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Where are we ? =»
Five major sections of this course

. Regression (supervised)
 Classification (supervised)
 Unsupervised models
 Learning theory

- Graphical models




Today =
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Regression (supervised)

regression models

1 Normal Equation

1 Gradient Descent (GD)

1 Stochastic GD
] Newton’s method

J Supervised regression models
dLinear regression (LR)
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LR with non-linear

basis functions

dLocally weighted LR
LR with Regularizations

J Four ways to train / perform optimization for linear \




Today

 Linear regression (aka least squares)

 Learn to derive the least squares estimate by
normal equation

] Evaluation with Cross-validation
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X, X, X, Y
| A Dataset

fiXi—lY

continuous
valued
variable

» Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]
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For Example,
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Machine learning for apartment hunting
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* Now you've moved to Charlottesville !!

And you want to find the most reasonably
priced apartment satisfying your needs:

square-ft., # of bedroom, distance to campus ...

=

Living area (ft2) # bedroom Rent ($)
150 1 ?
270 1.5 ?
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For Example,
Machine learning for apartment hunting

{ tant orud AV o

Living area (ft2) | # bedroom | Rent ($) X, XY
S, |
S2
S3
Sq
Ss

150 1 ? o

270 1.5 ?
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Linear SUPERVISED Regression

CfiX —Y _‘

e.g. Linear Regression Models

y=f(x)=6 +6x "+60x °

=> Features x:
Living area, distance to campus, # bedroom ...
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Remember this:“Linear” ? (1D case)

* y=mx+b?

9/1/16

A slope of 2 (i.e. m=2) means that every 1-unit
change in X yields a 2-unit changein .

10




rent

Living area

rent

—
_
-

""‘.'-\—2
Location

Living area X1
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— ya
= i)
1D case (X' = R): a line

$6) = mxth

[ #1 (¥l

A 0 2
Y =fIx)= 06 XX,
' U
= 0%
= X390

1

X = R?: a plane
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Review: Special Uses for
Matrix Multiplication

* Dot (or Inner) Product of two Vectors <x, y>

which is the sum of products of elements in
similar positions for the two vectors

<X, y> =<y, X> a'b=b'a

U1

n
| L9
Where <X, y>= ,rT'(/ R = [ ry To -+ Iy ] ) — E Lili.
i=1

i Yn i
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A new representation (for single sample)

-
* Assume that each sample xis a column Y=
vector,

(this is the intercept term ), and RE-define |
the feature vector to be: X=

x =[x x!, x°, ... x1]

— the parameter vector @ is also a column
vector g
0

-,

2
\.X .
— Here we assume a pseudo "feature" x°=1 N
1

Xl
Xt

9/1/16 | p= |

j y,=J(x)
0= T
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= fx)=0,+0,x Yo x Cr.k0 x

v — -

=

x; : 7 = X0

‘o L X6
X‘_Fx“Xxl x?"%

14
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Training / learning problem

* Now represent the whole Training set (wit_h‘
n samples) as matrix form :

_ st
- X -- x, x ... ox | dith Y,
x| -~ X, —— |_| % x .. x3° fa&)OY _| ¥
. . . E . . . \1/
-- X, -- X, X, xP Y
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REVIEW: Special Uses for
Matrix Multiplication

 Matrix-Vector Products () _‘

Given a matrix A € R™*" and a vector z € R", their product is a vector y = Az € R™.

If we write A by rows, then we can express Az as,

T
— al — | al x

<
— )(lt \y
9/1/16 [ : ),<; ’B @ - XQ 16




A
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Training / learning problem

* Represent as matrix form: _‘
— Predicted output
fx) || xe
Y = X6 = f(f‘z) - Xfe
e f(x ) x'6
_ e BN

—Labels (given output value)
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Training / learning goal

* Using matrix form, we get the

following general representation 0ur goal:

of the linear regression function:

Y = X0 }:@ =712

Tramning
set

|

Learning ]

algorithm

Y

* Our goal is to pick the optimal v,
that minimize the following cost

function: n
JO)=> X (f(x)-

9/1/16 SSE: Sum of squared error 18

|

X — () —»predicted y
(living area of (predicted price)
se.) of houze)




rent

Living area

rent

— X2
— Location

—

———

Living area X1

1D case (X
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R): a line

X = R?: a plane

19
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Today

 Linear regression (aka least squares) _‘

 Learn to derive the least squares estimate by
Normal Equation

] Evaluation with Cross-validation
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Method |: normal equations

e Write the cost function in matrix form:

1 n _ -
J(H):EZ(xiTH—yi)z — x| -
1121 o XT o
— (X0~ (x6-7) X - ; Y=
_1 T vT T yT— =T =T = -T
—Z(HXXH 0" X y— 3" X0+ 7" y) N

To minimize J(6), take derivative and set to
Zero:

= | X' X0=X"y WHT 27

The normal equations

U -1
0’ =(X"X) X'y

9/1/16

6/f16

.

Vi
Yo

Y

21
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Review: Special Uses for
Matrix Multiplication

7
-{ Sum the Squared Elements of a Vector = L2 noﬂ

* Premultiply a column vector a by its transpose — If
5
a=|2
8

then premultiplication by a row vector a'
a' =[ 5 2 8 ]

JO)= Y (x/0-y,Y

will yield the sum of the squared values of elements
fora,i.e.

a2 =aa-|5 2 8] 2 |=5+2+8 =93

CoONO U1

9/1/16 22




](9)=%§(Xf9—y,-)

2
N .
JO)= 5 2 (x:6-%)

[

[

9/1/16




>7J0)= < T%x@—ZéTXT“J-FyT’W)

Qr&u« Malyix

Shesion ()= XX C qm)

I
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oK
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Review: Derivative of a Quidratic Functon
2
y=x" -3

(x+h)2 —3—(x2 —3)

9/1/16

v h

R
y_iHo Yq‘

:1 +

X

S "=lim2x+
Y = X

This convex function is h%O

minimized @ the unique point

whose derivative (slope) is zero. /

=> If finding zeros of the y p— 2x

derivative of this function, we

can also find minima (or maxima)

of that function. y// p— 2 25




Review: Convex function

* |ntuitively, a convex function (1D case) has a single
point at which the derivative goes to zero, and this
point is a minimum.

* |ntuitively, a function f (1D case) is convex on the
range [a,b] if a function’s second derivative is positive
every-where in that range.

* |ntuitively, if a function's Hessians is psd (positive
semi-definite!), this (multivariate) function is Convex

— Intuitively, we can think “Positive definite” matrices as
analogy to positive numbers in matrix case
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Review: positive semi-definite!

e, v [ G2

T Xhn N¥P
5 X AX >0 /-\;fzpfaﬁmkw

[xn nya ¥ tonl S PD

=5 A s psL qowi ~definite (PSD)

7
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Extra: Hessian

Derivatives and Second Derivatives \

Cost function Gradient Hessian
J(0) g = VgJ (0) H
gi = 55:J(0) Hij= %9

5. 0Negatlve curvature No curvature Positive curvature

ol 11 1| |H PO

1.0

0.5} 1 F 1 F 1 L_—_)

0.0 {1 i .
-05} R~ - ! E - R 'ﬁYPM(@
-1.0} ~1 | ! ~]

15} 1] | | _ Cbavttunld

-2.0
-1.0 -0.5 00 05 1.0-1.0 05 00 05 1.0-1.0 05 00 05 1.0
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Review: Matrix Calculus:
Types of Matrix Derivatives

Scalar Vector Matrix
: dy dy _ |9yi| | dY _ (9%
SC‘ alar dx de [ dx de | 9=

P e S

( i} \ ~
T . 0 DY
- l

e o o o o

Matrix | 2L = [L)L]

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics

9/1/16

-
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Positive Definite Hessian

Minimum

All positive eigenvalues
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Extra: Eigenvalues of Hessian
=» Curvature

Negative Definite Hessian

Maximum

1l negative eigenvalues

30




Review: Some important rules’for taking
derivatives

—

Scalar multiplication: 8,[af(z)] = a[8,f(z)]

Polynomials: 0, [z*] = ka*~!

Function addition: 9;[f(z) + g(z)] = [0.f(z)] + [0z9(x)]

Function multiplication: 8,[f(z)g(z)] = f(2)[0.9(z)] + [02f(2)]g(z)

M] _ [0:f(2)]g9(z)—f(x)[0z9()]
9() [9(x)]?

Function composition: 0.[f(g(x))] = [0:9(x)][0f](g(x))

Exponentiation: 0,[e*] =e* and 0;[a”] = log(a)e”

Function division: 0, [

Logarithms: 9,[logz] = 1

9/1/16 31
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Review: Some important rules for
taking gradient and hessian

—

o o e e e e e e e e e e e e e e e e e e e e e

__________________________________

o V.2l Ax = 2Ax (if A symmetric)
o Vixt Ax = 2A (if A symmetric)

9/1/16 32
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J0)= 5 (6'XX8 -20KY +y™y)
2J3(9)

> 3 = 3 (XGLXY >§’-'CO
> 9 - X x o]
X0 =X
fiam poktriX S (90
17? X fh ok X X PO )lm(/&'—f

_.(
S - (¥x) &Y
Psm N(PI ANL = P
e PRI
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Comments on the normal equation

* |n most situations of practical interest, the number of
data points n is larger than the dimensionality p of the
input space and the matrix X is of full column rank. If
this condition holds, then it is easy to verify that X' Xis

necessarily invertible. ]/\ % P

* The assumption that X"X'is invertible implies that it is
positive definite, thus the critical point we have found
IS a minimum.

 What if X has less than full column rank? -
regularization (later).

9/1/16
4




Scalability to big ?

* Traditional CS view: Polynomial
time algorithm, Wow!

e Large-scale learning: Sometimes
even O(n) is bad!

Simple example: Matrix multiplication

n-x-z

n

9/1/16
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-
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Today

 Linear regression (aka least squares)

 Learn to derive the least squares estimate by
optimization

[ Evaluation with Train/Test OR k-folds Cross-

validation
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TYPICAL MACHINE LEARNING SYSTEM

X :

Low-level Pre- Feature Feature f : X — Y

sensing processing Extract Select

Inference,
Prediction,
Recognition

Label
Collection

Evaluation

oo e ———
——

9/1/16 37
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Evaluation Choice-I:
Train and Test

target/class
|
g Training dataset
- model  |consists of input-
training .
dataset i learn f§> Q output pairs
B
T 4 Ay
test ! l ?9 2 .’ :
? B l :
? A \ '
? A

Measure Loss on pair

11x,) > (fix), ¥

9/1/16 38
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Evaluation Choice-I:
e.g. for supervised classification

v’ Training (Learning): Learn a model using the _‘
training data

v’ Testing: Test the model using unseen test
data to assess the model accuracy

Traming l.curmng
N algorithm

data

S

Step | Tramming Step 2: Testing

Number of correct classifications
Accuracy = :

9/1/16 Total number of test cases




training
dataset

test

dataset
BX

9/1/16
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Evaluation Choice-1I:

train ~

test

y train =

ytest =

e.g. for linear regression models

Vi
Y,

Vi

y n+l
y n+2

Ynem

-

40




Evaluation Choice-I:
e.g. for linear regression models

* Training SSE (sum of squared error):
1 n
T 2
]tmin(H) = Ez(xl H _ yl)
=1

* Minimize J, . (6) = Normal Equation to get

train

6" =argminJ, . (0)= (X X,;mm) X i rmain

train
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Evaluation Choice-I:
e.g. for Regression Models

* Testing MSE Error to report: _‘

n+m

—Z(XTH -y.)

1 n+1

9/1/16 42
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Evaluation Choice-11:

Cross Validation

‘ e Problem: don’t have enough data to set aside a

test set

e Solution: Each data point is used both as train

and test
e Common types:

-K-fold cross-validation (e.g. K=5, K=10)

-2-fold cross-validation

-Leave-one-out cross-validation (LOOCV, i.e.,

k=n_reference)
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K-fold Cross Validation

e PBasicidea:
-Split the whole data to N pieces;
-N-1 pieces for fit model; 1 for test;
-Cycle through all N cases;
-K=10 “folds” a common rule of thumb.

e The advantage:

- all pieces are used for both training and validation;
- each observation is used for validation exactly once.




e.g. 10 fold Cross Valid

Divide data into
10 equal pieces
9 pieces as
training set, the
rest 1 as test set
Collect the
scores from the
diagonal

We normally
use the mean of
the scores

ation

model

10

P1

train

train

P2

train

train

P3

train

train

P4

train

train

P5

train

train

P6 P7 P8 P9

train train train train

train train train test

P10

test

train
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e.g. Leave-one-out / LOOCV

9/1/16

(n-fold kcross validation)

S M. aﬁ Adta K/WV/@

O
oy

-

46




Today Recap

 Linear regression (aka least squares)

 Learn to derive the least squares estimate by
normal equation

. Evaluation with Train/Test OR k-folds Cross-
validation
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