UVA CS 6316/4501 - Fall 2016 Machine Learning

Lecture 2: Algebra and Calculus Review

Dr. Yanjun Qi

University of Virginia
Department of
Computer Science

$$\left(\begin{array}{cc} -1 & 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = ?$$

$$A=\left(egin{array}{cc} 0 & 1 \ 1 & -1 \ 1 & 0 \end{array}
ight) \quad A^T=$$
 ?

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$ $\mathbf{c} = \mathbf{A} - \mathbf{B} = ?$ $\mathbf{c} = \mathbf{A} + \mathbf{B} = ?$

$$\left(\left(\begin{array}{cc}1&2\\-1&0\end{array}\right)+\left(\begin{array}{cc}1&0\\-1&1\end{array}\right)\right)^T=$$
 ?

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad \mathbf{C} = \mathbf{A} \mathbf{B} = \mathbf{P}$$

$$\mathbf{C} = \mathbf{B} \mathbf{A} = \mathbf{P}$$

Today:

- ☐ Data Representation for ML systems
- ☐ Review of Linear Algebra and Matrix Calculus

A Typical Machine Learning Pipeline

e.g. SUPERVISED LEARNING

$$f:X\longrightarrow Y$$

• Find function to map input space X to output space Y

 Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

A Dataset

$$f:[X] \longrightarrow [Y]$$

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

Main Types of Columns

 Continuous: a real number, for example, age or height

 Discrete: a symbol, like "Good" or "Bad"

e.g. SUPERVISED Classification

test dataset

 e.g. Here, target Y is a discrete target variable

Today:

- Data Representation for ML systems
- ☐ Review of Linear Algebra and Matrix Calculus

DEFINITIONS - SCALAR

- a scalar is a number
 - (denoted with regular type: 1 or 22)

DEFINITIONS - VECTOR

- ◆ Vector: a single row or column of numbers
 - denoted with **bold small letters**
 - row vector

$$\mathbf{a} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

column vector (default)

$$\mathbf{b} = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}$$

DEFINITIONS - VECTOR

 Vector in Rⁿ is an ordered set of n real numbers.

- e.g. $\mathbf{v} = (1,6,3,4)$ is in R⁴

- A column vector:

- A row vector:

DEFINITIONS - MATRIX

◆A matrix is an array of numbers

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

- ◆ Denoted with a **bold Capital letter**
- ◆All matrices have an order (or dimension): that is, the number of rows * the number of columns. So, A is 2 by 3 or (2 * 3).
- ◆ A square matrix is a matrix that has the same number of rows and columns (n * n)

DEFINITIONS - MATRIX

 m-by-n matrix in R^{mxn} with m rows and n columns, each entry filled with a (typically) real number:

• e.g. 3*3 matrix

$$\begin{pmatrix}
1 & 2 & 8 \\
4 & 78 & 6 \\
9 & 3 & 2
\end{pmatrix}$$

Square matrix

Special matrices

$$\begin{pmatrix} a & b & 0 & 0 \\ c & d & e & 0 \\ 0 & f & g & h \\ 0 & 0 & i & j \end{pmatrix}$$
tri-diagonal
$$\begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{pmatrix}$$
lower-triangular

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
Dr. Yanjun Qi
\end{pmatrix}$$
I (identity matrix)

Special matrices: Symmetric Matrices

$$A=A^T (a_{ij}=a_{ji})$$

e.g.:
$$\begin{bmatrix} 4 & 5 & -3 \\ 5 & 7 & 2 \\ -3 & 2 & 10 \end{bmatrix}$$

Review of MATRIX OPERATIONS

- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

(1) Transpose

Transpose: You can think of it as

"flipping" the rows and columns

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$\bullet \ (A^T)^T = A$$

$$\bullet \ (AB)^T = B^T A^T$$

$$\bullet (AB)^T = B^T A^T$$

$$\bullet (A+B)^T = A^T + B^T$$

(2) Matrix Addition/Subtraction

- Matrix addition/subtraction
 - Matrices must be of same size.

(2) Matrix Addition/Subtraction An Example

If we have

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$$

then we can calculate C = A + B by

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ 11 & 15 \\ 14 & 18 \end{bmatrix}$$

(2) Matrix Addition/Subtraction An Example

Similarly, if we have

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$$

then we can calculate C = A - B by

$$\mathbf{C} = \mathbf{A} - \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} - \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} -6 & -8 \\ -5 & -7 \\ -4 & -6 \end{bmatrix}$$

OPERATION on MATRIX

- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

(3) Products of Matrices

- We write the multiplication of two matrices A and B as AB
- This is referred to either as
 - pre-multiplying **B** by **A**or
 - post-multiplying A by B
- So for matrix multiplication AB, A is referred to as the premultiplier and B is referred to as the postmultiplier

(3) Products of Matrices

$$\begin{bmatrix}
a_{11} & a_{12} & . & a_{1n} \\
a_{21} & a_{22} & . & a_{2n} \\
... & ... & ... & ... \\
a_{m1} & a_{m2} & . & a_{mn}
\end{bmatrix}
\begin{bmatrix}
b_{11} & b_{12} & . & b_{1p} \\
b_{21} & b_{22} & . & b_{2p} \\
... & ... & ... & ... \\
b_{q1} & b_{q2} & . & b_{qp}
\end{bmatrix}
=
\begin{bmatrix}
c_{11} & c_{12} & . & c_{1p} \\
c_{21} & c_{22} & . & c_{2p} \\
... & ... & c_{ij} & ... \\
c_{m1} & c_{m2} & . & c_{mp}
\end{bmatrix}$$

Condition: n = q $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$AB \neq BA$$

(3) Products of Matrices

- In order to multiply matrices, they must be conformable (the number of columns in the premultiplier must equal the number of rows in postmultiplier)
- Note that
 - an (m x n) x (n x p) = (m x p)
 - an (m x n) x (p x n) = cannot be done
 - $a(1 \times n) \times (n \times 1) = a scalar(1 \times 1)$

Products of Matrices

• If we have $A_{(3x3)}$ and $B_{(3x2)}$ then

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \mathbf{x} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} = \mathbf{C}$$

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

$$c_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$$

$$c_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$$

Matrix Multiplication An Example

• If we have
$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

9/1/16

then
$$AB = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} = \begin{bmatrix} 30 & 66 \\ 36 & 81 \\ 42 & 96 \end{bmatrix}$$

where
$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = 1(1) + 4(2) + 7(3) = 30$$

 $c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} = 1(4) + 4(5) + 7(6) = 66$
 $c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} = 2(1) + 5(2) + 8(3) = 36$
 $c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} = 2(4) + 5(5) + 8(6) = 81$
 $c_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} = 3(1) + 6(2) + 9(3) = 42$
 $c_{32} = a_{31}b_{12}^{r, vapiwa}a_{32}^{Oi}b_{22}^{OVA} + a_{33}^{Oi}b_{32}^{Oi} = 3(4) + 6(5) + 9(6) = 96$

Some Properties of Matrix Multiplication

- Note that
 - Even if conformable, AB does not necessarily equal BA (i.e., matrix multiplication is not commutative)
 - Matrix multiplication can be extended beyond two matrices
 - matrix multiplication is associative, i.e.,
 A(BC) = (AB)C

Some Properties of Matrix Multiplication

♦ Multiplication and transposition $(AB)^T = B^TA^T$

◆Multiplication with Identity Matrix

$$AI = IA = A$$
, where $I = \begin{bmatrix} 1 & 0 & . & 0 \\ 0 & 1 & . & 0 \\ ... & ... & ... \\ 0 & 0 & . & 1 \end{bmatrix}$

Products of Scalars & Matrices → Example, If we have

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $\mathbf{b} = 3.5$

then we can calculate bA by

$$\mathbf{bA} = 3.5 \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3.5 & 7.0 \\ 10.5 & 14.0 \\ 17.5 & 21.0 \end{bmatrix}$$

- Dot (or Inner) Product of two Vectors
 - Premultiplication of a column vector a by conformable row vector b yields a single value called the dot product or inner product - If

$$\mathbf{a}^{\mathsf{T}} = \begin{bmatrix} 3 & 4 & 6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}$

then their inner product gives us

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \mathbf{a} \cdot \mathbf{b} = \begin{bmatrix} 3 & 4 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix} = 3(5) + 4(2) + 6(8) = 71 = \mathbf{b}^{\mathsf{T}}\mathbf{a}$$

which is the sum of products of elements in similar positions for the two vectors

- Outer Product of two Vectors
 - Postmultiplication of a column vector a by conformable row vector b yields a matrix containing the products of each pair of elements from the two matrices (called the outer product) - If

$$\mathbf{a}^{\mathsf{T}} = \begin{bmatrix} 3 & 4 & 6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}$

then **ab**^T gives us

$$\mathbf{ab^{\mathsf{T}}} = \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix} \begin{bmatrix} 5 & 2 & 8 \end{bmatrix} = \begin{bmatrix} 15 & 6 & 24 \\ 20 & 8 & 32 \\ 30 & 12 & 48 \end{bmatrix}$$

9/1/16

Outer Product of two Vectors, e.g. a special case :

As an example of how the outer product can be useful, let $1 \in \mathbb{R}^n$ denote an n-dimensional vector whose entries are all equal to 1. Furthermore, consider the matrix $A \in \mathbb{R}^{m \times n}$ whose columns are all equal to some vector $x \in \mathbb{R}^m$. Using outer products, we can represent A compactly as,

- Sum the Squared Elements of a Vector
 - Premultiply a column vector a by its transpose

then premultiplication by a row vector **a**^T

$$a^T = \begin{bmatrix} 5 & 2 & 8 \end{bmatrix}$$

will yield the sum of the squared values of elements for **a**, i.e.

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} = \begin{bmatrix} 5 & 2 & 8 \\ 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix} = 5^2 + 2^2 + 8^2 = 93$$

Matrix-Vector Products (I)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, their product is a vector $y = Ax \in \mathbb{R}^m$.

If we write A by rows, then we can express Ax as,

$$y=Ax=\left[egin{array}{cccc} -&a_1^T&-\ -&a_2^T&-\ dots&dots\ -&a_m^T&- \end{array}
ight]x=\left[egin{array}{cccc} a_1^Tx\ a_2^Tx\ dots\ dots\ a_m^Tx \end{array}
ight].$$

Matrix-Vector Products (II)

Alternatively, let's write A in column form. In this case we see that,

$$y = Ax = \left[egin{array}{cccc} \mid & \mid & & \mid & \mid \\ a_1 & a_2 & \cdots & a_n \\ \mid & \mid & & \end{array}
ight] \left[egin{array}{c} x_1 \\ x_2 \\ dots \\ x_n \end{array}
ight] = \left[egin{array}{c} a_1 \\ \end{array}
ight] x_1 + \left[egin{array}{c} a_2 \\ \end{array}
ight] x_2 + \ldots + \left[egin{array}{c} a_n \\ \end{array}
ight] x_n \ .$$

In other words, y is a *linear combination* of the *columns* of A, where the coefficients of the linear combination are given by the entries of x.

Special Uses for Matrix Multiplication

Matrix-Vector Products (III)

to multiply on the left by a row vector. This is written, $y^T = x^T A$ for $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^m$, and $y \in \mathbb{R}^n$.

$$y^T=x^TA=x^T\left[egin{array}{cccc} ert & ert & ert \ a_1 & a_2 & \cdots & a_n \ ert & ert & ert \end{array}
ight]=\left[egin{array}{cccc} x^Ta_1 & x^Ta_2 & \cdots & x^Ta_n \end{array}
ight]$$

which demonstrates that the *i*th entry of y^T is equal to the inner product of x and the *i*th column of A.

Special Uses for Matrix Multiplication

Matrix-Vector Products (IV)

so we see that y^T is a linear combination of the rows of A, where the coefficients for the linear combination are given by the entries of x.

MATRIX OPERATIONS

- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

(4) Vector norms

A norm of a vector ||x|| is informally a measure of the "length" of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

L_{infinity}

$$||x||_{\infty} = \max_i |x_i|$$

Vector Norm (L2, when p=2)

$$\left\| \left(\begin{array}{c} 1\\2 \end{array} \right) \right\| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

9/1/16

Dr. Yanjun Qi / UVA CS 6316 / f16

Vector Norms (e.g.,)

Drawing shows unit sphere in two dimensions for each

Norms have following values for vector shown

$$\|\boldsymbol{x}\|_1 = 2.8 \quad \|\boldsymbol{x}\|_2 = 2.0 \quad \|\boldsymbol{x}\|_{\infty} = 1.6$$

In general, for any vector x in \mathbb{R}^n , $\|x\|_1 \ge \|x\|_2 \ge \|x\|_\infty$

More General: Norm

- A norm is any function g() that maps vectors to real numbers that satisfies the following conditions:
- Non-negativity: for all $\boldsymbol{x} \in \mathbb{R}^D$, $g(\boldsymbol{x}) \geq 0$
- Strictly positive: for all x, g(x) = 0 implies that x = 0
- Homogeneity: for all x and a, g(ax) = |a| g(x), where |a| is the absolute value.
- Triangle inequality: for all $x, y, g(x + y) \le g(x) + g(y)$

Orthogonal & Orthonormal

Inner Product defined between

Inner Product defined between column vector
$$\mathbf{x}$$
 and \mathbf{y} , as
$$\mathbf{x} \bullet \mathbf{y} = x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

If
$$u \cdot v = 0$$
, $||u||_2! = 0$, $||v||_2! = 0$
 $\rightarrow u \text{ and } v \text{ are orthogonal}$

If
$$u \cdot v = 0$$
, $||u||_2 = 1$, $||v||_2 = 1$
 $\rightarrow u$ and v are orthonormal

Orthogonal matrices

Notation:

$$A = \begin{bmatrix} a_{11} & a_{12} & . & a_{1n} \\ a_{21} & a_{22} & . & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & . & a_{mn} \end{bmatrix}, \qquad u_1^T = \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ u_2^T & = \begin{bmatrix} a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ u_m^T & = \begin{bmatrix} a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix} \end{bmatrix} A = \begin{bmatrix} u_1^T \\ u_2^T \\ ... \\ u_m^T \end{bmatrix}$$

A is orthogonal if:

(1)
$$u_k$$
. $u_k = 1$ or $||u_k|| = 1$, for every k

(2) u_j . $u_k = 0$, for every $j \neq k$ (u_j is perpendicular to u_k)

Example:
$$\begin{vmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{vmatrix}$$

Orthogonal matrices

• Note that if A is orthogonal, it easy to find its inverse:

$$AA^{T} = A^{T}A = I$$
 (i.e., $A^{-1} = A^{T}$)

Property: ||Av|| = ||v|| (does not change the magnitude of v)

Matrix Norm

 Definition: Given a vector norm ||x||, the matrix norm defined by the vector norm is given by:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

- What does a matrix norm represent?
- It represents the maximum "stretching" that A does to a vector x -> (Ax).

Matrix 1- Norm

Theorem A: The matrix norm corresponding to 1-norm is maximum absolute column sum:

$$||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

Proof: From previous slide, we can have $||A||_1 = \max_{\|x\|=1} ||Ax||_1$

Also,
$$Ax = x_1 A_1 + x_2 A_2 + \dots + x_n A_n = \sum_{j=1}^{n} x_j A_j$$

where A_i is the j-th column of A.

MATRIX OPERATIONS

- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

(5) Inverse of a Matrix

- The inverse of a matrix A is commonly denoted by A⁻¹ or inv A.
- The inverse of an $n \times n$ matrix **A** is the matrix \mathbf{A}^{-1} such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I} = \mathbf{A}^{-1}\mathbf{A}$
- The matrix inverse is analogous to a scalar reciprocal
- A matrix which has an inverse is called nonsingular

(5) Inverse of a Matrix

- For some n x n matrix A, an inverse matrix A⁻¹
 may not exist.
- A matrix which does not have an inverse is singular.
- An inverse of $n \times n$ matrix **A** exists iff |A| not 0

THE DETERMINANT OF A MATRIX

- ◆The determinant of a matrix A is denoted by |A| (or det(A) or det A).
- ◆Determinants exist only for square matrices.

• E.g. If
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$|A| = a_{11}a_{22} - a_{12}a_{21}$$

THE DETERMINANT OF A MATRIX

2 x 2

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad det(A) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

3 x 3

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

 $n \times n$

$$det(A) = \sum_{j=1}^{m} (-1)^{j+k} a_{jk} det(A_{jk})$$
, for any $k: 1 \le k \le m$

THE DETERMINANT OF A MATRIX

$$det(AB) = det(A)det(B)$$

$$det(A + B) \neq det(A) + det(B)$$

If
$$A = \begin{bmatrix} a_{11} & 0 & . & 0 \\ 0 & a_{22} & . & 0 \\ . & . & . & . \\ . & . & . & . \\ 0 & 0 & . & a_{nn} \end{bmatrix}$$
, then $det(A) = \prod_{i=1}^{n} a_{ii}$

HOW TO FIND INVERSE MATRIXES? An example,

and |A| not 0

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Matrix Inverse

• The inverse A^{-1} of a matrix A has the property:

$$AA^{-1} = A^{-1}A = I$$

- A^{-1} exists only if $det(A) \neq 0$
- Terminology
 - Singular matrix: A⁻¹ does not exist
 - Ill-conditioned matrix: A is close to being singular

PROPERTIES OF INVERSE MATRICES

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

Inverse of special matrix

• For diagonal matrices $\mathbf{D}^{-1} = \operatorname{diag}\{d_1^{-1}, \dots, d_n^{-1}\}$

- For orthogonal matrices $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$
 - a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors)

Pseudo-inverse

• The pseudo-inverse A^+ of a matrix A (could be non-square, e.g., m x n) is given by:

$$A^+ = (A^T A)^{-1} A^T$$

• It can be shown that:

$$A^{+}A = I$$
 (provided that $(A^{T}A)^{-1}$ exists)

MATRIX OPERATIONS

- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

(6) Rank: Linear independence

 A set of vectors is linearly independent if none of them can be written as a linear combination of the others.

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} \quad x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

$$x3 = -2x1 + x2$$

→ NOT linearly independent

(6) Rank: Linear independence

• Alternative definition: Vectors $v_1,...,v_k$ are linearly independent if $c_1v_1+...+c_kv_k=0$ implies $c_1=...=c_k=0$

e.g.
$$\begin{pmatrix}
1 & 0 \\
2 & 3 \\
1 & 3
\end{pmatrix}
\begin{pmatrix}
u \\
v
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}$$
(u,v)=(0,0), i.e. the columns are linearly independent.

(6) Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 - = The maximal number of linearly independent columns
 - =The maximal number of linearly independent rows

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$
Rank=? Rank=?

- If A is n by m, then
 - $\operatorname{rank}(A) \le \min(m,n)$
 - If n=rank(A), then A has full row rank
 - If m=rank(A), then A has full column rank

(6) Rank of a Matrix

• Equal to the dimension of the largest square sub-matrix of A that has a non-zero determinant

Example:
$$\begin{bmatrix} 4 & 5 & 2 & 14 \\ 3 & 9 & 6 & 21 \\ 8 & 10 & 7 & 28 \\ 1 & 2 & 9 & 5 \end{bmatrix}$$
 has rank 3

$$det(A) = 0$$
, but $det\begin{pmatrix} 4 & 5 & 2 \\ 3 & 9 & 6 \\ 8 & 10 & 7 \end{pmatrix} = 63 \neq 0$

(6) Rank and singular matrices

If A is nxn, rank(A) = n iff A is nonsingular (i.e., invertible).

If A is nxn, rank(A) = n iff $det(A) \neq 0$ (full rank).

If A is nxn, rank(A) < n iff A is singular

MATRIX OPERATIONS

- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

Review: Derivative of a Function

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$
 is called the derivative of f at a .

We write:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

"The derivative of f with respect to x is ..."

There are many ways to write the derivative of y = f(x)

 \rightarrow e.g. define the slope of the curve y=f(x) at the point x

Review: Derivative of a Quadratic Function

$$y = x^2 - 3$$

$$y' = \lim_{h \to 0} \frac{(x+h)^2 - 3 - (x^2 - 3)}{h}$$

$$y' = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$y' = \lim_{h \to 0} 2x + h$$

$$y' = 2x$$

Dr. Yanjun Qi / UVA CS 6316 / f16

Some important rules for taking derivatives

- Scalar multiplication: $\partial_x [af(x)] = a[\partial_x f(x)]$
- Polynomials: $\partial_x[x^k] = kx^{k-1}$
- Function addition: $\partial_x [f(x) + g(x)] = [\partial_x f(x)] + [\partial_x g(x)]$
- Function multiplication: $\partial_x [f(x)g(x)] = f(x)[\partial_x g(x)] + [\partial_x f(x)]g(x)$
- Function division: $\partial_x \left[\frac{f(x)}{g(x)} \right] = \frac{[\partial_x f(x)]g(x) f(x)[\partial_x g(x)]}{[g(x)]^2}$
- Function composition: $\partial_x [f(g(x))] = [\partial_x g(x)][\partial_x f](g(x))$
- Exponentiation: $\partial_x[e^x] = e^x$ and $\partial_x[a^x] = \log(a)e^x$
- Logarithms: $\partial_x[\log x] = \frac{1}{x}$

Review: Definitions of gradient (Matrix_calculus / Scalar-by-matrix)

Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of

→ Denominator layout

$$\nabla_A f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{2n}} & \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

Review: Definitions of gradient (Matrix_calculus / Scalar-by-vector)

 Size of gradient is always the same as the size of

→ Denominator layout

$$abla_x f(x) = \left[egin{array}{c} rac{\partial f(x)}{\partial x_1} \ rac{\partial f(x)}{\partial x_2} \ dots \ rac{\partial f(x)}{\partial x_n} \end{array}
ight] \in \mathbb{R}^n \quad ext{if } x \in \mathbb{R}^n$$

For Examples

Exercise: a simple example

$$f(w) = w^{T}x = \begin{bmatrix} w_{1}, w_{2}, w_{3} \end{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = w_{1} + 2w_{2} + 3w_{3}$$

$$\frac{\partial f}{\partial w_1} = 1$$

$$\frac{\partial f}{\partial w_2} = 2$$

$$\frac{\partial f}{\partial w_3} = 3$$

→ Denominator layout

$$\frac{\partial f}{\partial w} = \frac{\partial w^T x}{\partial w} = x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Even more general Matrix Calculus: Types of Matrix Derivatives

	Scalar	Vector	Matrix
Scalar	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \left[\frac{\partial y_i}{\partial x}\right]$	$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \left[\frac{\partial y_{ij}}{\partial x}\right]$
Vector	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y}{\partial x_j}\right]$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y_i}{\partial x_j}\right]$	
Matrix	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{X}} = \left[\frac{\partial y}{\partial x_{ji}}\right]$		

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics

Review: Hessian Matrix / n==2 case

Singlevariate

→ multivariate

f(x,y)

1st derivative to gradient,

$$g = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

2nd derivative to Hessian

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

Review: Hessian Matrix

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number. Then the **Hessian** matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}.$$

Today Recap

- Data Representation
- ☐ Linear Algebra and Matrix Calculus Review
- 1) Transposition
- 2) Addition and Subtraction
- 3) Multiplication
- 4) Norm (of vector)
- 5) Matrix Inversion
- 6) Matrix Rank
- 7) Matrix calculus

Extra:

- HW1 is released today @ Collab
- HW1 is due next Sat @ midnight

 Handout for Lecture 2 has been posted @ <u>http://www.cs.virginia.edu/yanjun/teach/</u> 2016f/schedule.html

Extra

- The following topics are covered by handout, but not by this slide (will be covered ...)
 - Trace()
 - Eigenvalue / Eigenvectors
 - Positive definite matrix , Gram matrix
 - Quadratic form
 - Projection (vector on a plane, or on a vector)

References

- □ http://www.cs.cmu.edu/~zkolter/course/linalg/ index.html
- ☐ Prof. James J. Cochran's tutorial slides "Matrix Algebra Primer II"
- http://www.cs.cmu.edu/~aarti/Class/10701/recitation/LinearAlgebra Matlab Review.ppt
- ☐ Prof. Alexander Gray's slides
- ☐ Prof. George Bebis' slides
- □ Prof. Hal Daum e III' notes