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10
11 C=A-B=?
12 C=A+B=? .
Minimum
requirement
test
4
5 C=AB=?
6_ C=BA=?
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Today:

] Data Representation for ML systems

] Review of Linear Algebra and Matrix Calculus
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A Typical Machine Learning Pipeline

Optimization

X

Low-level Pre- Feature Feature
sensing processing Extract Select

e.g. Data Cleaning  Task-relevant

Inference,
Prediction,
Recognition

Label
Collection

Y

Evaluation
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e.g. SUPERVISED LEARNING

_________________________

* Find function to map input space X to
output space Y

—————————————————————————————————————————————————————————————

» Generalisation: learn function / hypothesis

from past data in order to “explain”, “predict”,:
“model” or “control” new data examples

IH

————————————————————————————————————————————————————————————
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X, X, X, Y

S1
A Dataset
So
83 ("o > ("""
. f i Xi—Y:
4 .o ! \m e o
Sg
S

» Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]
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Main Types of Columns

X, X, X, Y * Continuous: a real
o ' number, for example,
1
age or height
So
S3
) * Discrete: a symbol, like
4
“Good” or “Bad”
S5
S6
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e.g. SUPERVISED Classification

training
dataset

test
dataset

9/1/16

target/class

}

2ol e g R =

Training dataset consists
of input-output pairs

model
learn f
B * e.g. Here,
- 2 target Yis a
discrete target
apply A :
model A variable
f(x,)
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Today:

] Data Representation for ML systems

] Review of Linear Algebra and Matrix Calculus
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DEFINITIONS - SCALAR

€ a scalar 1s a number
— (denoted with regular type: 1 or 22)




DEFINITIONS - VECTOR

@ Vector: a single row or column of

numbers
— denoted with bold small letters

— row vector
a= |1 2 3 4 5]
— column vector (default)

b=

| |
Ikh-hk»l\.)»—*l




DEFINITIONS - VECTOR

« Vector in R" is an ordered set

of n real numbers.
- e.g.v=(1,6,3,4)isin R*

6
. —/->
— A column vector:

— A row vector:

(1)

3

(4
\(

1 6 3 4)




DEFINITIONS - MATRIX

€ A matrix is an array of numbers

A_ [an a2 Cl13:|

ad d» A

€ Denoted with a bold Capital letter
& All matrices have an order (or dimension):

that i1s, the number of rows * the number of
columns. So, A is 2 by 3 or (2 * 3).

€ A square matrix 1s a matrix that has the
same number of rows and columns (n * n)




DEFINITIONS - MATRIX

* m-by-n matrix in R™" with m rows and
n columns, each entry filled with a
(typically) real number:

* e.g. 3*3matrix , , g\

4 78 6
0 3 2) Square

matrix

\




N

oS O O

(a 0 0)
0 b 0

\OOC

-
_/

S~ QL ™
- > O

Special matrices

diagonal

(a
0

\O

tri-diagonal

0 1

(1 0 0)

\001

0

b ¢
d e | upper-triangular

Of)

b ¢ 0 | lower-triangular

/

| (identity matrix)




e.g.:

Special matrices:
Symmetric Matrices

_ 4T, —
A=4" (az=a )

4 5 -3
5 7 2
3 2 10




Review of MATRIX
OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus




(1) Transpose

Transpose: You can think of it as
— “flipping” the rows and columns

T
e.g. (a
S M RO
a4 b T (a ¢ o (AB)I =BT AT
c d B b d o (A+DB) =AT + BT
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(2) Matrix Addition/Subtraction

e Matrix addition/subtraction

— Matrices must be of same size.




(2) Matrix Addition/Subtraction

An Example
 |f we have
(1 2 (7 10|
A=|3 4 and B=|(8 11
5 6 9 12

then we can calculate C=A + B by

1 2] [7 10| [ 8 12
C=A+B=|3 4|+|8 11|=|11 15
5 6| |9 12| |14 18]
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(2) Matrix Addition/Subtraction

An Example

e Similarly, if we

A =

O

have

(@) PN\

and B=

7 10]
8 11

9 12

then we can calculate C=A - B by

C=A-B=

9/1/16

SRS
3 4

_5 6_

7 10|
8 11

_-6 -8_
-5 -7

9 12
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OPERATION on MATRIX

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(3) Products of Matrices

* We write the multiplication of two matrices A
and B as AB

* This is referred to either as
e pre-multiplying B by A
or
e post-multiplying A by B

e So for matrix multiplication AB, A is referred to as
the premultiplier and B is referred to as the
postmultiplier




(3) Products of Matrices

mxn gxp mxp
ay  ap . Ay |[buy b . Dy €11 €1 Cip
dy dx : an byy Dby . b:-p €21 C2 - Cap
L A1 Am2 - Amn 1L bql bql : bqp J LCm Cm2 - Cmp
n

Condition:n=q < =2 %0s AB # BA




(3) Products of Matrices

* |[n order to multiply matrices, they must be
conformable (the number of columns in the
premultiplier must equal the number of rows
in postmultiplier)

* Note that
ean(mxn)x(nxp)=(mxp)
 an (m x n) x (p x n) = cannot be done
*a(lxn)x(nx1l)=ascalar(1x1)
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Products of Matrices

If we have A 3,3 and B 5, then

all a12 a13 bll I:)12 C11 C12
AB = a21 a22 a23 X |:)21 |:)22 C21 C22
a31 a32 a33 b31 b32 C:31 C32

Cyy = aybyy +a,by +ay5b5,
Ci, = ayby, +a,,b,, +a;5b5,
Cy; = @yby; +ay,b,, +ayby,
Cy, = @y, +a,,05 +3,5b5,
C3; = @yby; +a3b,, +a3by,
C3, = @y, +a5,b,, +a55b;,
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Matrix Multiplication

An Example
. 1 4 7 1 4]
Ifwehave A_|2 5 8| and B=|2 5
36 9 3 6
1 4 7] [1 4] |c, c,] [30 66]
then aAB-|2 5 8|x[2 5|=|c, c,|=|36 81
36 9] |3 6] |cy G| |42 96

where ¢, =a.b, +a,b, +a,b;, =1(1)+4(2)+7(3)=30

e Cy, = ay,By, #agbyy ¥ E5h5S = 3(4)+6(5)+9(6) =96




Some Properties of
Matrix Multiplication

e Note that

* Even if conformable, AB does not necessarily
equal BA (i.e., matrix multiplication is not
commutative)

* Matrix multiplication can be extended beyond
two matrices

* matrix multiplication is associative, i.e.,
A(BC) = (AB)C




Some Properties of
Matrix Multiplication

€ Multiplication and transposition
(AB)T = BTAT

€ Multiplication with Identity Matrix

Al =14 = A. where [ =




Special Uses for
Matrix Multiplication

 Products of Sca

have

S

A= 3 4

_5 6_

and b=3.5

then we can calculate bA by

bA =35

SRS
3 4

_5 6_

3.5 7.0
10.5 14.0

17.5 21.0

WU@ Note that bA =DAartJ)un!1f/ubA(!s%31§/f$6calar

ars & Matrices = Example, If we
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Special Uses for
Matrix Multiplication

* Dot (or Inner) Product of two Vectors

* Premultiplication of a column vector a by
conformable row vector b yields a single value
called the dot product or inner product - If

aT=[3 4 6] and b=-§

then their inner product gives us

aTb=a-b=[ 3 4 6 ]

5
2
8

= 3(5)+4(2)+6(8) -71=b"a

which is the su_-m_ of products of elements in
e similar positions'for thé two vectors "




e Quter Product of two Vectors

9/1/16

Special Uses for
Matrix Multiplication

* Postmultiplication of a column vector a by
conformable row vector b yields a matrix
containing the products of each pair of
elements from the two matrices (called the
outer product) - If

aT=[3 4 6] and b -

then abT' gives us

ab" =

3
4
6

[5 2 8]=

15
20

30 12 48
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2
8

6 24 |
8 32

32




Special Uses for

Matrix Multiplication

e Quter Product of two Vectors, e.g. a special

case .

As an example of how the outer product can be useful, let 1 € R™ denote an n-dimensional
vector whose entries are all equal to 1. Furthermore, consider the matrix A € R™*™ whose
columns are all equal to some vector z € R™. Using outer products, we can represent A

compactly as,

1)

9/1/16

r1T I1 I I

T T T x
S Sl= [ 1] =T

xm xm xm xm
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Special Uses for
Matrix Multiplication

 Sum the Squared Elements of a Vector
* Premultiply a column vector a by its transpose

— |If
a=

5
2

8

then premultiplication by a row vector a'
a’ =[ 5 2 8 ]
will yield the sum of the squared values of

elements for a, i.e.

aTa=[5 2 8]

s

DnYanﬂani/UVN

2
-F5g§l6_

=52+2°+8" =93
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Special Uses for

 Matrix-Vector Products ()

Given a matrix A € R™*" and a vector z € R", their product is a vector y = Az € R™.

Matrix Multiplication

If we write A by rows, then we can express Az as,

9/1/16

S
|

Az =

T
a;

az

T
A,

Dr. Yanjun Qi / UVA CS 6316 / f16
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Special Uses for
Matrix Multiplication

 Matrix-Vector Products (Il)

Alternatively, let’s write A in column form. In this case we see that,

| 1] o
y:Agj: a1 Q9 -+ Qap . = a; 1 + a- To+ ...+ an Tn -
| | :

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of z.

9/1/16 Dr. Yanjun Qi / UVA CS 6316 / f16 36




Special Uses for
Matrix Multiplication

 Matrix-Vector Products (lll)

to multiply on the left by a row vector. This is written, y! = 27 A for A € R™*", z € R™,
and y € R".

| |

which demonstrates that the ith entry of y* is equal to the inner product of z and the ith
column of A.
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Special Uses for
Matrix Multiplication

 Matrix-Vector Products (IV)

yT — :L‘TA
- T -
— o —
= [:E]. "‘Bz . s :‘En] .
T

=z | — of —J4+z[— of —]+..+z[— af —]

so we see that y’ is a linear combination of the rows of A, where the coefficients for the
linear combination are given by the entries of x.
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(4) Vector norms

A norm of a vector ||x|]| is informally a measure of
the “length” of the vector.

n 1/p
el — (z ||)
1=1

— Common norms: L,, L, (Euclidean)

n
lel =D ll el = 4| Y a2
1=1 \ 1=1

o I—infinity

| ]| 00 = max; |2
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Vector Norm (L2, when p=2)

o o ¢ o
(2o
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Vector Norms (e.g.,)

Drawing shows unit sphere in two dimensions for each
norm 5

(—1.6,1.2)
_— N

Norms have following values for vector shown
Jzi =28 [lz]lz =20 [a]o=1.6

In general, for any vector  in R™, ||z||1 > ||z||2 > |||/




More General : Norm

 Anorm is any function g() that maps vectors
to real numbers that satisfies the following
conditions:

Non-negativity: for all x € R?, g(z) > 0
Strictly positive: for all x, g(x) = 0 implies that * = 0
Homogeneity: for all  and a, g(ax) = |a| g(x), where |a| is the absolute value.

Triangle inequality: for all x,y, g(x +y) < g(x) + g(y)
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Orthogonal & Orthonormal

Inner Product defined between
column vector xand y, as Y1

To n
9 Xoy: IT;/ ceR = [ xry T o Iy ] : = Z Lili.
. i=1

| yn |

If uev=0, [ |u|]|,!=0, ||v]],!=0
- u and v are orthogonal

If uev=0, | ul[,=1, ||v]],=1
- u and v are orthonormal
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44




Orthogonal matrices

« Notation:

[ a a,, . d o
H 12 b u; =[a;; a;, -+ ayy] u?
| 92t 42 - Gon s =[ary Ary -+ Ary] 1l
r

| Uy 2 : Ui Uy = [aml Am2 " (’nm] ] ”}??"? ]

« A is orthogonal if:
(1) up. 2, =1 or ||ug| =1, for every &

(2) uj.up =0, for every j # k (u; 1s perpendicular to u;)

cos(@) —sin(@) J

Example: { sin()  cos(6)
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Orthogonal matrices

« Note that if A is orthogonal, it easy to find its inverse:

AT =AT4=1 (e, 4 =47

Property:  ||4v|| =|[v|| (does not change the magnitude of v)




Matrix Norm

Definition: Given a vector norm | |x]||, the matrix
norm defined by the vector norm is given by:

| x|
HAH = max ——
0|

What does a matrix norm represent?

It represents the maximum “stretching” that A does
to a vector x -> (Ax).




Matrix 1- Norm

Theorem A: The matrix norm corresponding to 1-norm
is maximum absolute column sum:

n
4], = max )
1 :
J izl

Proof: From previous slide, we can have | 4], = max]Ax]|
n

|x|=1
Also, Ax=x A +x,A ++x A :ijAj

Jj=1

a;

where A, is the j-th column of A.




MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(5) Inverse of a Matrix

The inverse of a matrix A is commonly
denoted by A or inv A.

The inverse of an n x n matrix A is the matrix
A1l suchthat AA1=1=A1A

The matrix inverse is analogous to a scalar
reciprocal

A matrix which has an inverse is called
nonsingular




(5) Inverse of a Matrix

 For some n x n matrix A, an inverse matrix A1
may not exist.

A matrix which does not have an inverse is
singular.

P N S




THE DETERMINANT OF A
MATRIX

&®The determinant of a matrix A 1s
denoted by |A| (or det(A) or det A).

® Determinants exist only for square
matrices.

OE o IfA= e

‘A‘ = a,a, —a,,a,,




THE DETERMINANT OF A
MATRIX

2X2
a1 (1 (14 dq-
.‘1: a . d‘\‘?ﬂ:x’i): - :Hllﬁff_njl”lj
try  dx dr;  dx
3x3
dyp dyp dp3
ary Az dyp g3 (12 dg3
Gy dxy dyy | =dq — s T a3
3y A3z (3 33 yy 3
(31 d3p ds3

nxn

m .
det(4) = E_l(—'l)”kf:rjkder(.iﬁ), forany k: 1 <k <m




THE DETERMINANT OF A
MATRIX

det(AB) = det(A)det(B)
det(A + B) # det(A4) + det(B)

(a,, 0 . 0 ]
0 (13_7 O
diagonal matrix: IfA4=| | thendet(4) = ]_[ a;;
. L. i=1
| 0 0 . ay, |




HOW TO FIND INVERSE MATRIXES?
An example,

olf 0 b

2 A = J and |A] not O

] d —b
det(A) |—c a

A—l




Matrix Inverse

* The inverse A-' of a matrix 4 has the property:
AA=A14=I

o A exists only if det(A4) #0

* Terminology

— Singular matrix: 4-/ does not exist
— Ill-conditioned matrix: A4 is close to being singular




PROPERTIES OF INVERSE
MATRICES

* (4B)' = B'A’

* ) - ()

T




Inverse of special matrix

» For diagonal matrices D' = diag{d;"’

. For orthogonal matrices A~!' = AT

— a square matrix with real entries whose columns and rows
are orthogonal unit vectors (i.e., orthonormal vectors)




Pseudo-inverse

* The pseudo-inverse A" of a matrix A (could be
non-square, €.g., m X n) 1s given by:

A+ — [:.‘ITA:}_IAT

e It can be shown that:

AT4 =1 (provided that (47 4)™" exists)




MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus




(6) Rank: Linear independence

o A set of vectors is linearly independent if none of them
can be written as a linear combination of the others.

i el (3

X3 =-2x1+ x2

W N =
— =

(S

=>» NOT linearly independent




(6) Rank: Linear independence

 Alternative definition: Vectors vy,...,v, are
linearly independent if c;v,+...+¢c v, = 0
implies ¢,=...=¢,=0
P : k/| | Ye ) (0)

1

v, v, v|lec |[=10

b T Ae ) (0,

e'g'fl 0) (0)

(1
» 31" |20
1 3N

(u,v)=(0,0), i.e. the columns are
linearly independent.

—
N—
—
N—




(6) Rank of a Matrix

* rank(A) (the rank of a m-by-n matrix A) is
= The maximal number of linearly independent columns
=The maximal number of linearly independent rows

b))

Rank=? Rank=?

« If Ais n by m, then
— rank(A)<= min(m,n)
— If n=rank(A), then A has full row rank
— If m=rank(A), then A has full column rank




(6) Rank of a Matrix

* Equal to the dimension of the largest square
sub-matrix of 4 that has a non-zero

determinant

o

I 1
\O

[W—
-
O ~1 O

Example:

(]

det(A4) = 0, but det(

r |
o o RN =N

14

21

28

S _

(s L

has rank 3

)=63%0

-1 N 2




(6) Rank and singular matrices

It 4 1s nxn, rank(A4) = n 1t A4 1s nonsigular (1.e., invertible).

If 4 1s nxn, rank(A4) = n itf det(4) # 0 (full rank).

If 4 1s nxn, rank(A4) < n it 4 1s sigular
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus




Review: Derivative of a Function

, a+h)—f(a
%11113 f( ) f( ) is called the derivative of fat .
%

We write: f,(x)=limf(x+h)_f(x)

h—0 h

“The derivative of f with respect to X is ...”

There are many ways to write the derivative of ) = f (X)

=>» e.g. define the slope of the curve y=f(x) at the point x
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[ \° LY T LY T )

Review: Derivative of a Quadratic Function

y=x" -3

302\ -1 0
-1
-2

_— N W B W O\

(x+h)2 —3—(x2 —3)

v h

R
y_£l%0 X

9/1/16

O

- 0
B Y =lim2x+4

h—0

Yy =2x
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Some important rules for taking derivatives

e Scalar multiplication: 9;[af(z)] = a[0,f(z)]

e Polynomials: 0,[z*] = kx*~1

e Function addition: 8,[f(z) + g(z)] = [0f(z)] + [029(x)]

e Function multiplication: 8;[f(z)g(z)] = f(x)[0.9(z)] + [0xf (x)]g(x)
_ [0 f(@)]9(2)— f(2)[029(x)]

[9(x)]?

e Function division: 0, [%]
e Function composition: 0,[f(g9(x))] = [0:9(x)][0zf](g(x))

e Exponentiation: 0,[e*] =e* and 0.[a*] =log(a)e”

1

Tz

e Logarithms: 0,[log z]
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Review: Definitions of gradient
(Matrix calculus / Scalar-by-matrix)

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m X n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of

=» Denominator layout

T Af(A)  Af(A)  8f(A) T
oA oA 0A
of(A) of(d) . of(A

vAf(A) e Rmxn — 3A21 6A22 aAgn
In principle, gradients are a . . .

natural extension of partial 8f(A) af(A) ... 6f(A)

derivatives to functions of 6Am1 aAmz 6Amn _
multiple variables.
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Review: Definitions of gradient
(Matrix calculus / Scalar-by-vector)

e Size of gradient is always the same as
the size of

=» Denominator layout

0f(z)

5ZB1 .
/@ 1c R if x € R"
wa(x) — :2

54 ()

OTn,
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__________

: ox!la B Dal x o
LOx o ox T
Dal Xb T
0X
Oag);Tb )
DalXa B Dal X1 a B
ox X ;
\ TB
Ox' Bx ~ (B+B')x
Ox

9/1/16

For Examples

— o o o o mm Em o e o o o Em Em Em Em e = o= my,
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9/1/16

Exercise: a simple example

( 1 \

f(W)=WTX=[W1,W2,W3] 2 |=w, +2w,+3w,
3
\
=» Denominator layout

of 1
ow, . ( 1 \
af . 8f=8W X=x= )
Jwo ow ow 3
of  _g \
Ou.’g
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Even more general Matrix Calculus:
Types of Matrix Derivatives

Scalar Vector Matrix
‘ dy dy _ |dwi| | dY _ [9¥iy
SC El,l al dar dz [ dar ] dr o

Vector = [ *

. , 5.
Matrix | 4% = [i]

0w 44

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics
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Review: Hessian Matrix / h==2 case

Singlevariate —> multivariate J(x,)
[ o)
e 1stderivative to gradient, g=Vj = Z;
P
/ 82_f 82 \
ox2 0xdy
» 2nd derivative to Hessian 1 = A




Review: Hessian Matrix

Suppose that f : R™ — R is a function that takes a vector in R" and returns a real number.
Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n x n

matrix of partial derivatives,

F B Be) . B) -

ax% 011019 0x10z,,

P M) .. )

V?f(x)ERanz 029011 6:3% 02902y
&L . N '

e B . B

L 0rn,027 02,019 0z .
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Today Recap

] Data Representation

 Linear Algebra and Matrix Calculus Review
1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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Extra:

* HW1 is released today @ Collab
e HW1 is due next Sat @ midnight

 Handout for Lecture2 has been posted @
http://www.cs.virginia.edu/yanjun/teach/
2016f/schedule.html
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Extra

* The following topics are covered by handout,
but not by this slide (will be covered ...)

— Trace()

— Eigenvalue / Eigenvectors

— Positive definite matrix , Gram matrix
— Quadratic form

— Projection (vector on a plane, or on a vector)
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