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Where	are	we	?	è		
Five	major	secRons	of	this	course	

q 	Regression	(supervised)	
q 	ClassificaRon	(supervised)	

q 	Feature	selecRon			
q 	Unsupervised	models	

q 	Dimension	ReducRon	(PCA)	
q 		Clustering	(K-means,	GMM/EM,	Hierarchical	)	

q 	Learning	theory		
q 	Graphical	models	

11/22/16	 3	
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An	unlabeled		
Dataset	X		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/predictors/regressors:	[	columns]		

11/22/16	
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a data matrix of n observations on 
p variables x1,x2,…xp 

Unsupervised	learning	=	learning	from	raw	(unlabeled,	
unannotated,	etc)	data,	as	opposed	to	supervised	data	
where	a	classificaRon/regression	label	of	examples	is	given	



Today	

n  	Dimensionality	ReducRon	(unsupervised)	with	
Principal	Components	Analysis	(PCA)	

q  Review	of	eigenvalue,	eigenvector		
q  How	to	project	samples	into	a	line	capturing	
the	variaRon	of	the	whole	dataset		è	
Eigenvector	/	Eigenvalue	of	covariance	matrix	

q  PCA	for	dimension	reducRon		
q  Eigenface	è	PCA	for	face	recogniRon			

11/22/16	
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Review:	Mean	and	Variance	
•  Variance:		

	
	
– Discrete	RVs:	

–  ConRnuous	RVs:		

•  Covariance:	

( ) ( ) ( )2X P X
i

i iv
V v vµ= − =∑

( ) ( ) ( )2XV x f x dxµ
+∞

−∞
= −∫

!!Var(X )= E((X − µ)
2)
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!!Cov(X ,Y )= E((X − µx )(Y − µ y ))= E(XY )− µxµ y



Review:	Covariance	matrix	

		

v(x1)c(x1 ,x2 ) ........c(x1 ,xp )
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If	data	is	centered,	
sample	covariance	
matrix	is	obtained	as	:					

C = 1
n−1 X

TX



Review:	Covariance	matrix	
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Calculating eignevalues and eigenvectors

● The eigenvalues λi are found by 
solving the equation  

                det(C-λI)=0 

● Eigenvectors are columns of the 
matrix A such that 

                 C=A D AT 

● Where                       D=
!
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Review:	Eigenvector	/	Eigenvalue	

U UT	 1	

From	Dr.	S.	Narasimhan	

U

11/22/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f15	

8	

	

	
u≠0	



An example

● Let us take two variables with covariance c>0 
!

● C=                  C-λI= 
!
!
!

                   det(C-λI)=(1- λ)²-c² 
!

● Solving this we find λ1 =1+c 

                                       λ2 =1-c < λ1 
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Review:	Eigenvalue,	e.g.		

From	Dr.	S.	Narasimhan	

	

	
u≠0	



and eigenvectors

● Any eigenvector A satisfies the condition  

                          CA=λA 

!
!
!
!
Solving we find
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and eigenvectors

● Any eigenvector A satisfies the condition  

                          CA=λA 

!
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Review:	Eigenvector,	e.g.		

u

u	 u	
U

u	

u	 u	

From	Dr.	S.	Narasimhan	In	pracRce,	much	more	advance	methods,	e.g.	power	method		



Today	

n  	Dimensionality	ReducRon	(unsupervised)	with	
Principal	Components	Analysis	(PCA)	

q  Review	of	eigenvalue,	eigenvector		
q  How	to	project	samples	into	a	line	capturing	
the	variaRon	of	the	whole	dataset		è	
Eigenvector	/	Eigenvalue	of	covariance	matrix	

q  PCA	for	dimension	reducRon		
q  Eigenface	è	PCA	for	face	recogniRon			
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An	unlabeled		
Dataset	X		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/

covariates/predictors/regressors:	[	columns]		
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a data matrix of n observations on 
p variables x1,x2,…xp 



The	Goal	

	We	wish	to	explain/summarize	the	
underlying	variance-covariance	structure	
of	a	large	set	of	variables	through	a	few	
linear	combinaRons	of	these	variables.		

PCA is introduced by 
Pearson (1901) and 
Hotelling (1933) 

11/22/16	
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	This	could	be	accomplished	by	rotaRng	the	axes	(if	data	is	centered).	

		
	
Suppose	we	have	a	sample	populaRon	measured	on	p	random	

variables				X1,…,Xp.		
Our	goal	is	to	develop	a	new	set	of	K	(K<p)	axes	(linear	

combinaRons	of	the	original	p	axes)	in	the	direcRons	of	greatest	
variability:	

X1	

X2	

Trick:	Rotate	Coordinate	Axes	

11/22/16	
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Algebraic	InterpretaRon	

•  Given	n	points	in	a	p	dimensional	space,	

•  for	large	p,	how	to		project	on	to	a	lower-dimensional	
(K<p)	space	while	preserving	broad	trends	in	the	data	and	
allowing	it	to	be	visualized?	

FROM	NOW	we	assume	Data	matrix	is	centered:	è	(we	subtract	the	mean	
along	each	dimension,	and	center	the	original	axis	system	at	the	centroid	of	
all	data	points,	for	simplicity)	

11/22/16	
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Algebraic	InterpretaRon	–	1D	

•  Given	n	points	in	a	p	dimensional	space,	for	large	p,	how	to	
project	on	to	a	1	dimensional	space?	

•  Choose	a	line	that	fits	the	data	so	the	points	are	spread	out	
well	along	the	line	

	
From	Dr.	S.	Narasimhan	
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Let	us	see	it	on	a	figure	
Good	 Beper	
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•  Formally,	to	find	a	line	that	è	Maximizing	the	sum	of	
squares	of	data	samples’	projecRons	on	that	line			

			

	

Algebraic	InterpretaRon	–	1D	

From	Dr.	S.	Narasimhan	
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•  Formally,	to	find	a	line	(direcRon)	that	è	Maximizing	the	sum	
of	squares	of	data	samples’	projecRons	on	that	line			

			

	

Algebraic	InterpretaRon	–	1D	

u=xTv x:	p*1	vector	
v:	p*1	vector	
u:	1*1	scalar				11/22/16	
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subject	to		vTv	=	1	

size of x’s projection on 
vector v è u=xTv = vTx 



•  Formally,	to	find	a	line	(direcRon)	that	è	Maximizing	the	sum	
of	squares	of	data	samples’	projecRons	on	that	line			

			

	

Algebraic	InterpretaRon	–	1D	

u=xTv 

11/22/16	
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subject	to		vTv	=	1	

Center	Xn*p	vs.	
	not-centered	Xn*p		

x:	p*1	vector	
v:	p*1	vector	
u:	1*1	scalar				



Algebraic	InterpretaRon	
	–	1D	

11/22/16	
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argmax
v

ui( )2
ui

∑



•  How	is	the	sum	of	squares	of	projecRon	lengths	
expressed	in	algebraic	terms?	

			

	

Point 1: x1
T 

Point 2: x2
T 

Point 3: x3
T 

: 
Point n: xn

T 

L 
i 
n 
e 

P  P  P …  P 
t   t   t  …  t 
1  2  3 …  n 

L i n e 

X v XT vT 

Algebraic	InterpretaRon	–	1D	

n*p		 p*1		

From	Dr.	S.	Narasimhan	
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•  How	is	the	sum	of	squares	of	projecRon	lengths	
expressed	in	algebraic	terms?	

	

							max(	vTXT	Xv),	subject	to		vTv	=	1	
	
																								

	

Algebraic	InterpretaRon	–	1D	

11/22/16	
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•  RewriRng	this:	
									
			vTXTXv	=	λ	=	λ	vTv	=	vT	(λv)	
					

		<=>					vT	(XTXv	–	λv)	=	0	
	

•  Show	that	the	maximum	value	of	vTXTXv		is	obtained	
for	those	vectors	/	direcRons	saRsfying		XTXv	=	λv	

•  So,	find	the	largest	λ	and	associated	u	such	that	the	
matrix	XTX		when	applied	to	u,		yields	a	new	vector	
which	is	in	the	same	direcRon	as	u,	only	scaled	by	a	
factor	λ.	

	

Algebraic	InterpretaRon	–	1D	

max(	vTXT	Xv),	subject	to		vTv	=	1	

11/22/16	
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•  (XTX)v	points	in	some	other	direcRon	(different	from	v)	
in	general	

	
	
	
	è	If	u	is	an	eigenvector	and	λ	is	corresponding	
eigenvalue	

																							
	

v	

(XTX)v	

u	
XTX	u	=	λ	u	

Algebraic	InterpretaRon	–	1D	

11/22/16	
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So,	find	the	largest	λ	and	associated	u	such	that	the	matrix	XTX		when	applied	to	u,		
yields	a	new	vector	which	is	in	the	same	direcRon	as	u,	only	scaled	by	a	factor	λ.	



•  How	many	eigenvectors	are	there?	
•  For	Real	Symmetric	Matrices	

–  except	in	degenerate	cases	when	eigenvalues	repeat,	there	are	p	
eigenvectors	
		u1,…,up	are	the	eigenvectors	
		λ1…λp	are	the	eigenvalues,	large	to	small,	ordered	by	its	value		

	

– all	eigenvectors	are	mutually	orthogonal	and	therefore	
form	a	new	basis	space	

•  Eigenvectors	for	disRnct	eigenvalues	are	mutually	orthogonal	
•  Eigenvectors	corresponding	to	the	same	eigenvalue	have	the	property	that	any	
linear	combinaRon	is	also	an	eigenvector	with	the	same	eigenvalue;	one	can	then	
find	as	many	orthogonal	eigenvectors	as	the	number	of	repeats	of	the	eigenvalue.	

			
	
																							

	

Algebraic	InterpretaRon	–	beyond	1D	

From	Dr.	S.	Narasimhan	
11/22/16	
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•  For	matrices	of	the	form	(symmetric)	XTX	
	

–  All	eigenvalues	are	non-negaRve	
–  See	Handout-1	“linear	algebra	review”	/	Page	18,19,20	

–  λ1…λp	are	the	eigenvalues,	ordering	from	large	to	small,		
•  i.e.	Ordered	by	the	PC’s	importance		

	
			

	
																							

	

Algebraic	InterpretaRon	–	beyond	1D	

11/22/16	
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4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal  
Component, u1 

2nd Principal  
Component, u2 

PCA	Eigenvectors	è	Principal	Components	
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PCA	1-D	:	How	the	sum	of	squares	of	
projecRon	lengths	relates	to	

VARIANCE	?		
	•  Formally,	to	find	a	line	(direcRon)	that	è	

Maximizing	the	sum	of	squares	of	data	samples’	
projecRons	on	that	line	

•  In	a	new	coordinate	system	with	v	as	axis,	u	is	the	
posiRon	of	sample	x	on	this	axis					

	
11/22/16	
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size of one sample x’s projection on vector v 
è u=xTv = vTx 



PCA	1-D	:	How	the	sum	of	squares	of	projecRon	
lengths	relates	to	VARIANCE	?		

convert	x_i	onto	v,	coordinate	
	
è	u_i	=	(x_i)T	V	

Consider	the	variaRon	along	
direcRon	v	among	all	of	the	
orange	points			{x_1,	x_2,…,	x_n}:	
	
è The	variance	of	posiRons		
{u_1,	u_2,…,	u_n}	

From	Dr.	S.	Narasimhan	
11/22/16	
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Var u( ) = ui − µ( )2 P u = ui( )

ui
∑ = ui( )2

ui
∑

PCA	1-D	:	How	the	sum	of	squares	of	projecRon	
lengths	relates	to	VARIANCE	?		

Assuming		
centered	
data	matrix		

Formally,	to	find	a	line	(direcRon	v	)	that		
	
è Maximizing	the	sum	of	squares	of	data	

samples’	projecRons	on	that	v	line			

è Maximizing	the	variance	of	data	samples’	
projected	representaRons	on		the	v	axis			



Today	

n  	Dimensionality	ReducRon	(unsupervised)	with	
Principal	Components	Analysis	(PCA)	

q  Review	of	eigenvalue,	eigenvector		
q  How	to	project	samples	into	a	line	capturing	
the	variaRon	of	the	whole	dataset		è	
Eigenvector	/	Eigenvalue	of	covariance	matrix	

q  PCA	for	dimension	reducRon		
q  Eigenface	è	PCA	for	face	recogniRon			

11/22/16	
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ApplicaRons	

•  Uses:	
–  Data	VisualizaRon	
–  Data	ReducRon	
–  Data	ClassificaRon	
–  Trend	Analysis	
–  Factor	Analysis	
–  Noise	ReducRon	

•  Examples:	
–  How	many	unique	“sub-sets”	are	in	the	

sample?	
–  How	are	they	similar	/	different?	
–  What	are	the	underlying	factors	that	

influence	the	samples?	
–  How	to	best	present	what	is	
“interesRng”?	

–  Which	“sub-set”	does	this	new	sample	
righ~ully	belong?	

–  	…….		

From	Dr.	S.	Narasimhan	
11/22/16	
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InterpretaRon	of	PCA	

From	p	original	variables:	x1,x2,...,xp:	
	Produce	k	new	variables:	u1,u2,...,uk:	

	
	u1	=	a11x1	+	a12x2	+	...	+	a1pxp	
	u2	=	a21x1	+	a22x2	+	...	+	a2pxp	
	…	

11/22/16	
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When	p=2	



such that: 
 
uk's are uncorrelated (orthogonal) 
u1 explains as much as possible of original variance in data set 
u2 explains as much as possible of remaining variance 
etc. 
 
kth PC retains the kth greatest fraction of the variation in the samples 
 
 

InterpretaRon	of	PCA	

uk's are Principal Components 

From	Dr.	S.	Narasimhan	
11/22/16	
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InterpretaRon	of	PCA	

•  The	new	variables	(PCs)	have	a	variance	equal	
to	their	corresponding	eigenvalue,	since		

										Var(ui)=	uiTXTXui	=	uiT	λi	ui	=	λi	uiTui		=	λi		
																		for	all	i=1…p	

•  Small	λi	ó	small	variance	ó	data	change	liple	
in	the	direcRon	of	component	ui	

 

11/22/16	
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PCA	is	useful	for	finding	new,	more	informaRve,	
uncorrelated	features;	it	reduces	dimensionality	
by	rejecRng	low	variance	features	



PCA	Eigenvalues	

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1 
λ2 
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PCA	Summary	unRl	now	

•  Rotates	mulRvariate	dataset	into	a	new	
configuraRon	which	is	easier	to	interpret	

•  PCA	is	useful	for	finding	new,	more	informaRve,	
uncorrelated	features;	it	reduces	dimensionality	by	
rejecRng	low	variance	features	

11/22/16	
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PCA	for	dimension	reducRon	
e.g.	p=3	è	(pick	top	2	PCs)		

40	

corresponds	to	choosing	a	
“2D linear	plane”	

11/22/16	
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Use	PCA	to	reduce	higher	dimension	

•  Suppose	each	data	point	is	p-dimensional	

–  The	eigenvectors	of	data	covariance	matrix		define	a	new	
coordinate	system	

	
–  We	can	compress	(i.e.	perform	projecRon	)	the	data	points	by	
only	using	the	top	few	eigenvectors	

•  corresponds	to	choosing	a	“linear	subspace”	
–  represent	points	on	a	line,	plane,	or	“hyper-plane”	

•  these	eigenvectors	are	known	as	the	principal	components	

From	Dr.	S.	Narasimhan	
11/22/16	
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How	many	components	to	keep?	

•  I.	Variance:	Enough	PCs	to	have	a	cumulaRve		
variance	explained	by	the	PCs	that	is	>50-70%	

•  II.	Scree	plot:	represents	the	ability	of	PCs	to	
explain	the	variaRon	in	data,	e.g.	keep	PCs	
with		eigenvalues	>1	

From	Dr.	S.	Narasimhan	
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Dimensionality	ReducRon	
e.g.	check	eigenvalue	(I)		

11/22/16	
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Dimensionality	ReducRon(2)		
e.g.	check	percentage	of	kept	variance		

Can	ignore	the	components	of	lesser	significance.		
	

		
	
	
	
	
	
	
	
	
You	do	lose	some	informaRon,	but	if	the	eigenvalues	are	small,	you	don’t	lose	much	

–  p	dimensions	in	original	data		
–  Calculate	p	eigenvectors	and	eigenvalues	
–  choose	only	the	first	k	eigenvectors,	based	on	their	eigenvalues	
–  final	projected	data	set	has	only	k	dimensions	

The relative variance explained 
by each PC is given by λi/sum(λj)	

11/22/16	
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Today	

n  	Dimensionality	ReducRon	(unsupervised)	with	
Principal	Components	Analysis	(PCA)	

q  Review	of	eigenvalue,	eigenvector		
q  How	to	project	samples	into	a	line	capturing	
the	variaRon	of	the	whole	dataset		è	
Eigenvector	/	Eigenvalue	of	covariance	matrix	

q  PCA	for	dimension	reducRon		
q  Eigenface	è	PCA	for	face	recogniRon			

11/22/16	
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Example	1:	ApplicaRon	to	image,		e.g.	
a	task	of	face	recogniRon	

1.  Treat	pixels	as	a	vector	

2.  Recognize	face	by	1-nearest	neighbor	

x

			y1...yn

xy −= T
k

k
k argmin

From	Prof.	Derek	Hoiem	
11/22/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f15	

46	

A	face-image	
database	of	totally	n	
different	people		



Example	1:	the	space	of	all	face	images	
•  When	viewed	as	vectors	of	pixel	values,	face	images	are	

extremely	high-dimensional	
–  100x100	image	=	10,000	dimensions	
–  Slow	and	lots	of	storage	

•  But	very	few	10,000-dimensional	vectors	are	valid	face	
images	

•  We	want	to	effecRvely	model	the	subspace	of	face	images	

From	Prof.	Derek	Hoiem	
11/22/16	
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Example	1:The	space	of	all	face	images	
•  Eigenface	idea:	construct	a	low-dimensional	linear	
subspace	that	best	explains	the	variaRon	in	the	set	
of	face	images	

From	Prof.	Derek	Hoiem	
11/22/16	
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Example	1:	ApplicaRon	to	Faces,	e.g.	
Eigenfaces	(PCA	on	face	images)	

1.  Compute	covariance	matrix	of	face	images	

2.  Compute	the	principal	components	
(“eigenfaces”)	

–  K	eigenvectors	with	largest	eigenvalues	

3.  Represent	all	face	images	in	the	dataset	as	
linear	combinaRons	of	eigenfaces	

–  Perform	nearest	neighbors	on	these	projected	
low-d	coefficients	

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 11/22/16	
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Example	1:	ApplicaRon	to	Faces	
Training	
images	

	

11/22/16	
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Example	1:	Eigenfaces	example	
Top eigenvectors: u1,…uk 

Mean: µ 

∑=
=

N

k
kxN 1

1µ

From	Prof.	Derek	Hoiem	



Example	1:	VisualizaRon	of	eigenfaces	
Principal component (eigenvector) uk 

µ + 3σkuk 

µ – 3σkuk 

From	Prof.	Derek	Hoiem	
11/22/16	
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Example	1:	RepresentaRon	and	
reconstrucRon	of	original	x	

•  Face	x	in	“face	space”	coordinates:	
	
	
	
	
	
	

= New	representaSon	

è	subtract	the	mean	along	each	dimension,	in	order	to	center	the	
original	axis	system	at	the	centroid	of	all	data	points	

Remarkably	few	eigenvector	terms	are	needed	
to	give	a	fair	likeness	of	most	people's	faces.		

11/22/16	
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RepresentaRon	and	reconstrucRon	

•  Face	x	in	“face	space”	coordinates:	
	
	
	

•  ReconstrucRon:	
= + 

µ       +    w1u1+w2u2+w3u3+w4u4+ … 

= 

^ 
x = 

New	representaSon	

A	human	face	may	be	considered	to	be	a	linear	
combinaRon	of	these	standardized	eigen	faces		 From	Prof.	Derek	Hoiem	

11/22/16	
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New	representaRon	in	the	lower-dim	PC	space	

4.0 4.5 5.0 5.5 6.0
2

3

4

5

xi2 

xi1 

wi,1 wi,2 

From	Prof.	Derek	Hoiem	
11/22/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f15	

55	



Key	Property	of	Eigenspace	RepresentaRon	

	
Given	 		

• 	2	images																	that	are	used	to	construct	the	Eigenspace	
		

• 										is	the	eigenspace	projecRon	of	image		

• 										is	the	eigenspace	projecRon	of	image	
	
Then,	

		
		

	
	

	That	is,	distance	in	Eigenspace	is	approximately	equal	to	the		
	distance	between	two	original	images.	

21 ˆ,ˆ xx
1x̂

2x̂
1ĝ

2ĝ

||ˆˆ||||ˆˆ|| 1212 xxgg −≈−

11/22/16	
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Classify	/	RecogniRon	with	eigenfaces	

Step	I:	Process	labeled	training	images	
•  Find	mean	µ	and	covariance	matrix												

•  Find	k	principal	components	(i.e.	
eigenvectors	of	Σ)	è	u1,…uk	

•  Project	each	training	image	xi	onto	subspace	
spanned	by	the	top	principal	components:	
(wi1,…,wik)	=	(u1T(xi	–	µ),	…	,	ukT(xi	–	µ))	

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 11/22/16	
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Classify	/	RecogniRon	with	eigenfaces	

Step	2:		Nearest	neighbor	based	face	classifica:on	

Given	a	novel	image	x	
•  Project	onto	k	PC’s	subspace:	
(w1,…,wk)	=	(u1T(x	–	µ),	…	,	ukT(x	–	µ))	

•  OpRonal:	check	reconstrucRon	error	x	–	x	to	
determine	whether	the	image	is	really	a	face	

•  Classify	as	closest	training	face(s)	in	the	lower						
k-dimensional	subspace	

^ 

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 11/22/16	
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Is	this	a	face	or	not?	

11/22/16	
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Example	2:	e.g.	Handwripen	Digits			

•  16	x	16	gray	scale		
•  Total	658	such	3’s	
•  130	is	shown		
•  Image	xi	:	R256	

•  Compute	principal		
components	

60	

w1	 w2	

e.g.	From	ESL	book	11/22/16	
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K=2	@	Figure	

e.g.	

e.g.	From	ESL	book	11/22/16	
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The	new	
reduced		
representaRon	
is	easier	to	
visualize	and	
interpret	



PCA	summary	

•  General	dimensionality	reducRon	technique	

•  Preserves	most	of	variance	with	a	much	more	
compact	representaRon	
– Lower	storage	requirements	(eigenvectors	+	a	few	
numbers	per	face/sample)	

– Faster	matching	(since	matching	within	lower-dim)	

	

	

11/22/16	
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PCA	&	Gaussian	DistribuRons.	

•  PCA	is	similar	to	learning	a	Gaussian	
distribuRon	for	the	data.	

•  						is	the	mean	of	the	distribuRon.	
•  Then	the	esRmate	of	the	covariance.	

•  Dimension	reducRon	occurs	by	ignoring	the	
direcRons	in	which	the	covariance	is	small.	

11/22/16	
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(1)	LimitaRons	of	PCA	

•  PCA	is	not	effecRve	for	some	datasets.	
•  For	example,	if	the	data	is	a	set	of	strings	
•  (1,0,0,0,…),	(0,1,0,0…),…,(0,0,0,…,1)	then	the	
eigenvalues	do	not	fall	off	as	PCA	requires.	

11/22/16	
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(2)		PCA	LimitaRons	
•  The	direcRon	of	maximum	variance	is	not	
always	good	for	classificaRon	(Example	1)	

First	PC	 From	Prof.	Derek	Hoiem	
11/22/16	
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For	this	case:		
	
+	Ideal	for	
capturing	global	
variance	!		
	
	
+	Not	ideal	for	
discriminaRon	

	



PCA	and	DiscriminaRon	

•  PCA	may	not	find	the	best	direcRons	for	
discriminaRng	between	two	classes.	(Example	2)	

•  Example:	suppose	the	two	classes	have	2D	Gaussian	
densiRes	as	ellipsoids.		

•  1st	eigenvector	is	best	for	represenRng	the	
probabiliRes	/	overall	data	trend	

•  2nd	eigenvector	is	best	for	discriminaRon.	

From	Prof.	Derek	Hoiem	
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Principal Component Analysis 

Dimension Reduction  

Gaussian assumption  

Direction of maximum 
variance  

Eigen-decomp 

Principal 
components 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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Extra:	A	2D	Numerical	Example	

From	Dr.	S.	Narasimhan	
11/22/16	
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PCA	Example	–STEP	1	

•  Subtract	the	mean	from	each	of	the	data	
dimensions.		

•  	 SubtracRng	the	mean	makes	variance	and	
covariance	calculaRon	easier	by	simplifying	their	
equaRons.	The	variance	and	co-variance	values	are	
not	affected	by	the	mean	value.	

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	1	

DATA:	(p=2)	
x1					x2	
2.5		2.4	
0.5		0.7	
2.2		2.9	
1.9		2.2	
3.1		3.0	
2.3		2.7	
2	 	 	1.6	
1	 	 	1.1	
1.5		1.6	
1.1		0.9	

ZERO	MEAN	DATA:	
x1									x2					
.69		 	.49	
-1.31	 	-1.21	
.39		 	.99	
.09		 	.29	
1.29	 	1.09	
.49		 	.79	
.19		 	-.31	
-.81	 	-.81	
-.31	 	-.31	
-.71	 	-1.01	 From	Dr.	S.	Narasimhan	

11/22/16	
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PCA	Example	–STEP	2	

•  Calculate	the	covariance	matrix	
	cov	=							.616555556				.615444444	
	 																.615444444				.716555556	

	
•  since	the	non-diagonal	elements	in	this	covariance	
matrix	are	posiRve,	we	should	expect	that	the	x1	and	
x2	variable	increase	together.	

	

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	3	

•  Calculate	the	eigenvectors	and	eigenvalues	of	
the	covariance	matrix	
		 	eigenvalues	=															1.28402771	

																																																		.0490833989	
	
		 	 	 																																

eigenvectors	=							 	-.677873399				-.735178656		
																				 	 	 	-.735178656					.677873399			

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	3	

• eigenvectors	are	ploped	as	
diagonal	doped	lines	on	the	
plot.		
• Note	they	are	
perpendicular	to	each	other.		
• Note	one	of	the	
eigenvectors	goes	through	
the	middle	of	the	points,	like	
drawing	a	line	of	best	fit.		
• The	second	eigenvector	
gives	us	the	other,	less	
important,	papern	in	the	
data,	that	all	the	points	
follow	the	main	line,	but	are	
off	to	the	side	of	the	main	
line	by	some	amount.	

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	4	

•  Reduce	dimensionality	and	form	feature	vector	
	the	eigenvector	with	the	highest	eigenvalue	is	the	principle	
component	of	the	data	set.	

	
	In	our	example,	the	eigenvector	with	the	largest	eigenvalue	
was	the	one	that	pointed	down	the	middle	of	the	data.		

	
	Once	eigenvectors	are	found	from	the	covariance	matrix,	the	
next	step	is	to	order	them	by	eigenvalue,	highest	to	lowest.	
This	gives	you	the	components	in	order	of	significance.		

	
		

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	4	

•  Feature	Vector	
	 	FeatureVector	=	(eig1	eig2	eig3	…	eign)	
	We	can	either	form	a	feature	vector	with	both	of	the	
eigenvectors:	
	 					 	-.677873399				-.735178656		
	 	 	-.735178656					.677873399		
	or,	we	can	choose	to	leave	out	the	smaller,	less	
significant	component	and	only	have	a	single	
column:	
						 	-	.677873399		
	 	 	-	.735178656	

	

Now,	if	you	like,	you	can	decide	to	ignore	the	
components	of	lesser	significance.		
	

	You	do	lose	some	informaRon,	but	if	the	
eigenvalues	are	small,	you	don’t	lose	much	



PCA	Example	–STEP	5	

•  Deriving	the	new	data	
	FinalData	=	RowFeatureVector	x	RowZeroMeanData	
		

RowFeatureVector	is	the	matrix	with	the	eigenvectors	in	the	
columns	transposed	so	that	the	eigenvectors	are	now	in	the	
rows,	with	the	most	significant	eigenvector	at	the	top	
		

RowZeroMeanData	is	the	mean-adjusted	data	transposed,	
ie.	the	data	items	are	in	each	column,	with	each	row	
holding	a	separate	dimension.	

	

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	5	

	FinalData	transpose:	dimensions	
along	columns	
		w1 	 	 										w2	

	-.827970186	 							-.175115307	
1.77758033	 	 	.142857227	
-.992197494	 	 	.384374989	
-.274210416	 	 	.130417207	
-1.67580142	 	 	-.209498461	
-.912949103	 	 	.175282444	
.0991094375	 	 	-.349824698	
1.14457216	 	 	.0464172582	
.438046137	 	 	.0177646297	
1.22382056	 	 	-.162675287	

From	Dr.	S.	Narasimhan	
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PCA	Example	–STEP	5	

From	Dr.	S.	Narasimhan	
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ReconstrucRon	of	original	Data	

•  If	we	reduced	the	dimensionality,	obviously,	when	
reconstrucRng	the	data	we	would	lose	those	
dimensions	we	chose	to	discard.		

•  In	our	example	let	us	assume	that	we	considered	
only	the	w1	dimension…	

From	Dr.	S.	Narasimhan	
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ReconstrucRon	of	original	Data	

	 	w1	 	 												
	-.827970186	 		
1.77758033	 	 		
-.992197494	 	 		
-.274210416	 	 		
-1.67580142	 	 		
-.912949103	 	 		
.0991094375	 		
1.14457216	 	 		
.438046137	 	 		
1.22382056	

From	Dr.	S.	Narasimhan	
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