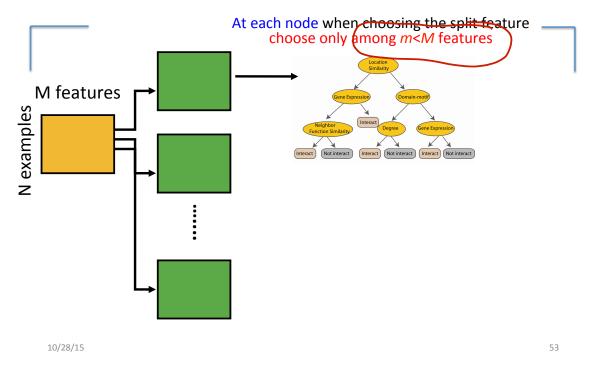
Dr. Yanjun Qi / UVA CS 6316 / f15

Random Forest Classifier



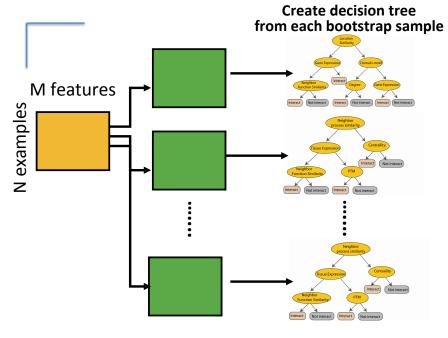
Dr. Yanjun Qi / UVA CS 6316 / f15

Random Forest Classifier

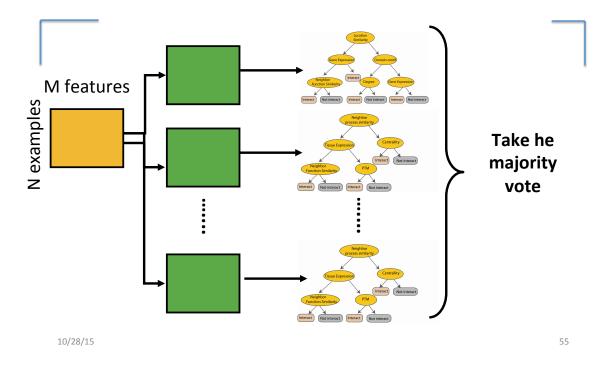


Dr. Yanjun Qi / UVA CS 6316 / f15

Random Forest Classifier



Random Forest Classifier



Random Forests

For each of our B bootstrap samples

Form a tree in the following manner

Given *p* dimensions, pick *m* of them

Split only according to these *m* dimensions

(we will NOT consider the other *p-m* dimensions)

Repeat the above steps i & ii for each split

Note: we pick a different set of *m* dimensions for each split on a single tree

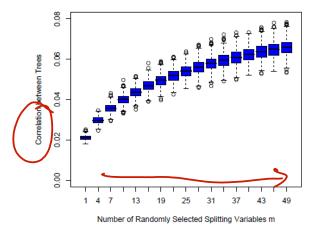


FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest regression algorithm, as a function of m. The boxplots represent the correlations at 600 randomly chosen prediction points x.

Page 598-599 In ESL book

10/28/15

57

Random Forests

Random forest can be viewed as a refinement of bagging with a tweak of **decorrelating** the trees:

At each tree split, a random subset of **m** features out of all **p** features is drawn to be considered for splitting

Some guidelines provided by Breiman, but be careful to choose m based on specific problem:

m = p amounts to bagging m = p/3 or log2(p) for regression m = sqrt(p) for classification

Why correlated trees are not ideal?

Random Forests try to reduce correlation between the trees.

Why?

Why correlated trees are not ideal?

Assuming each tree has variance σ^2

If trees are independently identically distributed, then average variance is σ^2/B

Why correlated trees are not ideal?

Assuming each tree has variance σ^2

If simply identically distributed, then average variance is

As B $\rightarrow \infty$, second term $\rightarrow 0$

Thus, the pairwise correlation always affects the variance

Why correlated trees are not ideal?

How to deal?

If we reduce *m* (the number of dimensions we actually consider),

then we reduce the pairwise tree correlation

Thus, variance will be reduced.

Today

- Decision Tree (DT):
 - ➤ Tree representation
- ➤ Brief information theory
- ➤ Learning decision trees
- **>** Bagging
- ➤ Random forests: Ensemble of DT → DT
- > More ensemble

10/28/15

e.g. Ensembles in practice

Netflix Prize Oct

Each rating/sample:

+ <user, movie, date of grade, grade>
Training set (100,480,507 ratings)
Qualifying set (2,817,131 ratings)→ winner

Oct 2006 - 2009

- Training data is a set of users and ratings (1,2,3,4,5 stars) those users have given to movies.
- Predict what rating a user would give to any movie
- \$1 million prize for a 10% improvement over Netflix's current method (MSE = 0.9514)

Ensemble in practice

Team "Bellkor's Pragmatic Chaos" defeated the team "ensemble" by submitting just 20 minutes earlier!

Rank	Team Name	Team Name Best Test Score % Imp		Best Submit Time				
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos								
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28				
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22				
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40				
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31				
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20				
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56				
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09				
8	Dace	0.8612	9.59	2009-07-24 17:18:43				
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51				
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59				
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07				
12	BellKor	0.8624	9.46	2009-07-26 17:19:11				

The ensemble team → blenders of multiple different methods

Dr. Yanjun Qi / UVA CS 6316 / f15

References

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
 - ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.
 - ☐ Dr. Oznur Tastan's slides about RF and DT