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Where	are	we	?	è		
major	secJons	of	this	course	

q 	Regression	(supervised)	
q 	ClassificaJon	(supervised)	

q 	Feature	selecJon			
q 	Unsupervised	models	

q 	Dimension	ReducJon	(PCA)	
q 	Clustering	(K-means,	GMM/EM,	Hierarchical	)	

q 	Learning	theory		
q 	Graphical	models	
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An	unlabeled		
Dataset	X		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/predictors/regressors:	[	columns]		
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a data matrix of n observations on 
p variables x1,x2,…xp 

Unsupervised	learning	=	learning	from	raw	(unlabeled,	
unannotated,	etc)	data,	as	opposed	to	supervised	data	
where	a	classificaJon	label	of	examples	is	given	
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Today:	What	is	clustering?	

•  Are	there	any	“groups”?	
•  What	is	each	group	?	
•  How	many	?	
•  How	to	idenJfy	them?	
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•  Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups 

What	is	clustering? 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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What	is	clustering?	
•  Clustering:	the	process	of	grouping	a	set	of	objects	into	
classes	of	similar	objects	
–  high	intra-class	similarity	
–  low	inter-class	similarity	
–  It	is	the	commonest	form	of	unsupervised	learning	

	

•  A	common	and	important	task	that	finds	many	
applicaJons	in	Science,	Engineering,	informaJon	
Science,	and	other	places,	e.g.		

•  Group	genes	that	perform	the	same	funcJon	
•  Group	individuals	that	has	similar	poliJcal	view	
•  Categorize	documents	of	similar	topics		
•  Ideality	similar	objects	from	pictures	
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Toy	Examples	
•  People	

•  Images	

•  Language	

•  species	
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Issues	for	clustering	
•  What	is	a	natural	grouping	among	these	objects?	

–  DefiniJon	of	"groupness"	
•  What	makes	objects	“related”?	

–  DefiniJon	of	"similarity/distance"	
•  RepresentaJon	for	objects	

–  Vector	space?	NormalizaJon?	
•  How	many	clusters?	

–  Fixed	a	priori?	
–  Completely	data	driven?	

•  Avoid	“trivial”	clusters	-	too	large	or	small	
•  Clustering	Algorithms	

–  ParJJonal	algorithms	
–  Hierarchical	algorithms	

•  Formal	foundaJon	and	convergence	
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Today	Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
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What	is	a	natural	grouping	among	
these	objects?	
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Another	example:	clustering	is	
subjecJve	

A

B

A

B

A

B

A

B A

B

A

B

Two	possible	SoluJons…	
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Today	Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
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What	is	Similarity?	

•  The	real	meaning	of	similarity	is	a	philosophical	quesJon.	We	will	take	a	
more	pragmaJc	approach	

•  Depends	on	representaJon	and	algorithm.	For	many	rep./alg.,	easier	to	
think	in	terms	of	a	distance	(rather	than	similarity)	between	vectors.	

Hard	to	define!	
But	we	know	it	
when	we	see	it	
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What	properJes	should	a	distance	
measure	have?	

•  D(A,B)	=	D(B,A)	 	 	 	Symmetry	

•  D(A,A)	=	0		 	 	 	Constancy	of	Self-Similarity	

•  D(A,B)	=	0	IIf	A=	B	 	 	 	Posi=vity	Separa=on	

•  D(A,B)	<=	D(A,C)	+	D(B,C)	 	 	Triangular	Inequality	
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•  D(A,B)	=	D(B,A)	 	 	 	Symmetry	
–  Otherwise	you	could	claim	"Alex	looks	like	Bob,	but	Bob	looks	nothing	

like	Alex"	

•  D(A,A)	=	0	 	 	 	 	Constancy	of	Self-Similarity	
–  Otherwise	you	could	claim	"Alex	looks	more	like	Bob,	than	Bob	does"	

•  D(A,B)	=	0	IIf	A=	B	 	 	 	Posi=vity	Separa=on	
–  Otherwise	there	are	objects	in	your	world	that	are	different,	but	you	

cannot	tell	apart.	

•  D(A,B)	<=	D(A,C)	+	D(B,C)	 	 	Triangular	Inequality	
–  Otherwise	you	could	claim	"Alex	is	very	like	Bob,	and	Alex	is	very	like	

Carl,	but	Bob	is	very	unlike	Carl"	

IntuiJons	behind	desirable	properJes	
of		distance	measure	
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Distance	Measures:	Minkowski	Metric	

•  Suppose	two	object	x	and	y	both	have	p	
features	

	
•  The	Minkowski	metric	is	defined	by	
	
•  Most	Common	Minkowski	Metrics	

!!
d(x , y)= |xi− yi

i=1

p

∑ |rr

!! 

x = (x1 ,x2 ,!,xp)
y = ( y1 , y2 ,!, yp)

		

1,	r =2	(Euclidean	distance		)																						d(x , y)= |xi− yi
i=1

p

∑ |22

2,	r =1	(Manhattan	distance)																							d(x , y)= |xi− yi
i=1

p

∑ |

3,	r = +∞	("sup"			distance			)																						d(x , y)=max
1≤i≤p

|xi− yi |
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.},{max             :distance sup""  :3
.    :distanceManhattan   :2

.      :distanceEuclidean   :1
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An	Example	
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y 
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GeneB
GeneA

.  :Distance Hamming 5141001 =+=+ )#()#(

•  Manhanan	distance	is	called	Hamming	distance	
when	all	features	are	binary.	

–  E.g.,	Gene	Expression	Levels	Under	17	CondiJons	(1-High,0-Low)	

Hamming	distance:	binary	features	

!!
d(x , y)= |xi− yi

i=1

p

∑ |
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Similarity	Measures:	CorrelaJon	
Coefficient	

Time 

Gene A 

Gene B 

 

Gene A 
Time 

Gene B 

Expression Level Expression Level 

Expression Level 

Time 

Gene A 
Gene B 
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CorrelaJon	is	unit	
independent;	
	
If	you	scale	one	of	the	objects	
ten	Jmes,	you	will	get	different	
euclidean	distances	and	same	
correlaJon	distances.	



•  Pearson	correlaJon	coefficient	

•  Special	case:	cosine	distance	
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1

1≤),( yxs

Similarity	Measures:	CorrelaJon	
Coefficient	

yx
yxyxs !!
!!

⋅
⋅=),(

•  Measuring	the	linear	correlaMon	
between	two	sequences,	x	and	y,	

•  giving	a	value	between	+1	and	−1	
inclusive,	where	1	is	total	posiJve	
correlaMon,	0	is	no	correlaMon,	and	
−1	is	total	negaJve	correlaMon.	

CorrelaJon	is	unit	independent	

20	



11/22/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

Edit	Distance:		
A	generic	technique	for	measuring	similarity	

•  To	measure	the	similarity	between	two	objects,	transform	
one	of	the	objects	into	the	other,	and	measure	how	much	
effort	it	took.	The	measure	of	effort	becomes	the	distance	
measure.	

The	distance	between	Pany	and	Selma.	
		

	Change	dress	color,	1	point	
	Change	earring	shape,	1	point	
	Change	hair	part,	1	point	

	

D(Pany,Selma)	=	3	

The	distance	between	Marge	and	Selma.	
		

	Change	dress	color,	1	point	
	Add	earrings,	1	point	
	Decrease	height,	1	point	
	Take	up	smoking,	1	point	
	Lose	weight,	1	point	

	

D(Marge,Selma)	=	5	

This	is	called	the	Edit	distance		
or	the	TransformaJon	distance	21	

Selma	Pany	Marge		
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Today	Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
22	
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Clustering	Algorithms	

•  ParJJonal	algorithms	
– Usually	start	with	a	random	
(parJal)	parJJoning	

–  Refine	it	iteraJvely	
•  K	means	clustering	
•  Mixture-Model	based	clustering	

•  Hierarchical	algorithms	
–  Bonom-up,	agglomeraJve	
–  Top-down,	divisive	

23	
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Today	Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
24	
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Hierarchical	Clustering	
•  Build	a	tree-based	hierarchical	taxonomy	(dendrogram)	
from	a	set	of	objects,	e.g.	organisms,	documents.	

•  Note	that	hierarchies	are	commonly	used	to	organize	
informaJon,	for	example	in	a	web	portal.	
–  Yahoo!	hierarchy	is	manually	created,	we	will	focus	on	
automaJc	creaJon	of	hierarchies	in	data	mining.	

With	backbone	 Without	backbone	
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(How-to) Hierarchical Clustering 
The number of dendrograms with n leafs  

= (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of Possible
of Leafs Dendrograms 
2 1
3 3
4 15
5 105
... …
10   34,459,425

Bottom-Up (agglomerative): 
Starting with each item in its own 
cluster, find the best pair to merge 
into a new cluster. Repeat until all 
clusters are fused together.  
 
 
 
 

Clustering:	the	process	of	grouping	a	
set	of	objects	into	classes	of	similar	
objects	è		

high	intra-class	similarity	
low	inter-class	similarity	

A	greedy	
local	

opJmal	
soluJon		

11/22/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

26	



0 8 8 7 7 

0 2 4 4 

0 3 3 

0 1 

0 

D(  ,  ) = 8 
D(  ,  ) = 1 

We begin with a distance 
matrix which contains the 
distances between every pair 
of objects in our database. 
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Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  

… 
Consider all 
possible 
merges… 

Choose 
the best 
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Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  

… 
Consider all 
possible 
merges… 

Choose 
the best 

Consider all 
possible 
merges… … 

Choose 
the best 
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Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  

… 
Consider all 
possible 
merges… 

Choose 
the best 

Consider all 
possible 
merges… … 

Choose 
the best 

Consider all 
possible 
merges… 

Choose 
the best … 
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Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  

… 
Consider all 
possible 
merges… 

Choose 
the best 

Consider all 
possible 
merges… … 

Choose 
the best 

Consider all 
possible 
merges… 

Choose 
the best … But how do we compute distances 

between clusters rather than 
objects? 
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How	to	decide	the	distances	between	
clusters	?		

		
•  Single-Link		

– Nearest	Neighbor:	their	closest	members.	

•  Complete-Link		
– Furthest	Neighbor:	their	furthest	members.	

•  Average:		
– average	of	all	cross-cluster	pairs.	
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Computing distance between 
clusters: Single Link 

•  cluster distance = distance of two closest 
members in each class 

- Potentially 
long and skinny 
clusters 
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Computing distance between 
clusters: : Complete Link 

•  cluster distance = distance of two farthest 
members 

+ tight clusters 
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Computing distance between 
clusters: Average Link 

•  cluster distance = average distance of all 
pairs 

the most widely 
used measure 

Robust against 
noise 
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Example: single link 
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Example: single link 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

04589
07910

036
02

0

5
4
3
2
1

54321

1
2 
3 
4 

5

11/22/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

37	



Example: single link 
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Example: single link 
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Example: single link 
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Average linkage 

Single linkage 

Height represents 
distance between 
objects / clusters 

ParJJons	by	cutng	the	dendrogram	at	a	desired	
level:	each	connected	component	forms	a	cluster.	
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Hierarchical	Clustering	
•  Bonom-Up	AgglomeraJve	Clustering	

–  Starts	with	each	object	in	a	separate	cluster		
–  then	repeatedly	joins	the	closest	pair	of	clusters,		
–  unJl	there	is	only	one	cluster.	

The	history	of	merging	forms	a	binary	tree	or	hierarchy	(dendrogram)		
	

•  Top-Down	divisive		
–  StarJng	with	all	the	data	in	a	single	cluster,		
–  Consider	every	possible	way	to	divide	the	cluster	into	two.	Choose	
the	best	division		

–  And	recursively	operate	on	both	sides.	
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ComputaJonal	Complexity	

•  In	the	first	iteraJon,	all	HAC	methods	need	to	compute	
similarity	of	all	pairs	of	n	individual	instances	which	is	O(n2p).	

•  In	each	of	the	subsequent	n−2	merging	iteraJons,	compute	
the	distance	between	the	most	recently	created	cluster	and	
all	other	exisJng	clusters.	

•  For	the	subsequent	steps,	in	order	to	maintain	an	overall	
O(n2)	performance,	compuJng	similarity	to	each	other	
cluster	must	be	done	in	constant	Jme.	Else	O(n2	log	n)	or	
O(n3)	if	done	naively	
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Summary	of	Hierarchal	
Clustering	Methods	

•  No	need	to	specify	the	number	of	clusters	in	
advance.		

•  Hierarchical	structure	maps	nicely	onto	human	
intuiJon	for	some	domains	

•  They	do	not	scale	well:	Jme	complexity	of	at	least	
O(n2),	where	n	is	the	number	of	total	objects.	

•  Like	any	heurisJc	search	algorithms,	local	opJma	
are	a	problem.	

•  InterpretaJon	of	results	is	(very)	subjecJve.		
11/22/16	
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Hierarchical Clustering  

Clustering 

n/a  

No clearly 
defined loss  

greedy bottom-up (or 
top-down)  

Dendrogram 
(tree)  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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