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Where are we ? =
Five major sections of this course

| . Regression (supervised) —‘
 Classification (supervised)

] Feature selection

J Unsupervised models
- 1 Dimension Reduction (PCA)
d Clustering (K-means, GMM/EM, Hierarchical )

[ Learning theory

J Graphical models

11/22/16 3
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S6

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a classification/regression label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]

11/22/16
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Today

s Dimensionality Reduction (unsupervised) with —‘
Principal Components Analysis (PCA)

=) 0 Review of eigenvalue, eigenvector

o How to project samples into a line capturing
the variation of the whole dataset =»
Eigenvector / Eigenvalue of covariance matrix

o PCA for dimension reduction
a Eigenface =» PCA for face recognition

11/22/16 5



Dr. Yanjun Qi / UVA CS 6316 / f15

Review: Mean and Variance

* Variance: Var(X) :L}:D)((X_“)Z) _‘

— Discrete RVs:

V(X)=3, (n-u) P(X=v,
— Continuous RVs: " XLZ‘;LLW L2 J
( )—Li()x—u) /()

* Covariance:
Cov(X,Y)=E((X-p )Y —p ))=EXY)-p

11/22/16 6
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Review: Covariance matrix

11/22/16

’k-&"n \Bnd o, Vectoy (x{7>(2)”;1ﬁ>
,Xp]\

(V(xl)c(xl,xzj ........ c(x,
c(x,,x, ) v(x,)wC(X,,X ) (XX
Kc(xl,xp]C[xz,xp) .......... v(xp)) Sr){L X, \X&
If data is centered, T f’ X
sample covariance 1, ' NP
matrix is obtained as : C:E&,{ ’ Sv\\v\,-
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Review: Eigenvector / Eigenvalue

o The eigenvalues A; are found by
solving the equation j Cu=\u
d@t(C-?LI)=O uz0

» Eigenvectors are columns of the
matrix J such that

C=UDU'

e Where D= |y

11/22/16 .8
From Dr. S. Narasimhan



Review: Eigenvalue, e.g.

Let us take two variables with covariance ¢>0

¢y coar= (1-A c
c 1 c 1-A

det(C-AD=(1-3)%c? <

Solving this we find A; =1+c

A, =1-Cc < A

From Dr. S. Narasimhan



Review: Eigenvector, e.g.

* Any eigenvector U satisfies the condition
Cu=Au

In practice, much more advance methods, e.g. power method From Dr. S. Narasimhan
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Today

s Dimensionality Reduction (unsupervised) with —‘
Principal Components Analysis (PCA)

o Review of eigenvalue, eigenvector

_—) C How to project samples into a line capturing
the variation of the whole dataset =»
Eigenvector / Eigenvalue of covariance matrix

o PCA for dimension reduction
a Eigenface =» PCA for face recognition

11/22/16 11
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X, X, X,
s, An unlabeled
S Dataset X —‘
S3
Sq a data matrix of n observations on

p variables X 15X+ X,

Sg
S

« Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/
covariates/predictors/regressors: [ columns]

11/22/16 12
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The Goal

We wish to explain/summarize the _‘
underlying variance-covariance structure

of a large set of variables through a few
linear combinations of these variables.

PCA 1is introduced by
Pearson (1901) and
Hotelling (1933)

11/22/16 13
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Trick: Rotate Coordinate Axes

Suppose we have a sample population measured on p random
variables Xppeer Xy

Our goal is to develop a new set of K (K<p) axes (linear
combinations of the original p axes) in the directions of greatest

variability:

This€ould be accomplished by rotating the axes (if data is centeré&d).



Algebraic Interpretation

* Given n pointsin a p dimensional space,

e forlarge p, how to project on to a lower-dimensional
(K<p) space while preserving broad trends in the data and
allowing it to be visualized?

FROM NOW we assume Data matrix is centered: = (we subtract the mean
along each dimension, and center the original axis system at the centroid of
all data points, for simplicity)
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Algebraic Interpretation — 1D

* Given n pointsin a p dimensional space, for large p, how to \
project on to a 1 dimensional space?

(o)

=

* Choose a line that fits the data so the points are spread out
well along the line

11/22/16 16
From Dr. S. Narasimhan



Dr. Yanjun Qi / UVA CS 6316 / f15

Let us see it on a figure
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Algebraic Interpretation — 1D

* Formally, to find a line that =» Maximizing the sum of \
squares of data samples’ projections on that line

11/22/16 18
From Dr. S. Narasimhan
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Figure 1: The dot product is fundamentally a projection.
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Algebraic Interpretation — 1D

* Formally, to find a line (direction) that = Maximizing the sum \
of squares of data samples’ projections on that line

size of xs projection on

>
vector v = u=xlv = vix \

subject to VTV = 1

X: p*1 vector
v: p*1 vector
11/22/16 &‘L‘\é‘\ u: 1*1 scalar 20
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Algebraic Interpretation — 1D

* Formally, to find a line (direction) that = Maximizing the sum \
of squares of data samples’ projections on that line

Center X, «, Vs.

subject to VTV = 1

X: p*1 vector
v: p*1 vector

11/22/16 (r&‘\*(r\m u. 1*1 Scalar 21
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Algebraic Interpretation B
- 1D

arg max Zui(“i)z \I'\"X 2 /M'\,\:

v
U _ u -
uz Al — N I
= [\’W,'\h,'“’;, - IM(\‘S : = u ]A Uz
\ | = ,
n=1 -
\ Un  Up
“-
- ~(Al ry‘{v r.-’\Zrl
W U | W\ | T2V 2 \v - V
U A T R S e 4%l
11/22/16 \, Wn \ax-l‘\\’ - X;
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Algebraic Interpretation — 1D

* How is the sum of squares of projection Iengths _‘

expressed in algebraic terms?

~T
W\

M

-\/\

n*p p*1

11/22/16 23
From Dr. S. Narasimhan
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Algebraic Interpretation — 1D

* How is the sum of squares of projection lengths _‘
expressed in algebraic terms?

max( VX" Xv), sujectto VIV =1
C 5

11/22/16 24
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Algebraic Interpretation — 1D

o . . TXTX , Subject to U =1
e Rewriting this: ~ MaX(VX XVl s Vv \

/J(XTXV A=Av'v /%()\v)

<=> VI (X"™Xv—=Av) =

* Show that the maximum value of VTXTX¥ is obtained
for those vectors / dwec@ns&at&fymg X'Xv = Av

e So, find the largest A and associated u such that the

matrix X' X when applied to u, yields a new vector

which is in the same direction as u, only scaled by a
factor A.

11/22/16 25
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Algebraic Interpretation — 1D

* (X"™X)v points in some other direction (different fromT)‘
in general
XTX)v

V

=» If u is an eigenvector and A is corresponding

eigenvalue

X'Xu=Au
*u

So, find the largest A and associated u such that the matrix XTX when applied to u,

yields a new vector which is in the same direction as u, only scaled by a factor A.
11/22/16 26
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Algebraic Interpretation — beyond 1D

* How many eigenvectors are there? \

* For Real Symmetric Matrices

— except in degenerate cases when eigenvalues repeat, there are p
eigenvectors

u,...,u, are the eigenvectors
A;...A, are the eigenvalues, large to small, ordered by its value

— all eigenvectors are mutually orthogonal and therefore

form a new basis space

* Eigenvectors for distinct eigenvalues are mutually orthogonal

* Eigenvectors corresponding to the same eigenvalue have the property that any
linear combination is also an eigenvector with the same eigenvalue; one can then
find as many orthogonal eigenvectors as the number of repeats of the eigenvalue

11/22/16 27
From Dr. S. Narasimhan



Dr. Yanjun Qi / UVA CS 6316 / f15

Algebraic Interpretation — beyond 1D

* For matrices of the form (symmetric) X' X _‘

— All eigenvalues are non-negative
— See Handout-1 “linear algebra review” / Page 18,19,20

— A;...A, are the eigenvalues, ordering from large to small,
* j.e. Ordered by the PC’s importance

11/22/16 28
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PCA Eigenvectors =2 Principal Components

M7 N % >‘5> 7&

h Uy _‘

5 i | |

2nd Principal

Component, i, o Ist Principal
Al | Component, u,
3l i
2 | ' '

4.0 4.5 5.0 5.5 6.0
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PCA 1-D : How the sum of squares of
projection lengths relates to

VARIANCE ? T

* Formally, to find a line (direction) that =»
Maximizing the sum of squares of data samples’
projections on that line

size of one sample x s projection on vector v

= u=xyv = vix

* |In a new coordinate system with v as axis, u is the
position of sample x on this axis

11/22/16 30



PCA 1-D : How the sum of squares of projection™
lengths relates to VARIANCE ?

convert x_i onto V, coordina
Yo . :
t =2 u i=(x_i)TV

Consider the variation along

direction vamong all of the
/ orange points {x_1,x_2,..., X_n}:
/(‘1-"»\ Oooo =>» The variance of positions
BNy X > wu_l,u_2,..,u.n
% R

11/22/16 ® 31
From Dr. S. Narasimhan



PCA 1-D : How the sum of squares of projection™

lengths relates to VARIANCE ?
Assuming_‘

Var (1) = Z,,,(% - “)2 P(u=u,)= Zu (1 )2 contered

i ; data matrix
1- A
N( 2»\}‘-\ /\)‘\ Formally, to find a line (direction v ) that
a‘ﬁ‘z . N\U.k =>» Maximizing the sum of squares of data
o \\0~" samples’ projections on that v line
= Nﬁ \ =>» Maximizing the variance of data samples’
% projected representations on the v axis

32
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Today

s Dimensionality Reduction (unsupervised) with —‘
Principal Components Analysis (PCA)

o Review of eigenvalue, eigenvector

o How to project samples into a line capturing
the variation of the whole dataset =»
Eigenvector / Eigenvalue of covariance matrix

s 0 PCA for dimension reduction
a Eigenface =» PCA for face recognition

11/22/16 33



Applications

Uses:

— Data\Visualization

— Data Eeduction]

— Data Qassiﬁcaﬁon

— Trend Analysis
— Factor Analysis

— Noise Reduction

—

—

Examples:

How many unique “sub-sets” are in the
sample?
How are they similar / different?

What are the underlying factors that
influence the samples?

How to best present what is
“interesting”?

Which “sub-set” does this new sample
rightfully belong?

From Dr. S. Narasimhan
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Interpretation of PCA

From p original variables: X1/ X5, X! \
Produce k new variables: v ,u,,...,u,:

[ When p=2
U, =ad.X,+a,. x5, +...+0a, X -
1 11 1 12 2 1p p Largest Principal o
Component
= + + + 0
Uy =0 X T Xy * oo T Uy X,
Cv{ga:b o o / ;1 8
'R0 9/
Po,  #82
Q Cg'oi? (ﬁ:éc 0
:)(’C) 20 ) -
:/:':] o — (/% ])0(1(']
o]
| Smallest Principal
Component
ﬁl‘ -
I T I T I
11/22/16 * N ° 2 35 °



Interpretation of PCA

u,'s are Principal Components

such that:
u,'s are uncorrelated (orthogonal)

1, explains as much as possible of original variance in data set

1, explains as much as possible of remaining variance
etc.

k™ PC retains the k™ greatest fraction of the variation in the samples

From Dr. S. Narasimhan



Dr. Yanjun Qi / UVA CS 6316 / f15

Interpretation of PCA

 The new variables (PCs) have a variance equal_‘
to their corresponding eigenvalue, since
Var(u)= ufXXuy=u N ui=Nu'u; =\,
forall i=1...p l

* Small A, & small variance < data change little
in the direction of component u;

PCA is useful for finding new, more informative,
uncorrelated features; it reduces dimensionality
s Dy rejecting low variance features

37
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PCA Eigenvalues

}L:\MV““‘"&

SRR
W"w‘é

2w3 PEdi rectin

11/22/16 38
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PCA Summary until now

* Rotates multivariate dataset into a new \
configuration which is easier to interpret

* PCAis useful for finding new, more informative,
uncorrelated features; it reduces dimensionality by
rejecting low variance features

11/22/16 39
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PCA for dimension reduction
e.g. p=3 = (pick top 2 PCs)

=2 \
—
*
= B *
| ad . - . ... .
L=
2 3
&
£
o]
°
a
2 31
G %
= e %o
5 o3,
3 o )
d —
I
<
' I 1 I 1 1
-1.0 -05 0.0 0.5 1.0
First principal component

corresponds to choosing a

“2D linear plane”
11/22/16 40
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Use PCA to reduce higher dimension

* Suppose each data point is p-dimensional \

— The eigenvectors of data covariance matrix define a new
coordinate system

— We can compress (i.e. perform projection ) the data points by
only using the top few eigenvectors
* corresponds to choosing a “linear subspace”
— represent points on a line, plane, or “hyper-plane”
* these eigenvectors are known as the principal components

11/22/16 41
From Dr. S. Narasimhan
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How many components to keep?

| * |. Variance: Enough PCs to have a cumulative_‘
variance explained by the PCs that is >50-70%

* |I. Scree plot: represents the abilit Cs to

explain th lation in data, e.g{keep PCs
with Gigenvalues D)

Var (M) = Ak

11/22/16 42
From Dr. S. Narasimhan
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Dimensionality Reduction
e.g. check eigenvalue (I)

Scree Plot

5

!

4]

3 ,<= 2‘

m...

g .I.IG-_‘T —
g 1 B.-‘-""—a
g T B—g e /'7 = lg
w0 S N - s - et = S

1 2 3 4 9 § 7 8 g 10 11 12 13

Component|Number

11/22/16 43
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Dimensionality Reduction(2)
e.g. check percentage of kept variance

Can ignore the components of lesser significance. _‘
25 -
o0 || The relative variance explained
— o by each PC is given by A;//sum(A))
E‘ 15 + o \C - q/
£ 10 -
=
5 7 H
O [ I I l ﬂ I ﬂ I ’—‘ I m I ﬂ I ’—’ I

C1 )PC2 PC3 PC4 PC5 PCo6 PC7 PC8 PC9 PC10

You do lose some information, but if the@genvalues are smaII,J yom

— p dimensions in original data
— Calculate p eigenvectors and eigenvalues
— choose only the first k eigenvectors, based on their eigenvalues

— final projected data set has only k dimensions
11/22/16 44




Dr. Yanjun Qi / UVA CS 6316 / f15

Today

s Dimensionality Reduction (unsupervised) with —‘
Principal Components Analysis (PCA)

o Review of eigenvalue, eigenvector

o How to project samples into a line capturing
the variation of the whole dataset =»
Eigenvector / Eigenvalue of covariance matrix

o PCA for dimension reduction
s 0 Eigenface =» PCA for face recognition

11/22/16 45
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Example 1: Application to image, e.g.
a task of face recognition
1. Treat pixels as a vector —l

8 =

2 Recognlze face byGearest nelghtD

A face-image
yl '"yn database of totally n
different people

k = argininHykT — XH

46
From Prof. Derek Hoiem
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Example 1: the space of all face images

e When viewed as vectors of pixel values, face images are

extremely high-dimensional
— 100x100 image @,OOO dimensio% /P_- 10,‘700 —‘
— Slow and lots of storage
e But very few 10,000-dimensional vectors are valid face
images

e We want to effectively model the subspace of face images

.’ ig :
'~;b;‘
- 2;4-:.
| BID,
.‘: “ &
. J \7‘
.‘L\

Bl

11/22/16

“

47
From Prof. Derek Hoiem
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Example 1:The space of all face images

e Eigenface idea: construct a low-dimensional linear

subspace that best explains the variation in the set \
of face images

FAL

2 @ ... .../'

PR A o.’loo o7 We dut hue
‘c_':c' ® ... , . ' L(KC g&mrmb _
- ,‘ ..o in owv e
s ./ ’Q ¢ . ® GeX,
A o ©

N >

Pixel value 1

@ A face image
® A (non-face) image

11/22/16 .43
From Prof. Derek Hoiem



Example 1: Application to Faces, e.g.

Eigenfaces (PCA on face images)
1. Compute covariance matrix of face images

2. Compute the principal components
(“eigenfaces )
— K eigenvectors with largest eigenvalues

3. Represent all face images in the dataset as
linear combinations of eigenfaces

— Perform nearest neighbors on these projected
low-d coefficients

M. Turk and A. Pentland, Face Recognition using Eigenfaces\CVPR 1991
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Example 1: Application to Faces

Training

Hr_.u vm__u il

%#74?3%@@53 :a
Er‘r—u Q.W‘%mke.u 1o 2
R el S R e

images

11/22/16
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Example 1: Eigenfaces example

Top eigenvectors: u,...u, Lr:(

() (X-X)

Mean: u

R=p="1%
= U= X
H N & k

11/22/16
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Example 1: Visualization of ei%enfaces

=(0,200
Principal component (eigenvector) uy

T EEEE s

W % (k73

o (X lM"}“‘
al HU[’JL—QHHW

R AT

11/22/16 .
From Prof. Derek H0|em
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Example 1: Representation and
reconstruction of original x

. (11 ”” .
e Face xin face space_ coordinates: \
XV =y7x

X = ft); -5 (X — p)]

[@’ S ’wkj) New representation

Remarkably few eigenvector terms are needed
to give a fair likeness of most people's faces.

=» subtract the mean along each dimension, in order to center the
original axis system at the centroid of all data points

11/22/16 53
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Representation and reconstruction

e Face x in “face space” coordinates: _‘
X = (W (X —p), .. up (X — p)]
W1y...3Wk

New representation

o SIXRUT vecmsmcdion ey
e Reconstruction:

wil AT Eas=

= @ + W1U1+W2U2+W3U3+W4u4 +wKM l<

11/22/16 A human face may be considered to be a linear
combination of these standardized eigen faces From Prof. Derek Honem
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New representation in the lower-dim PC space

.

5 oy"jin
%, — [, 7, )
v
j& —2 w\’l, w{.z]
«frojedao\

iﬂ’ \t 7X1; V\A

5 i
4.0 4.5 5. 5.5 6.0
11/22/16
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Key Property of Eigenspace Representation

Given A
e 2 images xl 0 .X'2 that are used to construct the Eigenspace

N\ N

o & isthe eigenspace projection of image X

° g2 is the eigenspace projection of image X2

Then, A A ) )
l&—g |l =x—X|

That is, distance in Eigenspace is approximately equal to the
distance between two original images.



Classify / Recognition with eigenfaces

Step I: Process labeled training images
* Find mean p and covariance matrix

* Find k principal components (i.e.
eigenvectors of Z) = u,,...u,

* Project each training image x, onto subspace
spanned by the top principal components:

(Weg,eey Wi ) = (U T (X — W), ..., U (X — 1))

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991




Classify / Recognition with eigenfaces

Step 2: Nearest neighbor based face classification

Given a novel image x

* Project onto k PC’s subspace:
(Wp,e, W) = (U T(X= ), ..., u T (x—u))

» Optional: check reconstruction error x — X to
determine whether the image is really a face

e Classify as closest training face(s) in the lower
k-dimensional subspace

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991
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Is this a face or not?

4 =l
- Start ) =i
] / Wi = weight(E, X)
Original faces D = avg(distance(W Wx))
trainingSet
< D<H? p
E = eigenfaces(trainingSet)
» Xis a face X is not a face
W = weights(E trainingSet)
Store X and Wy
Input unknown image X
l > ( End )

Figure 1: High-level functioning principle of the eigenface-based facial recognition
11/22/16 algorithm 59
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Example 2: e.g. Handwritten Digits

Caexsday 3343323193553
0o g 3333253313257
>3 °W1’ b 32933233283233%
* Image x; : R 2333333233333
. 3333333333333
» Compute principal 3333333%333%3;
CO m po n e ntS l:‘:le:SURE 14.22. A sample of 130 handwritten 3’s shows a variety of writing
&\ — /M‘z k‘; 7,
3- 3

11/22/16 e.g. From ESL book



X — [uf (X = p), ... W (x =]

A

3333

e
- a / O ~
g '...:"-:"‘.' . :'.w.--.'. .4.' . fan
T - 1 SRR - o :
§ .O- ’ "-. _"' 2 - . oJ .'. o
a . ) ,: ;-. .‘ .‘ ...-' " . .. -. ‘e
g ° AT ST AR
- . :': * ) . o ‘.f . ‘[ . -:-.g :.. '. - .
. 0- 1 - 'r. - :0- . ®
@ R
g ® o P o A ’
Ll 1 Ll L
-5 -4 2 0 2

FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.

11/22/16

e.g. From ESL book
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K=2 @ Figure
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Principal Components prgjection of the digits (time 0.02s)

%
o
The new 5 - 09
reduced 0 )
representation i n n . ®
is easier to o n 0o d,
visualize and ¢ 1 o .
interpret Y J
° 0 0 1
| ) 15 dE
, 1 =4
of BntE
» ¢ 1|2 5 ¢
¢ 1
18, e G
I U 412' 2
‘ 19— 2
v 43 ¢ ]51
3 ¢ |24 3 lﬁ IP
T ¢ 1 Rl fm
o] LEF 14
3 % Pl
" |2 [e] 1 'Jl 1
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1
a L4 -
1 1

11

Lo

0

e.g. From scikit learn




PCA summary

* General dimensionality reduction technique

e Preserves most of variance with a much more
compact representation

— Lower storage requirements (eigenvectors + a few
numbers per face/sample)

— Faster matching (since matching within lower-dim)
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PCA & Gaussian Distributions.

 PCA is similar to learning a Gaussian _‘
distribution for the data.

* [ is the mean of the distribution.

e Then the estimate of the covariance.

* Dimension reduction occurs by ignoring the
directions in which the covariance is small.

11/22/16 64
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(1) Limitations of PCA

* PCA is not effective for some datasets. _‘
* For example, if the data is a set of strings

. (1,0,0.0....). (0,1,0,0...).....(0,0,0,....1) then the
@igﬁvalues do not fall off as PCA requirgf

—) 0 0 Q;/Apmwdue: (1,0.1)
D (D

&03\

11/22/16

65
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(2) PCA Limitations

e The direction of maximum variance is not
always good for classification (Example 1)

For this case:

+ Ideal for
capturing global
variance !

+ Not ideal for
discrimination

11/22/16 1 66
First PC From Prof. Derek Hoiem



PCA and Discrimination

PCA may not find the best directions for
discriminating between two classes. (Example 2)

Example: suppose the two classes have 2D Gaussian
densities as ellipsoids.

15t eigenvector is best for representing the
probabilities / overall data trend

2"d ejgenvector is best for discrimination.

From Prof. Derek Hoiem
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Principal Component Analysis

Task Dimension Reduction
Represlentation . Gaussian assumption
Score Function Direction of maximum

1 | variance
Searcthrtimization Eigen-decomp

Models, Principal
Parameters i components
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Extra: A 2D Numerical Example
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PCA Example =STEP 1

e Subtract the mean from each of the data
dimensions.

e Subtracting the mean makes variance and
covariance calculation easier by simplifying their
equations. The variance and co-variance values are
not affected by the mean value.

From Dr. S. Narasimhan



PCA Example —STEP 1

ZERO MEAN DATA:

DATA: (p=2)
w1 | x2 x1 X2
250D 4 .69 .49
0.510.7 -1.31 | -1.21
2.212.9 .39 .99
1.9(2.2 .09 .29
3.13.0 1.29 | 1.09
2.32.7 49 | .79
2 16 19 | -31
1 : 1613 81 | -81
1.10.9 ol e
-71 -1.01 From Dr. S. Narasimhan




PCA Example —STEP 2

e (Calculate the covariance matrix

cov= | .616555556 .615444444
.615444444 716555556

* since the non-diagonal elements in this covariance
matrix are positive, we should expect that the x1 and
X2 variable increase together.

From Dr. S. Narasimhan
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PCA Example —STEP 3

e Calculate the eigenvectors and eigenvalues of \
the covariance matrix

eigenvalues = 1.28402771
.0490833989
- ™
eigenvectors = -.677873399 -.735178656

_--735178656 .677873399

11/22/16 74
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PCA Example —STEP 3

eeigenvectors are plotted as

Mean adjusted data with eigenvectors overiayed

2~ v Y diagonal dotted lines on the
\ (-.74 0682469/671855252;? R I t
5L \ (-67]18552521- 7406824B9)"X -~~~ | plot.
_ . P
\\ *Note they are
1 N + A . perpendicular to each other.
N\,
AN T *Note one of the
05 | i )
AN ) eigenvectors goes through
. \,\ the middle of the points, like
AN drawing a line of best fit.
oo e \,\ | *The second eigenvector
l A \\ . gives us the other, less
= AN important, pattern in the
/.' N .
el N data, that all the points
o N follow the main line, but are
2 e s e s s 2 off to the side of the main

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of line by some amount.

the covariance matrix overlayed on top.
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PCA Example —STEP 4

 Reduce dimensionality and form feature vector

the eigenvector with the highest eigenvalue is the principle
component of the data set.

In our example, the eigenvector with the largest eigenvalue
was the one that pointed down the middle of the data.

Once eigenvectors are found from the covariance matrix, the
next step is to order them by eigenvalue, highest to lowest.
This gives you the components in order of significance.

From Dr. S. Narasimhan



PCA Example —STEP 4

* Feature Vector
FeatureVector = (eig, eig, eig; ... eig,)

We can either form a feature vector with both of the
eigenvectors:

[-.677873399 -.735178656 J

-.735178656 .677873399

or, we can choose to leave out the smaller, less
significant component and only have a single
column:

/_ 677873399 Now, if you like, you can decide to ignore the
) components of lesser significance.
- .735178656

You do lose some information, but if the
. ’
eigenvalues are small, you don' t lose much



PCA Example —STEP 5

* Deriving the new data

FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in the
columns transposed so that the eigenvectors are now in the
rows, with the most significant eigenvector at the top

RowZeroMeanData is the mean-adjusted data transposed,
ie. the data items are in each column, with each row
holding a separate dimension.

From Dr. S. Narasimhan



PCA Example —STEP 5

FinalData transpose: dimensions
along columns

wl w2
-.827970186 -.175115307
1.77758033 142857227
-.992197494 .384374989
-.274210416 130417207
-1.67580142 -.209498461
-.912949103 175282444
.0991094375 -.349824698
1.14457216 .0464172582
438046137 .0177646297
1.22382056 -.162675287

From Dr. S. Narasimhan
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PCA Example —STEP 5

Data transformed with 2 eigenvectors
2 I 1 I

"..’doﬁblevecﬁﬁal.dat" i

15 -

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.
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Reconstruction of original Data

s Ifwe reduced the dimensionality, obviously, when
reconstructing the data we would lose those
dimensions we chose to discard.

* |In our example let us assume that we considered
only the wl dimension...

From Dr. S. Narasimhan



Reconstruction of original Data

Original data restored using only a single eigenvector

wl 4
-.827970186
1.77758033 4
-.992197494
_.274210416 ' .
-1.67580142 1
-.912949103 +
.0991094375 :
1.14457216
438046137 R

1.22382056 Figure 3.5: The reconstruction from the data that was derived using only a single eigen-
vector

. I | .
" flossyplusmean.dat +

From Dr. S. Narasimhan



