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Where are we ? =
major sections of this course

| ] Regression (supervised) —‘
 Classification (supervised)
] Feature selection

J Unsupervised models
. Dimension Reduction (PCA)
-  Clustering (K-means, GMM/EM, Hierarchical )

 Learning theory

- Graphical models
J (BN and HMM slides shared)
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s, An unlabeled

Sa Dataset X —‘

S3

Sq a data matrix of n observations on
p variables X 15X+ X,

S5

S6

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a classification label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]

11/30/16 3
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What is clustering?

* Find groups (clusters) of data points such that data points in a \
group will be similar (or related) to one another and different from
(or unrelated to) the data points in other groups

Intra-cluster
distances are
minimized

11/30/16

Inter-cluster
distances are
maximized
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Roadmap: clustering

" Definition of "groupness” _‘
= Definition of "similarity/distance"
" Representation for objects
= How many clusters?
" Clustering Algorithms
m) = Partitional algorithms
" Hierarchical algorithms
* Formal foundation and convergence

11/30/16 5
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Clustering Algorithms

| * Partitional algorithms

. \ W IR
— Usually start with a random 2 o M0y
(partial) partitioning | “e
— Refine it iteratively "‘; %
* K means clustering —
{- Mixture-Model based clustering

* Hierarchical algorithms
— Bottom-up, agglomerative
— Top-down, divisive

11/30/16
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(1) Hierarchical Clustering

Task Clustering
Representation n/a

1 . i No cLarIy

Score I[unctlon | defined loss
o greedy bottom-up (or

Searcthrtlmlzatlon | top-down)

parametrs B
i (tree)

11/30/16 7
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(2) Partitional Clustering

e Nonhierarchical

e Construct a partition of n objects into a set of
K clusters

-@seahas togpecifﬂthe@esired numbeaof

clusters K.

YA
@ ) 7”%@

% VR

n; H
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Partitional clustering (e.g. K=3)

R

Original points Partitional clustering




Partitional clustering (e.g. K=3)
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Clustering Algorithms

* Partitional algorithms 2 iRz \
— Usually start with a random T (IR’ B ;
& -
(partial) partitioning - E,._ ;
— Refine it iteratively g N -

‘ * K means clustering
* Mixture-Model based clustering

11/30/16
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Partitioning Algorithms

-

* Given: a set of objects and the number K

* Find: a partition of K clusters that optimizes a
chosen partitioning criterion

o0
‘ — Globally optimal: exhaustively enumerate aIIB @(‘9,54@
\

partitions
— Effective heuristic methods: K-means and K-
medoids algorithms

11/30/16
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K-Means

Algorithm _‘

1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.

3. Decide the cIass memberships of the N objects by assigning them to the
nearest cluster centroids (aka the center of gravity or mean)

4. Re-estimate the k cluster centers, by assuming the memberships found
above are correct.

5. If none of the N objects changed membership in the last iteration, exit.
Otherwise go to 3.

11/30/16
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K-means Clustering: Step 1 -

random guess of cluster centers

11/30/16
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K-means Clustering: Step 2
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- Determine the membership of each data points

11/30/16
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K-means Clustering: Step 3
- Adjust the cluster centers

-

11/30/16
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K-means Clustering: Step 4
- redetermine membership
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K-means Clustering: Step 5

- readjust cluster centers
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How K-means partitions?

A2 When K centroids are set/fixe:‘
) they partition the whole data

space into K mutually exclusive

subspaces to form a partition.

A partition amounts to a

Voronoi Diagram

Changing positions of centroids
leads to a new partitioning.

11/30/16
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How to draw voronoi diagram

Br=—=%

http://765.blogspot.com/2009/09/how-to-draw-voronoi-diagram.html

20



e K-means

— Start with a random
guess of cluster
centers

— Determine the
membership of each
data points

— Adjust the cluster
centers

11/30/16
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K-means: another Demo

Auton’s Graphics
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K-means: another Demo

Auton’s Graphics
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User set up the number
clusters they'd like. (e.g.
k=5)
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K-means: another Demo

Auton’s Graphics
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1. User set up the number
clusters they'd like. (e.g.
K=5)

2. Randomly guess K cluster
Center locations
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K-means: another Demo

Auton’s Graphics
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User set up the number
clusters they'd like. (e.g.
K=5)

Randomly guess K cluster
Center locations

Each data point finds out
which Center it's closest to.
(Thus each Center "owns” a
set of data points)
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K-means: another Demo

;:J Auton’s Graphics
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User set up the number
clusters they'd like. (e.g.
K=5)

Randomly guess K cluster
centre locations

Each data point finds out
which centre it’s closest to.
(Thus each Center “"owns” a
set of data points)

Each centre finds the
centroid of the points it owns
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K-means: another Demo

Auton’s Graphics
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1.

User set up the number
clusters they'd like. (e.g.

K=5)

Randomly guess K cluster
centre locations

Each data point finds out
which centre it’s closest to.
(Thus each centre “owns” a
set of data points)

Each centre finds the
centroid of the points it owns

...and jumps there



Dr. Yanjun Qi / BYA CS 6316 / f16

K-means: another Demo

= futon’s Graphics sl

1. User set up the number
clusters they'd like. (e.g.

K=5)

Randomly guess K cluster
centre locations

Each data point finds out
which centre it’s closest to.
(Thus each centre “owns” a
set of data points)

Each centre finds the
centroid of the points it owns

...and jumps there

...Repeat until terminated!

11/30/16
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K-means

—

= Auton’s Graphics 0

1. Ask user how many clusters
they’ d like. (e.g. k=5)

2. Randomly guess k cluster o8 T
Center locations

3. Each datapoint finds out
which Center it’ s closest to.

4. Each Center finds the .
centroid of the points it 04 T -
owWns ;

0.8 ——

Any Computational Problem?

Sl

11/30/16 1 : : : ‘ 28~ 0]




K-means

1 Acl, 1icar hniat maanyve Alhiickar
Computational Complexity: O(n)
where n is the number of points?

Cen cations

3.| Each datapoint finds out
which Center it’ s closest to.

4. Each Center finds the
centroid of the points it
owns

Any Computational Problem?

11/30/16
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Time Complexity

Computing distance between two objs is O(p) where p_‘
is the dimensionality of the vectors.

S"feF 3
Reassigning clusters: istance computations,
Step L

Computing centroids: Each obj gets added once to
some centroid: O(np).(

Assume these two steps are each done once forQ

iterations: O\(ﬁ%@ O (\{\3’> H;W(J"l'u

30
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Roadmap: clustering

" Definition of "groupness” _‘
= Definition of "similarity/distance"
" Representation for objects
= How many clusters?
" Clustering Algorithms
" Partitional algorithms
" Hierarchical algorithms
m) = Formal foundation and convergence

11/30/16 31
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How to Find good Clustering?

Find groups (clusters) of data points such that data points in a
group will be similar (or related) to one another and different fr
(or unrelated to) the data points in other groups

=)

11/30/16

Intra-cluster
distances are
minimized

Inter-cluster
distances are
maximized

o
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How to Find good Clustering? E.g.

e Minimize the sum of
distance within clusters

j‘:l,?,“; Ks n 2
argminzzmij(fl.—éj)
{éj,mi,j} j=li=1 ,

(

1 x; € the j-th cluster

) V| 0 % e the jth cluster
Vo ) L

5
2 m, = 1
j=1

— any x, € a single cluster
11/30/16
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How to Efficiently Cluster Data?

Memberships {ml-, j} and centers {C j} are correlated.

. . 1 j=argmin(x; — éj)z
Given centers {Cj}, m; ;=9 k

\ 0 otherwise W\'b

Given memberships {ml.,j}, 5j = &= =7«

11/30/16
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Whe L 4 2
ﬁ'\ @V?A%W\a&]g ) }'b% (() a%% M’y (7(1, J>
9)035(6) n
_ J = Zm X
9?‘)- v é =
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‘ - fa 1)33(\"\1)\ 3
~— Whow gitn 1 | oy >

1 j=argmin(5c'l.—6'j)2
ﬁ m = k

/30/ .
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S

Convergence

W kA L N N 00 O

1 2 3 4 5 6 7 8 910

* Why should the K-means algorithm ever reach a fixed point? !
— A state in which clusters don’ t change.

 K-means is a special case of a general procedure known as the
Expectation Maximizatio algorithm.

— EMis known to converge.

— Number of iterations could be large.

e Cluster goodness measure / Loss function to minimize
— sum of squared distances from cluster centroid:

e Reassignment monotonically decreases the goodness measure
since each vector is assigned to the closest centroid.

11/30/16
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Seed Choice

* Results can vary based on random seed selection.

5

<@ 1%
4 <o C;>
k, o
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*
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C,,(zj‘wck

* Some seeds can result in poor convergence rate, or convergence to

sub-optimal clusterings.

— Select good seeds using a heuristic (e.g., sample least similar to any

existing mean)

— Try out multiple starting points (very important!!!)

— Initialize with the results of another method.

11/30/16
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(2) K-means Clustering

Task

1

Representation

1

Score Function

1

Searcthrtimization

Models,
Parameters

o)

Clustering

1

n/a

Sum-of-square
distance to centroid

I \/./l % V\
K-means algorithm | (|
1 o
Cluster
membership & {M ) }.

centroid
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Roadmap: clustering

" Definition of "groupness”
= Definition of "similarity/distance"
" Representation for objects
" How many clusters?
" Clustering Algorithms
m) = Partitional algorithms
" Hierarchical algorithms
* Formal foundation and convergence

11/30/16
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Other partitioning Methods
(1€ tyn St

Partitioning around[n-edoids (PAM): instead of averages,

use multidim medians as centroids (cluster “prototypes’).
Dudoit and Freedland (2002).

Self-organizing maps (SOM): add an underlying
topology” (neighboring structure on a lattice) that relates

cluster centroids to one another. Kohonen (1997), Tamayo
et al. (1999).

Fuzzy k-means: allow for a “gradation” of points between
clusters; soft partitions. Gash and Eisen (2002).

Mixture-based clustering: implemented through an EM
(Expectation-Maximization)algorithm. This provides soft
partitioning, and allows for modeling of cluster centroids
and shapes. (Yeung et al. (2001), McLachlan et al. (2002))

M € {\\D“r-—% [0, 1]

40



Partitional : Gaussian Mixture Model

* 1. Review of Gaussian Distribution

e 2. GMM for clustering : basic algorithm
* 3. GMM connecting to K-means

e 4. GMM examples

e 5. Applications of GMM

* 6. Problems of GMM and K-means



Dr. Yanjun Qi / UVA CS 6316 / f16

A Gaussian Mixture Model for Clusteri&g

* | Assume that data are generated
from a mixture of Gaussian
distributions

 For each Gaussian distribution
— Center: /Li

— covariance: 2 .

* For each data point

— Determine membership

z; + 1fx; belongs to j-th cluster

11/30/16
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Gaussian Distribution

N(z|p, 0?)

NGhot) = o o {~oate—w?}

A (2702 207
N | Bk
X~N ( L, 0'2) @

v

»wl
N (x|, %) = —e Lx— ) TSN x — )
XK, — EXpy s X— U X—H
(2m)P/2 |x|1/2 2 N
/ Covariance Matrix
Mean
11/30/16 43
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Multivariate Normal (Gaussian) PDFs

The only widely used continuous joint PDF is the multivariate normal (or Gaussian):

N, B) = e {3 - )T x|

Where |*| represents determinant

0.2 - 0.14
o — 0.12
. . 0.1
Bivariate 01 0.08
normal PDF: 005 {.- 006
0 0.04

g
« Mean of normal PDF is at X, 0.02

peak value. Contours of
equal PDF form ellipses.

/ /- The covariance matrix captures linear dependencies among the variables »
11/30/16
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Example: the Bivariate Normal distribution

IR B e
f (%) P
with [i= i and
H,

- - _Z\LL \)6{\) C()\/(XL)XZ>
v 0, Oy 0-12 pPo,0,

2
2

_ 2 _ 2.2 2
LZ‘ = 01105, =0, = 0,0, (l—p ) as

11/30/1
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Surface Plots of the bivariate
Normal distribution

‘*‘+m’+
m; l ‘,;

4’{‘ '

'Lg: - - T a-n ‘_I'La. .._,f‘_t “;i'. h* ‘

L

) a

T,
»

L“*\]_“l: vz Li_._ et

-~
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Contour Plots of the bivariate
Normal distribution

11/30/16

Hy

47



Dr. Yanjun Qi / UVA CS 6316 / f16

Scatter Plots of data from the
bivariate Normal distribution

Q=9 _
p=0 P =5
, p=09 0=-09
IJQ S .',.’0’ - |_l,2 | ::. :r:» IJQ ”
Ud X Lq X “1 X

11/30/16 48



Partitional : Gaussian Mixture Model

* 1. Review of Gaussian Distribution

e 2. GMM for clustering : basic algorithm
* 3. GMM connecting to K-means

e 4. GMM examples

e 5. Applications of GMM

* 6. Problems of GMM and K-means



Dr. Yanjun Qi / UVA CS 6316 / f16

Learning a Gaussian Mixture
(assuming with known shared covariance)

* Probability p(x — xl.) \‘,%, Ce K}' —‘

pr=x)=) px=x =)= p(U=u)p(x=x|L=L)

i 3=l,ey 3 J
Eo/’:al?ow’of probabilityj [C L.N\h “0\,[6_]

11/30/16 50
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Learning a Gaussian Mixture
(assuming with known shared covariance)

* Probability p(x — xl.) \‘,é‘\l, Ce K}' _‘

pr=x)=) px=x =)= p(U=u)p(x=x|L=L)

i 3=l,ey 3 J
Eo/:al?ow’of probabilityj EC L.N\h "6\,[6]

* Each cluster is model with a Gaussian (here assuming known )

1 —1(5é—ﬁj)T2‘1(5c’—ﬁj)

plr=xu=p,)= >

p/2 1/2
(27) 3]
Assuming
11/30/16 51
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Log-likelihood of Observed Data
Samples

-

Log-likelihood of data  jogp(21, 20, 23, ..., ) =

1 eV s (e
ZIOgP(XZXi)ZZIOg zp(u:uj) T e 2( ,Ltj) z ( ,u])
| Lo (27)" ]3]

J

Apply MLE to find optimal parameters {p(ﬂ =ﬂj),ﬂj}

11/30/16 J 52
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Learning a Gaussian Mixture

(with known covariance) e]
Mig= 1 7 B4 Lep DA
E[ J=pu=u;|x= x) €.
E-Step K N J Méj"”"”‘ 0%6
o w-,ymt (3C X u=p)pi= 1))
()(4»«-)"‘)\"‘7("' Zp(x =x; [u=p)pu=p)

X1 b Q\o:%)g s=1
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Learning a Gaussian Mixture

(with known covariance)

k wmerh = Cenbroid= —-——Zv«()q
> n () N ¥

M-Step uj(ff : ZE[(Z I,

ZE[ZU BN > (O j

plu=u)<=—=YEz]>
=

Covariance: 25, (j: 1 to K) will also be
derived in the M-step under a full setting

11/30/16 54



M-step for Estimating unkhowy ==
Covariance Matrix
(more general, details in EM-Extra lecture)




Expectation-Maximization
for training GMM

e Start:

— "Guess" the centroid and covariance for each of the K
clusters

— “Guess” the proportion of clusters, e.g., uniform prob 1/K

* Loop

— For each point, revising its proportions belonging to each
of the K clusters

— For each cluster, revising both the mean (centroid
position) and covariance (shape)
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each cluster, revising both the mean (centroid position) and covariance (shape)

® a L=1 o L=4 o
b b > '
*e ‘.:. o @ *e ..:' . ae . 00@.
a a
o . Q - [
0...t a ....z Y L [ | e
o .
:. o.: ™ ™
a - o .% . :. . :'

(f) (9) (h) (1)

11/30/16 57
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Detour for HWe:
Learning a Gaussian Mixture

(with known covariance and multi-variable and multi-cluster case)

e We assume in HW®6, K clusters shared the same _‘
known covariance matrix (to reduce the total
number of estimated parameters) V¥ \<7

O (kP

 We just use the sample covariance|calculating from
all samples

— Full case:  ~ -
Full case S _ 1 Z(ivi_f)w(xi_f?

n —1 4
=1

— Diagonal case: to simply use the diagonal of the above
sample covariance

11/30/16 58
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E-Step: Detour for HW6:
P Learning a Gaussian Mixture

(with known covariance and multi-variable and multi-cluster case)

px=x|u=u)p(L=u,)
E[Zy]zp(ﬂ:ﬂj|x:xi) ~ : :

& LEn) D p(x=ux, =) p(p= )
s=1
1 1 Too1,.
p(x=-’vz'|u=uj)=\/(%)pdet(z)ewp(—g(m—i) YT — pj))
1

11/30/16 59
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Detour for HWe:
Learning a Gaussian Mixture

(with known covariance and multi-variable and multi-cluster case)

L warh =) Conbroid "_"ZV“() _‘

!La
M-Step 1 n 2
¢ z E [Zl.j Ix.

Hi< =
p¢ T Sz,

O (\4\? 77:]' ZP(H:,UJ-)F%EE[ZZJ]

11/30/16 60



The Simplest GMM assumption

-

e Each component

generates data from a & \
Gaussian with
e mean

e Shared covariance
matrix oI

o ®
Z}'«‘Z: [Q 0‘23

Adapted From Andrew W. Moore



A Simple GMM assumption

e Each component
generates data from a

Gaussian with

e mean y;

o (luster-specific
covariance matrix
as ol

Adapted From Andrew W. Moore



Another Simple GMM assumption

-| Each component 4 _‘
generates data from a @

Gaussian with

e mean u;
e Shared covariance

matrix as diagonal
matrix
G’f 9

Adapted From Andrew W. Moore



A bit More General GMM assumption

-

e Each component
generates data from a .
Gaussian with

e mean y;

e Shared covariance
matrix as full matrix

h()\zl 66\61
2

& QG\G‘L GL

Adapted From Andrew W. Moore



The General GMM assumption

e Each component
generates data from a
Gaussian with

e mean y;

e covariance matrix %,

Copyright © 2001, 2004,
Andrew W. Moore



Partitional : Gaussian Mixture Model

* 1. Review of Gaussian Distribution

e 2. GMM for clustering : basic algorithm
* 3. GMM connecting to K-means

e 4. GMM examples

e 5. Applications of GMM

* 6. Problems of GMM and K-means



Recap: K-means iterative learning

. L2
argmin », > m; (xl = C])
{Com, b j=ti=1

Memberships {ml-’ j} and centers {C j} are correlated.

: = 1 j=argmin(X,-C,)*
E-Step  Given centers {C }, m, ; = L J

| 0 otherwise

M-Step Given memberships {ml,,j}, C =



Compare: K-means

 The EM algorithm for mixtures of Gaussians is
like a "soft version" of the K-means algorithm.

* In the K-means “E-step” we do hard
assignment:

* In the K-means “M-step” we update the means
as the weighted sum of the data, but now the
weights are O or 1:

Bt
e 3
IS
. ?.\'
#L

() (b) () (d) (e) (f)
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K n . \2
K-meaps: argmin 3. Y m ()?l. -C, )

{CJ }] li=1

g
- Mi: - {O
)" Uy
T 1 -Yeg,) s (en,) _
G‘MN\ Elognp(x X;)= Zlog Zp(‘u:‘uj) —e A J
| T e |

K-Mean only detect spherical clusters.
GMM can adjust its self to elliptic shape clusters.

11/30/16 69



Partitional : Gaussian Mixture Model

* 1. Review of Gaussian Distribution

e 2. GMM for clustering : basic algorithm
* 3. GMM connecting to K-means

e 4. GMM examples

e 5. Applications of GMM

* 6. Problems of GMM and K-means
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Gaussian Mixture Example: Start

11/30
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After First Iteration

-

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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After 2nd Iteration

For each point, revising its proportions belonging to each of the K clusters

0 o".

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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After 3rd Iteration

-

For each point, revising its proportions belonging to each of the K clusters

‘ .
G 6By i)
o f. - wr.%

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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After 4th Iteration

For each point, revising ityproportiong/belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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After 5th Iteration

-

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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After 6th Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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After 20th Iteration

For each point, revising its proportions belonging to each of the K clusters

KY

/
I|

I.Il
@

A

\\"-.

N\

\

Pors 234‘\

|,|

i
)
e

.

For each cluster, revising its mean (centroid position), covariance (shape)

11/30/16 and proportion in the mixture
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(3) GMM Clustering

Task

1

Representation

1

Score Function

SearcthItimization

Models,
Parameters

Zlong(x =X;)= Elog
' i=1 i

.
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_______________________________________________

Clustering

1

Mixture of Gaussian

!

Likelihood

EM algorithm

|

Each point’s soft
membership &
mean / covariance
per cluster

79



Partitional : Gaussian Mixture Model

* 1. Review of Gaussian Distribution

e 2. GMM for clustering : basic algorithm
* 3. GMM connecting to K-means

e 4. GMM examples

e 5. Applications of GMM

* 6. Problems of GMM and K-means



Application (l) :
Three Speaker Recognition Tasks

Identification 4 Verification/Authentication/
. Detection

Whose voice is this?

Is this Bob’s voice?

Segmentation and Clustering (Diarization)

Where are speaker
changes?

Which segments are from
the same speaker?

slide from Douglas Reynolds o |,



* A Gaussian mixture model : A |

Application () :
GMMs for speaker recognition

(GMM) represents features
as the weighted sum of
multiple Gaussian
distributions

Model 4

Each Gaussian state i has a
— Mean M,
— Covariance Zl-
. W
— Weight

Dim 2 i Dim 1

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner



Recognition Systems
Gaussian Mixture Models

A

Parameters

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner



Recognition Systems
Gaussian Mixture Models

A
A
A\

A

|
| 0.06 .- E
|

Parameters

TS
k¥k¥*>€k*

UU5~. ;

PR
-

004\ :

P ‘
<«

Model Components

003\ :

UO1*~ :

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner



GMM training

Training Features

* During training, the
system learns about
the data it uses to
make decisions

— A set of features are
collected from a
speaker (or language
or dialect)

Dim2 °  Dim1

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner



Applications (2)
_Some Bio
Assay data



GMM
clustering

of the
assay data

Copyright © 2001, 2004,
Andrew W. Moore

Applications of GMM (2)
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Applications of GMM (2)

Resulting

Clusters
Density
Plot




Partitional : Gaussian Mixture Model

* 1. Review of Gaussian Distribution

e 2. GMM for clustering : basic algorithm
* 3. GMM connecting to K-means

e 4. GMM examples

e 5. Applications of GMM

* 6. Problems of GMM and K-means



Unsupervised Learning:
not as hard as it looks

Sometimes easy

Sometimes impossible

and sometimes
in between



Problems (I)

* Both k-means and mixture models need to compute
centers of clusters and explicit distance measurement

— Given strange distance measurement, the center of clusters
can be hard to compute

E.g.,

,ooo,

Xy =Xy

b

H)?—)_C"H =max||x, — x X —X
. 17 M p p

A

0 3¢
e

o [x~¥].. =|x~2]

v
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Problem (II)

‘h‘@ Wt —‘
| Both k-means and mixture models look for‘compact |

clustering structures

— In some cases, connected clustering structures are more desirable

Graph based
clustering

clustering

11/30/16 92



Dr. Yanjun Qi / UVA CS 6316 / f16

¢.g. Image Segmentation through
minCut

-

11/30/16 93
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Roadmap: clustering

| " Definition of "groupness” _‘
= Definition of "similarity/distance"
" Representation for objects
m) = How many clusters?
" Clustering Algorithms
" Partitional algorithms
" Hierarchical algorithms
" Formal foundation and convergence

11/30/16 94
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How can we tell the right number of clusters?

In general, this is a unsolved problem. However there exist many approximate methods.

N AN

.
N g

N g “
‘

§ N

N

1 2 3 4 5 6 7 8 9 10

11/30/16
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When k = 1, the objective function is 873.0

1 2 3 4 5 6 7 8 910

11/30/16 96
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When k = 2, the objective function is 173.1

1 2 3 4 5 6 7 8 910

11/30/16 97
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K n N2
argmanZmi] ()?l - C])
{Q,ml.’j} j=li=l ,

When k = 3, the objective function is 133.6

KGV\ 'Q\DS/., 9

1 2 3 4 5 6 7 8 910

11/30/16 98



Dr. Yanjun Qi / UVA CS 6316 / f16
We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters in the data. This
technique for determining the number of clusters is known as “knee finding” or

“elbow finding”.

1.00E+03 7

9.00E+02

8.00E+02

7.00E+02 \

6.00E+02

5.00E+02 \

4.00E+02

3.00E+02 \

2.00E+02 ) -

Objective Function

1.00E+02

0.00E+00

Note that the results are not aJways as clear cut as in this toy example
11/30/16 99



What Is A Good Clustering?

* |Internal criterion: A good clustering will produce high
quality clusters in which:

— the intra-class (that is, intra-cluster) similarity is high
— the inter-class similarity is low

— The measured quality of a clustering depends on both the data
representation and the similarity measure used

* External criteria for clustering quality

— Quality measured by its ability to discover some or all of the
hidden patterns or latent classes in gold standard data

— Assesses a clustering with respect to ground truth
— Example:
* Purity

* entropy of classes in clusters (or mutual information between classes
and clusters)
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External Evaluation of Cluster Quality,
e.g. using purity

 Simple measureg. urity; the ratio between the dominant class in \
the cluster and theSize of cluster
— Assume data samples with C gold standard classes/groups, while the

clustering algorithms produce K clusters, w,, w,, ..., w, with n,
members.

1
Purity(w;) = — max(n;;) j € C’
nz J

— Example

.“

Cluster III

Cluster II

Cluster I

Cluster I: Purity = 1/6 (max(5, 1, 0)) =5/6
Cluster II: Purity = 1/6 (max(1, 4, 1)) <(4/6
Cluster Ill: Purity = 1/5 (max(2, 0, 3)) =3/5

11/30/16
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Web Images News Videos Shopping More ~ Search tools

About 37,200,000 results (0.43 seconds)

JaguarUSA.com - Jaguar® Convertible Car ®
www.jaguarusa.com/ ~

Real Comfort Comes From Control. Schedule Your Test Drive Today.

Y [
*/6\/\ Jaguar USA has 1,261,482 followers on Google+
! Build & Price Locate A Retailer

Design A Jaguar Car to Your Driving Find Your New Dream Car At Your
Style and Personal Tastes. Closest Jaguar Retailer Today.
Naughty Car. Nice Price. Request A Quote

Unwrap A Jaguar® Vehicle During Our Get A Quote On Your Favorite Model
Winter Sales Event On November 3rd. From Your Local Jaguar Retailer.

Jaguar: Luxury Cars & Sports Cars | Jaguar USA
www.jaguarusa.com/ >~ Jaguar Cars ~
The official home of Jaguar USA. Our luxury cars feature innovative designs along with

* * legendary performance to deliver one of the top sports cars in the ...
pp 1C a 10 I l Models - F-Type - XF - XJ
Jaguar - Wikipedia, the free encyclopedia

° en.wikipedia.org/wiki/Jaguar ~ Wikipedia ~
(I) . S e arCh The jaguar Panthera onca, is a big cat, a feline in the Panthera genus, and is the only
Panthera species found in the Americas. The jaguar is the third-largest ...
Jaguar Cars - Jaguar (disambiguation) - Tapir - List of solitary animals

Re SUlt Jaguar Cars - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Jaguar_Cars ~ Wikipedia ~
Clustering

Jaguar Cars is a brand of Jaguar Land Rover, a British multinational car manufacturer
headquartered in Whitley, Coventry, England, owned by Tata Motors since ...

Images for jaguar Report images

More images for jaguar
11/30/16 102
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Application (II): Navigation

) Entertainment in the Yahoo! Directory - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

/Ll} IY! http: /fdir.yahoo.com/Entertainment

~[b] G )

# Getting Started [ Latest Headlines
Yahoo! My Yahoo! Mail Welcome, Guest [Sign In

Search: Othe Web

| @the Directory | Othis category

YaH

QL DIRECTORY l

H Search ]

Entertainment

Directory > Entertaip

W Value City Furniture

www vef. com

CATEGORIES whats This?)

Ermail this page

SPONSOR RESULTS

Quality Home Entertainment Packages Browse Today and Find a Store.

Top Categories
* Music (76772)New
* Actors (19211) New:
* Movies and Film (40031) New:

Additional Categories
* Amusement and Theme Parks (449)
+ Awards (593)
+ Blogs@

Television Shows (17085) New:
Humor (3927)
Comics and Animation (5778) New:

Magic (353)
News and Media (443)

Organizations (33)

Directory Home Help #

Suggest a Site  Adwanced Search ] ‘( W¢m}‘

SPONSOR RESULTS

Entertainment
Center Furniture
Save 30-60% On A
Yariety Of Furniture
Far Any Room Thru
1113,

JCPenney.com

Studiotech Official
Site
StudioTech
Entertainment
Furniture. Factory
Direct...

wewnwy, StudioTech.com

+ Books and Literature@ Performing Arts@ %nainment
+ Chats and Forums (47) Radio@ Furniture
* Comedy (1730) Randomized Things (57) 2?;‘;&;%};55%
¢ Consumer Electronics (1355) New! Reviews (32) wnw. bushfurniturecalle. .
Fad - - =4 PUN = PN | PRI Tl W AT =1 H - H -9 v
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Application (III): Visualization

Islands of Music

Analysis, Organization, and Visualization of
Music Archives

Islands of music
(Pampalk et al., KDD’ 03)

piece of music: member of a music collection and inhabitant of islands of music. Groups of
similar pieces of music (also known as genres) like to gather around large mountains or small
hills depending on the size of the group. Groups which are similar to each other like to live
close together. Individuals which are not members of specific groups usually live near the
beach and some very individualistic pieces might be found swimming in deep water.

islands of music: serve as graphical user interface to a music collection and are intended to
help the user explore vast amounts of music in an efficient way. Islands of music are
generatédcfautomatically based on psychoacoustics models and self-organizing maps. 104



SO N\ Application (I1I): Visualization
(feature changes =» clusters’ change)

Islands of music (Pampalk et al., KDD’ 03, http://www.ofai.at/~elias.pampalk/kdd03
Visualizing Changes in the Structure of Data for Exploratory Feature SeIection)J
\

1 \s

-- RHYTHM PATTERNS -- - M s - -- RHYTHM PATTERNS --

11/30/16
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