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Announcements:	Final	Exam	
•  Closed	Note			
•  Allowing	a	paper	(us	leJer	size)	of	cheat	sheet		
•  No	laptop	/	No	Cell	phone	/	No	internet	access	/	
No	electronic	devices		

•  Recital	session	this	Friday	(@OSL120,	4pm-5pm)	
for	HW7		

•  Covering	post-midterm	contents	(L12-)	Zll	today	
–  PracZce	with	sample	quesZons	in	HW7	
– HW7	due	next	Monday	noon			
–  Please	review	course	slides	carefully		
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Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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A	Typical	Machine	Learning	Pipeline	 

11/30/16	

Low-level 
sensing 

Pre-
processing 

Feature 
Extract 

Feature 
Select 

Inference, 
Prediction,  
Recognition 

Label 
Collection 

4	

Evaluation 

Optimization 

e.g. Data Cleaning Task-relevant 
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An	OperaZonal	Model	of	Machine	
Learning	

Learner Reference  
Data 

Model 

Execution 
Engine 

Model 
Tagged 
Data 

Production 
Data Deployment		

Consists	of	input-
output	pairs	
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Machine Learning in a Nutshell 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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ML	grew	out	of	
work	in	AI	
	
Op#mize	a	
performance	criterion	
using	example	data	or	
past	experience,		
	
Aiming	to	generalize	to	
unseen	data		
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What	we	have	covered	

11/30/16	
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Task	 Regression,	classificaZon,	clustering,	dimen-reducZon	

RepresentaIon		
	

Linear	func,	nonlinear	funcZon	(e.g.	polynomial	expansion),	local	
linear,	logisZc	funcZon	(e.g.	p(c|x)),	tree,	mulZ-layer,	prob-density	
family	(e.g.	Bernoulli,	mulZnomial,	Gaussian,	mixture	of	Gaussians),	
local	func	smoothness,			

Score	FuncIon		
	

MSE,	Hinge,	log-likelihood,	EPE	(e.g.	L2	loss	for	KNN,	0-1	loss	for	
Bayes	classifier),	cross-entropy,	cluster	points	distance	to	centers,	
variance,		

Search/
OpImizaIon		
	

Normal	equaZon,	gradient	descent,	stochasZc	GD,	Newton,	Linear	
programming,	QuadraZc	programming	(quadraZc	objecZve	with	
linear	constraints),	greedy,	EM,	asyn-SGD,	eigenDecomp	

Models,	
Parameters	
	

RegularizaZon	(e.g.	L1,	L2)		



Scikit-learn	algorithm	cheat-sheet	
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hJp://scikit-learn.org/stable/tutorial/machine_learning_map/		
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ü 	different	assumpZons	on	data	

ü different	scalability	profiles	at	training	Zme	

ü different	latencies	at	predicZon	(test)	Zme	

ü different	model	sizes	(embedability	in	mobile	devices)	

Olivier	Grisel’s	talk		
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Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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SUPERVISED LEARNING 

•  Find function to map input space  X  to 
output space Y  

 
•  Generalisation:	learn	funcZon	/	hypothesis	
from	past	data	in	order	to	“explain”,	“predict”,	
“model”	or	“control”	new	data	examples	 
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KEY	
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What	we	have	covered	(I)		
q 	Supervised	Regression	models		

– Linear	regression	(LR)		
– LR	with	non-linear	basis	funcZons	
– Locally	weighted	LR	
– LR	with	RegularizaZons	
–  	Feature	selecZon	*	
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A	Dataset	

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/

predictors/regressors:	[	columns,	except	the	last]		
•  Target/outcome/response/label/dependent	variable:	special	

column	to	be	predicted	[	last	column	]		

11/30/16	 14	

Y	is	conZnuous		
Output Y as 

continuous values 
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(1) Multivariate Linear Regression 

Regression 

Y = Weighted linear sum 
of X’s  

Least-squares  

   Linear algebra  

Regression 
coefficients 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

ŷ = f (x) =θ0 +θ1x
1 +θ2x

2
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Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



(2) Multivariate Linear Regression with basis Expansion 

Regression 

Y = Weighted linear sum 
of (X basis expansion) 

Least-squares  

   Linear algebra  

Regression 
coefficients 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

ŷ =θ0 + θ jϕ j (x)j=1

m
∑ =ϕ(x)θ
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(3) Locally Weighted / Kernel Regression 

Regression 

Y = local weighted linear 
sum of X’s  

Least-squares  

   Linear algebra  

Local Regression 
coefficients 

(conditioned on 
each test point)  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

0000 )(ˆ)(ˆ)(ˆ xxxxf βα +=

min
α (x0 ),β (x0 )

Kλ (xi, x0 )[yi −α(x0 )−β(x0 )xi ]
2

i=1

N

∑
11/30/16	 17	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



(4) Regularized multivariate linear regression 

Regression 

Y = Weighted linear sum 
of X’s  

Least-squares+ 
Regularization -norm  

Normal Eq / SGD / GD 

Regularized Regression 
coefficients 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

min J(β) = Y −Y
^"

#
$

%
&
'
2

i=1

n

∑ +λ β j
2

j=1

p

∑
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(5) Feature Selection 

Dimension Reduction  

n/a 

Many possible 
options 

Greedy (mostly) 

Reduced 
subset of 
features 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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(5)	Feature	SelecZon	
	
•  Thousands	to	millions	of	low	level	features:	
select	the	most	relevant	one	to	build	beVer,	
faster,	and	easier	to	understand	learning	
machines.	

X	

p	

n	

p’	

From	Dr.	Isabelle	Guyon		
11/30/16	 20	
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Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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What	we	have	covered	(II)		
q 	Supervised	ClassificaZon	models		

–  	Support	Vector	Machine		
–  	Bayes	Classifier		
–  	LogisZc	Regression		
–  	K-nearest	Neighbor		
–  	Random	forest	/	Decision	Tree	
–  	Neural	Network	(e.g.	MLP)	
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Three	major	secZons	for	classificaZon 

•  We can divide the large variety of classification 
approaches into roughly three major types  

      
 1. Discriminative 
              - directly estimate a decision rule/boundary 
              - e.g., logistic regression, support vector machine, decisionTree 
  
 2. Generative: 
              - build a generative statistical model 
              - e.g., naïve bayes classifier,  Bayesian networks 
       
  3. Instance based classifiers 
          - Use observation directly (no models) 
          - e.g. K nearest neighbors 

11/30/16	 23	
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A	Dataset	for		
classificaZon		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/predictors/regressors:	[	columns,	except	the	last]		
•  Target/outcome/response/label/dependent	variable:	special	column	to	be	predicted	[	last	column	]		
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Output as Discrete 
Class Label  

C1, C2, …, CL 

C	

C	
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(1) Support Vector Machine 

classification 

Kernel Func K(xi, xj) 

Margin + Hinge 
Loss (optional)  

QP with Dual form 

Dual Weights 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)
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(2) Bayes Classifier 

classification 

Prob. models p(X|C) 

EPE with 0-1 loss, with 
Log likelihood(optional)  

MLE 

Prob. Models’ 
Parameter 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

P(X1, ⋅ ⋅ ⋅,Xp |C)

argmax
k

P(C _ k | X) = argmax
k

P(X,C) = argmax
k

P(X |C)P(C)

 P̂(Xj |C = ck ) =
1

2πσ jk

exp −
(X j−µ jk )

2

2σ jk
2

"

#
$$

%

&
''

P(W1 = n1,...,Wv = nv | ck ) =
N !

n1k !n2k !..nvk !
θ1k
n1kθ2k

n2k ..θvk
nvk

p(Wi = true | ck ) = pi,kBernoulli	
Naïve		

Gaussian	
Naive	

Mul#nomial	11/30/16	 26	
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Naïve Bayes Classifier  

      
Difficulty: learning the joint probability                   

•  Naïve Bayes classification 
–  Assumption that all input attributes are conditionally independent! 

 

 

P(X1, ⋅ ⋅ ⋅,Xp |C)

P(X1,X2, ⋅ ⋅ ⋅,Xp |C) = P(X1 | X2, ⋅ ⋅ ⋅,Xp,C)P(X2, ⋅ ⋅ ⋅,Xp |C)
                                 =  P(X1 |C)P(X2, ⋅ ⋅ ⋅,Xp |C)
                                 =  P(X1 |C)P(X2 |C) ⋅ ⋅ ⋅P(Xp |C)

11/30/16	

Adapt	from	Prof.	Ke	Chen	NB	slides	
27	

C 

X1 X2 X5 X3 X4 X6 
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(3) Logistic Regression 

classification 

Log-odds(Y) = linear 
function of X’s  

EPE, with conditional 
Log-likelihood  

   Iterative (Newton) method  

Logistic 
weights 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

P(c =1 x) = eα+βx

1+ eα+βx11/30/16	 28	
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LogisZc	Regression—when?	

LogisZc	regression	models	are	appropriate	for	target	
variable	coded	as	0/1.	

	
We	only	observe	“0”	and	“1”	for	the	target	variable—but	
we	think	of	the	target	variable	conceptually	as	a	
probability	that	“1”	will	occur.	

This means we use Bernoulli distribution to model the target 
variable with its Bernoulli parameter p=p(y=1|x) predefined. 
 
The main interest è predicting the probability that an event 
occurs (i.e., the probability that p(y=1|x) ). 

11/30/16	 29	
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0.0

0.2

0.4

0.6

0.8

1.0e.g.	
Probability	of	
disease	

x 

P (C=1|X) 
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DiscriminaZve	 LogisZc	regression	models	for	
binary	target	variable	coded	0/1.	

P(c =1 x) = eα+βx

1+ eα+βx

ln P(c =1| x)
P(c = 0 | x)
!

"
#

$

%
&= ln

P(c =1| x)
1−P(c =1| x)
!

"
#

$

%
&=α +β1x1 +β2x2 +...+βpxp

logisZc	funcZon		

Logit	funcZon		

Decision	Boundary	è	equals	to	zero		
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Discriminative vs. Generative 
GeneraZve	approach	
-	Model	the	joint	distribuZon	p(X,	C)	using		
		 	p(X	|	C	=	ck)	and	p(C	=	ck)	
	
	
DiscriminaZve	approach	
-	Model	the	condiZonal	distribuZon	p(c|	X)	
directly	

Class	prior	

e.g.,	



Discriminative vs. Generative 

●  Empirically,	generaZve	classifiers	approach	
their	asymptoZc	error	faster	than	
discriminaZve	ones	
○  Good	for	small	training	set	
○  Handle	missing	data	well	(EM)	

●  Empirically,	discriminaZve	classifiers	have	
lower	asymptoZc	error	than	generaZve	ones	
○  Good	for	larger	training	set	



(4) K-Nearest Neighbor 

classification 

Local Smoothness 

EPE with L2 loss è 
conditional mean 

NA 

Training 
Samples 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

11/30/16	 33	
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•  k-Nearest neighbor classifier is a lazy learner  
– Does not build model explicitly. 
– Unlike eager learners such as decision tree 

induction and rule-based systems. 
– Classifying unknown samples is relatively 

expensive. 
•  k-Nearest neighbor classifier is a local model, 

vs. global model of linear classifiers.  

Nearest neighbor classification 

11/30/16	 34	
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(5) Decision Tree / Random Forest 

Greedy to find partitions 

Split Purity measure / e.g. 
IG / cross-entropy / Gini /  

Tree Model (s), i.e. 
space partition  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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Classification 

Partition feature space 
into set of rectangles, 
local smoothness 
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Anatomy	of	a	decision	tree	

overcast	

high	 normal	 false	true	

sunny	 rain	

No	 No	Yes	 Yes	

Yes	

Outlook	

Humidity	
Windy	

Each	node	is	a	test	on		
one	feature/aVribute	

Possible	aJribute	values		
of	the	node	

Leaves	are	the	
decisions	

11/30/16	 36	
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Decision	trees	
•  Decision	trees	represent	a	disjuncZon	of	
conjuncZons	of	constraints	on	the	aJribute	
values	of	instances.	

•  (Outlook ==overcast)   
•   OR 
•  ((Outlook==rain) and (Windy==false)) 
•   OR 
•  ((Outlook==sunny) and (Humidity=normal)) 
•   => yes play tennis 

11/30/16	 37	
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InformaIon	gain	

•  IG(X_i,Y)=H(Y)-H(Y|X_i)	
ReducZon	in	uncertainty	by	knowing	a	feature	X_i	

InformaZon	gain:		
=	(informaZon	before	split)	–	(informaZon	awer	split)	
=	entropy(parent)	–	[average	entropy(children)]	
	
	

Fixed		 the	lower,	the	
beJer	(children	
nodes	are	purer)	

–		 For	IG,	the	
higher,	the	
beJer		=		

11/30/16	 38	
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Random	Forest	Classifier	
N
	e
xa
m
pl
es
	

...
.…
	

...
.…
	

Take	he	
majority	
vote	

M	features	
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(6) Neural Network 

conditional Log-likelihood , 
Cross-Entropy / MSE   

SGD / Backprop 

NN network 
Weights 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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Classification 
/ Regression 

Multilayer Network 
topology 
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Logistic regression

Logistic regression  could be illustrated as a module 

On input x, it outputs ŷ: 

where  

Draw a 
logistic
regression 
unit as: 

Σ	

x1	

x2	

x3	

+1	

ŷ	=	P	(Y=1|X,Θ)	
wT !x + b

1
1+ e− z

Bias	

Summing 
function 

Activation 
function 

Output 

11/30/16	 41	
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MulZ-Layer	Perceptron	(MLP)	
String a lot of logistic units together.  Example:  3 layer network:  

x1	

x2	

x3	

+1	 +1	

a3	

a2	

a1	

Layer	1	 Layer	2	

Layer	3	

hidden	input	 output	

y 

11/30/16	 42	
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Backpropagation  

●  Back-propagaZon	training	algorithm	

Network activation 
Forward Step 

 
Error propagation 
Backward Step 

11/30/16	 43	
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Deep	Learning	Way:		
Learning	features	/	RepresentaIon	from	data 

Feature Engineering  
ü  Most critical for accuracy  
ü   Account for most of the computation for testing  
ü   Most time-consuming in development cycle  
ü   Often hand-craft and task dependent in practice  

Feature Learning  
ü  Easily adaptable to new similar tasks   
ü  Layerwise representation  
ü  Layer-by-layer unsupervised training 
ü  Layer-by-layer supervised training 44	11/30/16	
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Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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What	we	have	covered	(III)		

q 	Unsupervised	models			
– Dimension	ReducZon	(PCA)	
– Hierarchical	clustering		
– K-means	clustering	
– GMM/EM	clustering		
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An	unlabeled		
Dataset	X		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/predictors/regressors:	[	columns]		

11/30/16	 47	

a data matrix of n observations on 
p variables x1,x2,…xp 

Unsupervised	learning	=	learning	from	raw	(unlabeled,	
unannotated,	etc)	data,	as	opposed	to	supervised	data	
where	a	label	of	examples	is	given	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



(0) Principal Component Analysis 

Dimension Reduction  

Gaussian assumption  

Direction of maximum 
variance  

Eigen-decomp 

Principal 
components 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

11/30/16	 48	
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What	we	have	covered	(III)		

q 	Unsupervised	models			
– Dimension	ReducZon	(PCA)	
– Hierarchical	clustering		
– K-means	clustering	
– GMM/EM	clustering		
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•  Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups 

What	is	clustering? 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 

11/30/16	 50	
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11/30/16	

Issues	for	clustering	
•  What	is	a	natural	grouping	among	these	objects?	

–  DefiniZon	of	"groupness"	
•  What	makes	objects	“related”?	

–  DefiniZon	of	"similarity/distance"	
•  RepresentaZon	for	objects	

–  Vector	space?	NormalizaZon?	
•  How	many	clusters?	

–  Fixed	a	priori?	
–  Completely	data	driven?	

•  Avoid	“trivial”	clusters	-	too	large	or	small	
•  Clustering	Algorithms	

–  ParZZonal	algorithms	
–  Hierarchical	algorithms	

•  Formal	foundaZon	and	convergence	
51	
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11/30/16	

Clustering	Algorithms	

•  ParZZonal	algorithms	
– Usually	start	with	a	random	
(parZal)	parZZoning	

–  Refine	it	iteraZvely	
•  K	means	clustering	
•  Mixture-Model	based	clustering	

•  Hierarchical	algorithms	
–  BoJom-up,	agglomeraZve	
–  Top-down,	divisive	

52	
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(1) Hierarchical Clustering  

Clustering 

Distance measure  

No clearly 
defined loss  

greedy bottom-up (or 
top-down)  

Dendrogram 
(tree)  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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Example: single link 
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(2) K-means Clustering  

Clustering 

Spherical clusters  

Sum-of-square 
distance to centroid 

K-means (special 
case of EM) algorithm 

Cluster 
membership & 

centroid 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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11/30/16	
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K-means	Clustering:	Step	2	
-	Determine	the	membership	of	each	data	points	
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(3) GMM Clustering  

Clustering 

Likelihood  

EM algorithm 

Each point’s soft 
membership & 

mean / covariance 
per cluster  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

11/30/16	 57	

Mixture	of	Gaussians	
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ExpectaZon-MaximizaZon	
for	training		GMM	

•  Start:		
– "Guess"	the	centroid	mk	and	covariance	Sk	of	each	
of	the	K	clusters		

•  Loop	 each cluster, revising both the mean (centroid position) and covariance (shape) 	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

For each point, revising its proportions belonging to each of the K clusters 	
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Compare:	K-means	

•  The	EM	algorithm	for	mixtures	of	Gaussians	is	
like	a	"sow	version"	of	the	K-means	algorithm.	

•  In	the	K-means	“E-step”	we	do	hard	
assignment:	

•  In	the	K-means	“M-step”	we	update	the	means	
as	the	weighted	sum	of	the	data,	but	now	the	
weights	are	0	or	1:	

11/30/16	



Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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What	we	have	covered	(IV)		

q 	Learning	theory	/	Model	selecZon		
– K-folds	cross	validaZon		
– Expected	predicZon	error		
– Bias	and	variance	tradeoff		
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CV-based	Model	SelecZon		
We’re	trying	to	decide	which	algorithm	/	

hyperparameter	to	use.		
	•  We	train	each	model	and	make	a	table...		
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Hyperparameter	tuning		….		
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Which	kind	of	cross-validaZon	?	
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What	we	have	covered	(IV)		

q 	Learning	theory	/	Model	selecZon		
– K-folds	cross	validaZon		
– Expected	predicZon	error		
– Bias	and	variance	tradeoff		
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StaZsZcal	Decision	Theory	

•  Random input vector: X 
•  Random output variable:Y 
•  Joint distribution: Pr(X,Y ) 
•  Loss function L(Y, f(X)) 

•  Expected prediction error (EPE): 
•    

€ 

EPE( f ) = E(L(Y, f (X))) = L(y, f (x))∫ Pr(dx,dy)

               e.g. = (y − f (x))2∫ Pr(dx,dy)
Consider 

population 
distribution  

e.g. Squared error loss (also called L2 loss ) 
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Bias-Variance	Trade-off	for	EPE:  
	

EPE (x_0) = noise2  + bias2 + variance 

Unavoidable 
error 

Error due to 
incorrect 

assumptions 

Error due to 
variance of training 

samples 

Slide	credit:	D.	Hoiem	
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Bias-Variance Tradeoff / Model Selection 

67 

underfit region 
overfit region 

11/30/16	
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Model “bias” & Model  
“variance”  

•  Middle RED:  
–  TRUE function 

•  Error due to bias: 
–  How far off in general  

from the middle red 

•  Error due to variance: 
–  How wildly the blue 

points spread  
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need	to	make	assumpZons	that	
are	able	to	generalize	

•  Components of generalization error  
–  Bias: how much the average model over all training sets differ from 

the true model? 
•  Error due to inaccurate assumptions/simplifications made by the 

model 
–  Variance: how much models estimated from different training sets 

differ from each other 
•  Underfitting: model is too “simple” to represent all the 

relevant class characteristics 
–  High bias and low variance 
–  High training error and high test error 

•  Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data 
–  Low bias and high variance 
–  Low training error and high test error 

Slide	credit:	L.	Lazebnik	
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Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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Task  

Machine Learning in a Nutshell 

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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ML	grew	out	of	
work	in	AI	
	
Op#mize	a	
performance	criterion	
using	example	data	or	
past	experience,		
	
Aiming	to	generalize	to	
unseen	data		
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What	we	have	covered	for	each	
component		
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Task	 Regression,	classificaZon,	clustering,	dimen-reducZon	

RepresentaIon		
	

Linear	func,	nonlinear	funcZon	(e.g.	polynomial	expansion),	local	
linear,	logisZc	funcZon	(e.g.	p(c|x)),	tree,	mulZ-layer,	prob-density	
family	(e.g.	Bernoulli,	mulZnomial,	Gaussian,	mixture	of	
Gaussians),	local	func	smoothness,		kernel	matrix,	local	
smoothness,	parZZon	of	feature	space,		

Score	FuncIon		
	

MSE,	Margin,	log-likelihood,	EPE	(e.g.	L2	loss	for	KNN,	0-1	loss	for	
Bayes	classifier),	cross-entropy,	cluster	points	distance	to	centers,	
variance,	condiZonal	log-likelihood,	complete	data-likelihood,	
regularized	loss	func	(e.g.	L1,	L2)	,		

Search/
OpImizaIon		
	

Normal	equaZon,	gradient	descent,	stochasZc	GD,	Newton,	Linear	
programming,	QuadraZc	programming	(quadraZc	objecZve	with	
linear	constraints),	greedy,	EM,	asyn-SGD,	eigenDecomp,	backprop	

Models,	
Parameters	
	

Linear	weight	vector,	basis	weight	vector,	local	weight	vector,	dual	
weights,	training	samples,	tree-dendrogram,	mulZ-layer	weights,	
principle	components,	member	(sow/hard)	assignment,	cluster	
centroid,	cluster	covariance	(shape),	…	



Today	

q 	Review	of	ML	methods	covered	so	far	
q 	Regression	(supervised)	
q 	ClassificaZon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory			
	

q 	Review	of	Assignments	covered	so	far	
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HW1	

•  Q1:	Linear	algebra	review	
•  Q2:	Linear	regression	+	LOOCV	

– Regression		
– EvaluaZon	pipeline		

•  Q3:		Machine	learning	pipeline	
pracZce		
– Basic	pipeline		
– GUI	Toolbox		
– EvaluaZon		

11/30/16	
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Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 



HW2	

•  Q1:	Linear	regression	model	
fi~ng		
– Data	loading		
–  Basic	linear	regression		
–  Three	ways	to	train	:	Normal	
equaZon	/	SGD	/	Batch	GD	

–  Polynomial	regression		

•  Q2:	Ridge	regression		
– Math	derivaZon	of	ridge		
– Understand	why/how	Ridge		
– Model	selecZon	of	Ridge	with	K-CV		11/30/16	
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Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 



HW3	

•  Q1:	Support	Vector	Machines	
with	Scikit-Learn		
– Data	preprocessing		
– How	to	use	SVM	package		
– Model	selecZon	for	SVM		
– Model	selecZon	pipeline	with	
train-vali,	or	train-CV;	then	test		

11/30/16	
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Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 



HW5	

•  Q1:	Naive	Bayes	Classifier	for	
Text-base	Movie	Review	
ClassificaZon		
– Preprocessing	of	text	samples		
– BOW	Document	RepresentaZon	
– MulZnomial	Naive	Bayes	
Classifier		

•  BOW	way	
•  Language	model	way		

–  	MulZvariate	Bernoulli	Naive	
Bayes	Classifier		

	11/30/16	
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Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 



HW6	

•  Q1:	Neural	Network	
Tensorflow	Playground	
–  InteracZve	learning	of	MLP	
– Feature	engineering	vs.			
– Feature	learning		

•  Q2:	Image	ClassificaZon		
– Tool	using		
– DT	/	KNN	/	SVM		
– PCA	effect	for	image	
classificaZon		

11/30/16	
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Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 



HW6	

•  Q3:	Unsupervised	Clustering	of	
audio	data	and	consensus	data	
– Data	loading		
– K-mean	clustering		
– GMM	clustering		
– How	to	find	K:	knee-finding	plot	
– How	to	measure	clustering:	
purityMetric		
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Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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