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Announcements: Schedule

— Midterm — Nov. 26 Wed / 3:30pm — 4:45pm /
open notes

— HW4 includes sample midterm questions

— Grading of HW1 is available on Collab
— Solution of HW1 is available on Collab
— Grading of HW2 will be available next week
— Solution of HW2 will be available next week



Dr. Yanjun Qi / UVA CS 6316 / f16

Where are we ? =
Five major sections of this course

| [ Regression (supervised) _‘
E>EI Classification (supervised)
J Unsupervised models

 Learning theory
1 Graphical models
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Where are we ? =»

Three major sections for classification

 We can divide the Iar%e variety of classification _‘
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

E> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

10/17/16 4



Today : Probability Review

» e The big picture

* Events and Event spaces
 Random variables
* Joint probability, Marginalization,

conditioning, chain rule, Bayes Rule,
law of total probability, etc.

 Structural properties

* Independence, conditional
independence
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The Big Picture

robability

ie. Datl\:mej(remleratm Observed
3 ; Data
process

Y

Estimation / learning / Inference / Data mining

But how to specify a model?

10/17/16 6
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Probability as frequency

* Consider the following questions:
— 1. What is the probability that whentfli

|
-

itis “heads™?  \ve cancount = ~1/2
— 2. why?

a coin

— 3. What is the probability of Blue Ridge
Mountains to have an erupting volcano in the

near future ? =» could not count

Message: The frequentist view is very useful, but it seems that we
also use domain knowledge to come up with probabilities.

10/17/16 7
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Probability as a measure of
uncertainty

*/ Imagine we are throwing o\ )
darts at a wall of size 1x1 ’/
and that all darts are
guaranteed to fall within
this 1x1 wall.

 What is the probability
that a dart will hit the |
shaded area? 90 by I

10/17/16 8
Adapt from Prof. Nando de Freitas’s review slides
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Probability as a measure of
uncertainty

* Probability is a _‘
measure of certainty of EEaae
an(Event taking place. i fecatn

2t / b4

* j.e. in the example, we s -
were measuring the faSiestecenues
chances of hitting the Its area is 1~
shaded area. prob = 1 RedBoxes

# Boxes

10/17/16 . . 9
i Adapt from Prof. Nando de Freitas’s review slides



Today : Probability Review

* The big picture
»  Sample space, Event and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.

e Structural properties

* Independence, conditional
independence
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Probability

Probability is the formal study of the laws of chance. Probability
allows us to manage uncertainty.

The éample seacéis the set of all outcomes. For example, for a die we
have 6 outcomes: |
@die = {1) 21314151 6}

o HEOHDE

“ o The elements of W are called
Elementary Event "Throw a 2
elementary events.

11
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Probability

* Probability allows us to measure many events.
* The @ re subsets of the 0.
For example, for a die we may consider the

following events: e.q.,
GREATER = {5, 6}

EVEN = {2, 4, 6}
/
°@probabilities to these events: e.g.,
P(EVEN) =

Adapt from Prof. Nando de Freitas’s review slides
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Sample space and Events

* O:Sample Space, _‘

* result of an experiment / set of all
outcomes

* |f you toss a coin twice O=

{HHHT,THTT} ({V) (Q)=1

Qvent: a subset of O
e First toss is head = {HH,HT}
e S: evenm:s:

10/17/16
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 Contains the empty event and O
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Axioms for Probability
s/lmr(a Sfrr

ovet Sphe
e Defined over (O, F ( _‘

* 1>=P(a)>=0forallajns |
e P(O) =

e |f A,B are hen

* P(AUB) =p(A) + p(B)

10/17/16 14
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Axioms for Probability

-

P(0) =

10/17/16 15
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OR operation for Probability

* We can deduce other axioms from the above ones _‘
* Ex: P(A U B) for@n-disjoinDavents
P(A or B) = P(A) + P(B) - P(A and B)

P( Union of A and B)

10/17/16 16



Dr. Yanjun Qi / UVA CS 6316 / f16

Theorems from the Axioms

e 0<=P(A) <=1,

e P(AorB)=P(A) + P(B) - P(A and B)
From these we can prove.
P(nﬁt/l) = P(~A) = 1-P(A)

(,,Mlomji

10/17/16 17
Copyright © Andrew W. Moore
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Another important theorem
e 0<=PA) <=1,
e P(AorB)=P(A) + P(B) - P(A and B)

From these we can prove:

P(A) =£(A A B) + P(A " ~B)

P( Intersection of A and B)

10/17/16 18
Copyright © Andrew W. Moore
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Another important theorem
e 0<=PA) <=1,

e P(AorB)=P(A) + P(B) - P(A and B) P(A)
From these we can prove: = ‘7 A f\%
P(A) = P(A~B) +PA"~B) _ (L\(\ w
(A %)
\)\f\[\“®>
J«Q( AN

10/17/16
yright €
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Conditional
] Probability
&I%Q ° P(A given B) = P(A and B) /P(m

That is, in the frequentist interpretation, we calculate the ratio of the
number of times both A and B occurred and divide it by the number of

times B occurred. Chain il

For short we write:P(AIB) = P(AB)/P(B); o( P(AB)= P(AIB)P(B),
where P(AIB) is the conditional probability, P(AB) is  the Jomt and
P(B) is the marginal.

— C) \
If we have more events, we use th P {t}\‘)}) ( A \%azé\'é

from P;of Nando de

o Bl o P(ABC) = P(AIBC) P(BIC) P(C) =\




Conditional Probability / Chain Rule

* More ways to write out chain rule ..
- ((_ CD,«}(H(S\/\A/(

/ J o / Mh} N{

P(A,B) = p(BIA)p(A) —
P(A,B) = p(A|B)p(B)




Rule of total probability”
=> Marginalization

P(A)=
PIAAB) +
1 P(AA ~B)
V‘B\,/\M
EP AIB WHY ???

(A\ (A {\&)
P '\Y\')(/\ (\&BIU(ﬁ?- UBIQ)
2(('1\[\‘6\,\

10/17/16

6316 / f16
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Today : Probability Review

* The big picture
* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.

 Structural properties

* Independence, conditional
independence
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From Events to Random Variable

| Concise way of specifying attributes of outcomes _‘
' Modeling students (Grade and Intelligence):
 O=all possible students (sample space)
 What are events (subset of sample space)
 Grade_ A = all students with grade A
 Grade B = all students with grade B
* HardWorking _Yes = ... who works hard
 Very cumbersome

* Need “functions” that maps from Oto an attribute space T.
 P(H=YES) =P({student € O :H(student) = YES})

10/17/16 24
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Random Variables (RV)

H: hardworking

G:Grade

P(H = Yes) = P( {all students who is working hard on the course})

 “functions” that maps from Oto an attribute space T.

10/17/16 25
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Notation Digression

* P(A) is shorthand for P(A=true) _‘
* P(~A) is shorthand for P(A=false)

 Same notation applies to other binary RVs:
P(Gender=M), P(Gender=F)

* Same notation applies to multivalued RVs:
P(Major=history), P(Age=19), P(Q=c)

* Note: upper case letters/names for variables,
lower case letters/names for values

10/17/16 26



Discrete Random Variables

 Random variables (RVs) which may take on only
a countable number of distinct values

e Xis a RV with arity k if it can take on exactly one
value out of {x,, ..., x;}
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Probability of Discrete RV

* Probability mass function (pmf):(P(X =x\,-ﬂ _‘
e Easy facts about pmf -

" P(X=x,nX=Xx) =@i
" P(X=x,UX= Xj) =P(X = X,-)@P(X = Xj) if

m P(X=X1UX:X2U---UX:Xk)=@

10/17/16 28



e.g. Coin Flips
* You flip a coin

— Head with probability 0.5

* You flip 100 coins

— How many heads would you expect



e.g. Coin Flips cont.

* You flip a coin ‘t H, T}‘
— Head with probability p
— Binary random variable
— Bernoulli trial with success probability p
* You flip k coins
— How many heads would you expect
— Number of heads X: discrete random variable

— Binomial distribution with parameters k and p



Discrete Random Variables

 Random variables (RVs) which may take on
only a countable number of distinct values

— E.g. the total number of heads X you get if you flip
100 coins

e Xis a RV with arity k if it can take on exactly
one value out of {xl,...,xk}

— E.g. the possible values that X can take on are 0, 1,
2,..., 100



e.g., two Common Distributions

+ Uniform X~U|L..,N|
— X takes values 1, 2, ..., N
- P(X=i)=l/N
— E.g. picking balls of different colors from a box

e Binomial X“’Bin(kap)
— X takes values O, 1, ..., k

- P(X:i):( ; ]pi(l—p)ki

l
— E.g. coin flips k times



Today : Probability Review

* The big picture
* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.

 Structural properties

* Independence, conditional
independence




e.g., Coin Flips by Two Persons

* Your friend and you both flip coins
— Head with probability 0.5
— You flip 50 times; your friend flip 100 times
— How many heads will both of you get
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Joint Distribution

* Given two discrete RVs X and Y, their joint _‘
distribution is the distribution of X and Y

together P((X=2l7 A Mz 70 )
— E.g. P(You get 21 heads AND you friend get 70

heads)

10/17/16 35



Joint Distribution

* Given two discrete RVs X and Y, their joint
distribution is the distribution of X and Y

together P((X=2l> A Mz 70 )
— E.g. P(You get 21 heads AND you friend get 70
heads)

—Egsum Y Y P(X=xnY=y)=I

50~ 100 |
Z, Z ~ P(You get i heads AND your friend getj heads) =1
i=0 j=0
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Conditional Probability

. P(X = X‘Y = y)is the probability of X =x, given_‘
the occurrence of Y =y

— E.g. you get 0 heads, given that your friend gets 61
heads

. P(X=xNY=y)
P(Y:y)

10/17/16 37



10/17

Law of Total Probability

* Given two discrete RVs X and Y, which take

values in{xlw.,xm}and {yl""’yn}' We have
= P(Xa% n§)
P(@):ZJP(X:xi NY=y,)
= P(X=x|Y=yP(Y=)))

/16
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Marginalization | =

| B7

Marginal Probability Law of Total Probability

S 7

P(X=x)=) P(X=xNY= y])

-3 Pz

)P (Y=y,)
Conditional Probability Marginal Probability

\

10/17/16 39



Simplify Notation: ™
Conditional Probability

events
X xXNY = y[ —‘
P(X=x]Y=y)= PY=))

p(x, ) X
(o7
(y) \ [ — WY=y

P(X=x true) -> P(X=x) -> P(x) 'P( ’XB - Q( 2_3() %P(XX 1%6)
to/17/16 uplue N\ euorts
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Marginalization

|  We know p(X, Y), what is P(X=x)? _‘
 We can use the law of total probability, why?

(3t
SR )P )

e ——

At 4 Y ALY

10/17/16 41
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Marginalization Cont.

| * Another example Z%V .3\ ’_‘
plx)=2.Plx.y.z 2) ¢

—ZP(y, )P(x] y,z)

10/17/16
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Bayes Rule

* We know that P(rain) = 0.5 _‘

* |f we also know that the grass is wet, then
how this affects our belief about whether it

rains or not? 0.5 .
/-) / (M)Hﬁ/\)
, P(rain)P(wet | rain) P
P(rain |wet) =

' _P(wet) Me,mmm(m;a@
e w\\s - (bl (; o)
o gt S, P (o) P(Wet |2k ) Wit

iw}s 7\5 { (w\ e( et Suwh‘y)#
\/ 43

10/17/16
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Bayes Rule

* We know that P(rain) = 0.5 _‘

* |f we also know that the grass is wet, then
how this affects our belief about whether it
rains or not?

W= = : :
p (min |Vt/G€t) _ P(raml)D}Z(w;e)t | rain)
we

P (=5 | wek)

P(x)P(y | x) o)
P(xly)= xp(yi =~ = %

10/17/16



Bayes Rule

| e XandY are discrete RVs... _‘

X xXNY = y)
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What we just did...

P(A~B) P(A|B) P(B)
P(A) P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

!

.

S
3
”
N
8
o
[
< Al

10/17/16
Copyright © Andrew W. Moore
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More General Forms of Bayes Rule

P(B

A)P(A)

P(A|B) =

P(B| A)P(A)-

- P(B|~ A)P(~ A)

P(B|AANX)P(ANX)

P(A|BAX)=

P(A=a, |B)=

P(BAX)
P(BIA=a)P(A=a)

10/17/16

pyright © Andrew W. Moore

EP(B A=a)P(A=a)




Bayes Rule cont.

* You can condition on more variables

_P(x[2)P(y|x,2)

P ,Z )=
(ﬂﬁ—) P(y|z)
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Conditional Probability Example

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

P(B,=r,B,=r) = {(B1-1) ?ng Y’B —f>
P(B=1) > + 2 U

e

P (BF L) = 7(? 5

10/17/16 o, : . 49
Adapt from Prof. Nando de Freitas’s review slides
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Conditional Probability Example

we have the set\{r,r,r,b} \What is the probability of drawing 2 red balls
in the first 2 tries:

oty - P(8= P(33T187

_ 3 2 _ 1
T TS T2

Assume we hav@box with 3 red balls and 1 blue ball. That is,

10/17/16 o, : . 50
Adapt from Prof. Nando de Freitas’s review slides
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Conditional Probability Example

What is the probability that the 2" ball drawn from the set {r,r,r,b}
will be red?

Using marginalization, P(B, =r) = P ( @2: r , oF 1V>

+P( Bz, 8=b)

10/17/16 51



Dr. Yanjun Qi / UVA CS 6316 / f16

Conditional Probability Example

What is the probability that the 2" ball drawn from the set {r,r,r,b}
will be red?

Jolut

Using marginalization, P(B, =r) = P( bltY N\ B~ ()
LP (Bt N Bi=b)

= PlB=1)C(B-t| o)+ (Biob) P8

W\W ConditionA

10/17/16 52
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[F(cs;:y)
V’(ﬁz:l’) B

-/
—

=» Matrix Notation

Plo
X

h?{ By=t(Bi=) P~ P+ F[E2 :;« IB,,L)F(B,‘: Q?

\P(8,=185F) P(p=n) +f] p;L] Beh ?@i))
ﬁ{g) (ez>V(Bz’Y>) f(&z:}l BPD Y{BF&
i

LP PL B /}') FB}’H V}/ @(”"L)
((‘.77,\ B') ?(6\

e = G T

For short, we write this using vectors and a stochastic matrix:



Today : Probability Review

The big picture
Events and Event spaces
Random variables

Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.

Structural properties

* Independence, conditional
independence
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Independent RVs

* Intuition: X and Y are independent means that_‘

X =x neither makes it more or less probable
that Y = y

* Definition: Xand Y aredndependent iff

R(x=x)P(Y =)

10/17/16 55
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More on Independence

P(X=xY=y)=P(X=9)P(Y=))
/\>

P(X=x]Y=y)=P(X=x) P(Y=yX=x)=P(Y=y)

* E.g. no matter how many heads you get, your
friend will not be affected, and vice versa

10/17/16 56
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More on Independence

* Xisindependent of Y means that knowing Y
does not change our belief about X.

* P(X]Y=y) = P(X)
e P(X=x, Y=y) = P(X=x) P(Y=y)

* The above should\hold for all x;, y.

* |tis symmetric and written as

10/17/16 57
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Conditionally Independent RVs

* Intuition: X and Y are conditionally _‘
independent given Z means that once Z is
known, the value of X does not add any

additional information about Y rX - sale
. a-C
* Definition: X and Y are conditionally 4 \1/; ,ri;cé 4@0,‘:
independent given Z iff L Z Waibrey

e e
(P(szmYzy\zzz) P(X=x|Z=z)P(Y = y\z—)

If holding forall x,y, z, (X LY|Z

10/17/16
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Conditionally Independent RVs

>< 54(Q ( High vs [;‘
1¢e-CFam ‘
\}/; (6 ﬁ Dwiuning (H«g‘\ %3 Lou/)

L2 waatrey s bt G nt)

XL1Y|Z M
XLy

10/17/16 59
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More on Conditional Independence

| 7

P(X=xNY=y|Z=z)%P(X=x

P(><~°< W(? %
=Y(322)
P(Xciﬁsy,zzz)zg(xzxzzz)ff/

\

P(Y=y[X=x,2=2)=P(Y=y|Z=2)

10/17/16



Today Recap : Probability Review

* The big picture : data <-> probabilistic model
* Sample space, Events and Event spaces
 Random variables

* Joint probability, Marginal probability,
conditional probability,

* Chain rule, Bayes Rule, Law of total
probability, etc.

* Independence, conditional independence
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