UVA CS 6316/4501 - Fall 2016 Machine Learning

Lecture 3: Linear Regression

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Dr. Yanjun Qi / UVA CS 6316 / f16

HW1 OUT / DUE NEXT SAT

9/1/16

2

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- ☐ Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

Today -

Regression (supervised)

- ☐ Four ways to train / perform optimization for linear regression models
 - Normal Equation
 - ☐ Gradient Descent (GD)
 - ☐ Stochastic GD
 - Newton's method
- ☐ Supervised regression models
 - ☐ Linear regression (LR)
 - ☐ LR with non-linear basis functions
 - ☐ Locally weighted LR
 - ☐ LR with Regularizations

Today

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by normal equation
- ☐ Evaluation with Cross-validation

A Dataset for regression

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

For Example,

Machine learning for apartment hunting

Now you've moved to Charlottesville !!
 And you want to find the most reasonably priced apartment satisfying your needs:

 square-ft., # of bedroom, distance to campus ...

Living area (ft²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

For Example,

Machine learning for apartment hunting

46	stures	ordet	\		fen ~	loves,	X
Living area (ft²)	# bedroom	Rent (\$)]	(X_2	
230	1	600	-	S_1			'
506	2	1000		S_2			
433	2	1100		s_3			
109	1	500		s_4			
				s_5			
150	1	?		s ₆			
270	1.5	?					

Linear SUPERVISED Regression

$$f: X \longrightarrow Y$$

e.g. Linear Regression Models

$$\hat{y} = f(x) = \theta_0 + \theta_1 x^{-1} + \theta_2 x^{-2}$$

=> Features x:

Living area, distance to campus, # bedroom ...

=> Target y:
Rent → Continuous

Remember this: "Linear"? (1D case)

• *y=mx+b?*

A slope of 2 (i.e. m=2) means that every 1-unit change in X yields a 2-unit change in Y.

Dr. Yanjun Qi / UVA CS 6316 / f16

$$\sum_{i} \left(y_{i} - f(x_{i}) \right)^{2} \hat{y}_{i}$$

1D case $(\mathcal{X} = \mathbb{R})$: a line

$$f(x) = mx + b$$

$$Y_{i} = f(x) = 0 + 0 \times 1 + 0 \times 1$$

$$X = \mathbb{R}^{2}: \text{ a plane}$$

$$= 0^{7} \times 1$$

$$= \chi_{1}^{7} 0$$

Review: Special Uses for Matrix Multiplication

Dot (or Inner) Product of two Vectors <x, y>

which is the sum of products of elements in similar positions for the two vectors

$$< x, y > = < y, x > a^{T}b = b^{T}a$$

Where
$$\langle x, y \rangle = x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

A new representation (for single sample)

- Assume that each sample **x** is a column $\overline{\chi} = \begin{bmatrix} \chi' \\ \chi^2 \end{bmatrix}$ vector,
 - Here we assume a pseudo "feature" $x^0=1$ (this is the intercept term), and RE-define the feature vector to be:

$$\mathbf{x}^{\mathbf{T}} = [x^0, x^1, x^2, \dots x^{p-1}]$$

- the parameter vector $\boldsymbol{\theta}$ is also a column vector $\boldsymbol{\theta}$

$$heta = \left| egin{array}{c} heta_0 \\ heta_1 \\ heta_{p-1} \end{array}
ight|$$

$$\hat{y}_{i} = f(\mathbf{x})$$

$$= \mathbf{x}_{i}^{T} \theta = \theta^{T} \mathbf{x}_{i}$$

Dr. Yanjun Qi / UVA CS 6316 / f16

Training / learning problem

 Now represent the whole Training set (with n samples) as matrix form :

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix} = \begin{bmatrix} x_{1}^{0} & x_{1}^{1} & \dots & x_{1}^{p-1} \\ x_{2}^{0} & x_{2}^{1} & \dots & x_{2}^{p-1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n}^{0} & x_{n}^{1} & \dots & x_{n}^{p-1} \end{bmatrix}$$

REVIEW: Special Uses for Matrix Multiplication

Matrix-Vector Products (I)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, their product is a vector $y = Ax \in \mathbb{R}^m$.

If we write A by rows, then we can express Ax as,

$$y = Ax = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & - & a_m^T & - \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}$$

Training / learning problem

- Represent as matrix form:
 - Predicted output

$$\hat{Y} = \mathbf{X}\boldsymbol{\theta} = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_n) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T \boldsymbol{\theta} \\ \mathbf{x}_2^T \boldsymbol{\theta} \\ \vdots \\ \mathbf{x}_n^T \boldsymbol{\theta} \end{bmatrix}$$

Labels (given output value)

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Training / learning goal

 Using matrix form, we get the following general representation of the linear regression function:

$$\hat{Y} = \mathbf{X}\theta$$

 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (f(\mathbf{x}_{i}) - y_{i})^{2}$

1D case
$$(\mathcal{X} = \mathbb{R})$$
: a line

$$\mathcal{X} = \mathbb{R}^2$$
: a plane

Today

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by Normal Equation
- ☐ Evaluation with Cross-validation

Method I: normal equations

Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$= \frac{1}{2} (X \theta - \vec{y})^{T} (X \theta - \vec{y})$$

$$= \frac{1}{2} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \vec{y} - \vec{y}^{T} X \theta + \vec{y}^{T} \vec{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

To minimize $J(\theta)$, take derivative and set to zero:

$$\Rightarrow X^T X \theta = X^T \vec{y}$$
The normal equations

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \vec{\boldsymbol{y}}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

Review: Special Uses for Matrix Multiplication

Sum the Squared Elements of a Vector -> L2 norm

• Premultiply a column vector **a** by its transpose – If

$$\mathbf{a} = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}$$

then premultiplication by a row vector a^T

$$a^T = \begin{bmatrix} 5 & 2 & 8 \end{bmatrix}$$

will yield the sum of the squared values of elements for **a**, i.e.

$$|a|_2^2 = \mathbf{a}^T \mathbf{a} = \begin{bmatrix} 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} \frac{5}{2} \\ \frac{2}{8} \end{bmatrix} = 5^2 + 2^2 + 8^2 = 93$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$J(0) = \frac{1}{2} \sum_{i=1}^{h} (x_i^T 0 - y_i)^2$$

$$= \frac{1}{2} (X_0 - y_i)^T (X_0 - y_i)$$

$$= \frac{1}{2} (Y_0 - y_i)^T (X_0 - y_i)$$

$$a = b^{T} a$$

$$\Rightarrow 0^{T} x^{T} y = y^{T} x \theta$$

$$\Rightarrow J(\theta) = \frac{1}{2} \left(0^{T} x \times 0 - 20^{T} x^{T} y + y^{T} y \right)$$

$$\Rightarrow Hessian \left(J(\theta) \right) = x^{T} x \left(P > D \right)$$

$$J(\theta) \quad \text{is Convex}$$

$$J(\theta) \quad \text{is minimized } 0 \neq 0$$

$$J(\theta) \quad \text{is minimized } 0 \neq 0$$

Review: Derivative of a Quadratic Function

$$y = x^2 - 3$$

$$y' = \lim_{h \to 0} \frac{(x+h)^2 - 3 - (x^2 - 3)}{h}$$

$$y' = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

9/1/16

This convex function is minimized @ the unique point whose derivative (slope) is zero.

→ If finding zeros of the derivative of this function, we can also find minima (or maxima) of that function.

$$y' = \lim_{h \to 0} 2x + h$$

$$y' = 2x$$

$$y'' = 2$$

25

Review: Convex function

- Intuitively, a convex function (1D case) has a single point at which the derivative goes to zero, and this point is a minimum.
- Intuitively, a function f (1D case) is convex on the range [a,b] if a function's second derivative is positive every-where in that range.
- Intuitively, if a function's Hessians is psd (positive semi-definite!), this (multivariate) function is Convex
 - Intuitively, we can think "Positive definite" matrices as analogy to positive numbers in matrix case

Review: positive semi-definite!

Extra: Hessian

Derivatives and Second Derivatives

Cost function

$$J(\boldsymbol{\theta})$$

Gradient Hessian

$$oldsymbol{g} =
abla_{oldsymbol{ heta}} J(oldsymbol{ heta})$$

$$g_i = rac{\partial}{\partial heta_i} J(oldsymbol{ heta})$$

$$egin{aligned} oldsymbol{g} &=
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}) & oldsymbol{H} \ g_i &= rac{\partial}{\partial heta_i} J(oldsymbol{ heta}) & H_{i,j} &= rac{\partial}{\partial heta_j} g_i \end{aligned}$$

Review: Matrix Calculus: Types of Matrix Derivatives

	Scalar	Vector	Matrix		
Scalar	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \left[\frac{\partial y_i}{\partial x}\right]$	$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \left[\frac{\partial y_{ij}}{\partial x}\right]$		
Vector	$\left[\frac{\mathrm{d}y}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y}{\partial x_j}\right]\right]$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y_i}{\partial x_j}\right]$			
Matrix	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{X}} = \left[\frac{\partial y}{\partial x_{ji}}\right]$				

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics

Extra: Eigenvalues of Hessian Curvature

Review: Some important rules for taking derivatives

- Scalar multiplication: $\partial_x [af(x)] = a[\partial_x f(x)]$
- Polynomials: $\partial_x[x^k] = kx^{k-1}$
- Function addition: $\partial_x [f(x) + g(x)] = [\partial_x f(x)] + [\partial_x g(x)]$
- Function multiplication: $\partial_x [f(x)g(x)] = f(x)[\partial_x g(x)] + [\partial_x f(x)]g(x)$
- Function division: $\partial_x \left[\frac{f(x)}{g(x)} \right] = \frac{[\partial_x f(x)]g(x) f(x)[\partial_x g(x)]}{[g(x)]^2}$
- Function composition: $\partial_x [f(g(x))] = [\partial_x g(x)][\partial_x f](g(x))$
- Exponentiation: $\partial_x[e^x] = e^x$ and $\partial_x[a^x] = \log(a)e^x$
- Logarithms: $\partial_x[\log x] = \frac{1}{x}$

Review: Some important rules for taking gradient and hessian

$$ullet \left(egin{array}{cccc} rac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} &=& rac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} &=& \mathbf{a} \end{array}
ight)$$

- $\nabla_x x^T A x = 2Ax$ (if A symmetric)
- $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Dr. Yanjun Qi / UVA CS 6316 / f16

$$J(\theta) = \frac{1}{2} (0^{7} \times 7 \times 0 - 20^{7} \times 7 + y^{7} y)$$

$$\Rightarrow \frac{37(0)}{30^{9}} = \frac{1}{2} (2 \times 7 \times 0 - 20^{7} \times 7 + y^{7} y) \xrightarrow{\text{Set}} 0$$

$$\Rightarrow \frac{37(0)}{30^{9}} = \times^{7} \times (\text{Hesian})$$

$$\Rightarrow \frac{37(0)}{30^{9}} = \times^{7} \times (\text{Hesian})$$

$$\Rightarrow \text{Gram matrix is PSD}$$

$$\Rightarrow \text{$$

Comments on the normal equation

- In most situations of practical interest, the number of data points n is larger than the dimensionality p of the input space and the matrix X is of full column rank. If this condition holds, then it is easy to verify that X^TX is necessarily invertible.
- The assumption that X^TX is invertible implies that it is positive definite, thus the critical point we have found is a minimum.
- What if X has less than full column rank? → regularization (later).

Scalability to big?

- Traditional CS view: Polynomial time algorithm, Wow!
- Large-scale learning: Sometimes even O(n) is bad!

Simple example: Matrix multiplication

$$n = O(n^3)$$

Today

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by optimization
- Evaluation with Train/Test OR k-folds Cross-validation

TYPICAL MACHINE LEARNING SYSTEM

Evaluation Choice-I: Train and Test

e.g. for supervised classification

- ✓ Training (Learning): Learn a model using the training data
- ✓ Testing: Test the model using unseen test data to assess the model accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

e.g. for linear regression models

$$\mathbf{X}_{train} = \begin{bmatrix} -- & \mathbf{x}_1^T & -- \\ -- & \mathbf{x}_2^T & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n^T & -- \end{bmatrix} \qquad \vec{y}_{train} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
training dataset

$$\mathbf{X}_{test} = \begin{bmatrix} -- & \mathbf{x}_{n+1}^{T} & -- \\ -- & \mathbf{x}_{n+2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n+m}^{T} & -- \end{bmatrix} \quad \vec{y}_{test} = \begin{bmatrix} y_{n+1} \\ y_{n+2} \\ \vdots \\ y_{n+m} \end{bmatrix}$$

e.g. for linear regression models

Training SSE (sum of squared error):

$$J_{train}(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i^T \theta - y_i)^2$$

• Minimize $J_{train}(\theta) \rightarrow Normal \ Equation \ to \ get$

$$\theta^* = \operatorname{argmin} J_{train}(\theta) = \left(X_{train}^T X_{train}\right)^{-1} X_{train}^T \vec{y}_{train}$$

e.g. for Regression Models

Testing MSE Error to report:

$$J_{test} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\mathbf{x}_i^T \boldsymbol{\theta}^* - y_i)^2$$

Cross Validation

- Problem: don't have enough data to set aside a test set
- Solution: Each data point is used both as train and test
- Common types:
 - -K-fold cross-validation (e.g. K=5, K=10)
 - -2-fold cross-validation
- -Leave-one-out cross-validation (LOOCV, i.e., k=n reference)

K-fold Cross Validation

- Basic idea:
 - -Split the whole data to N pieces;
 - -N-1 pieces for fit model; 1 for test;
 - -Cycle through all N cases;
 - -K=10 "folds" a common rule of thumb.
- The advantage:
 - all pieces are used for both training and validation;
 - each observation is used for validation exactly once.

e.g. 10 fold Cross Validation

- Divide data into 10 equal pieces
- 9 pieces as training set, the rest 1 as test set
- Collect the scores from the diagonal
- We normally use the mean of

model P1 P2 P3 P4 P5 Р6 P7 P10 P8 P9 train train train train train te st 2 train test train test train train train train train train test train train train train train test train train train train train train train train

9/1/16 the scores

e.g. Leave-one-out / LOOCV (n-fold cross validation) h is hum. of drita samples

Today Recap

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by normal equation
- Evaluation with Train/Test OR k-folds Cross-validation

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- http://www.cs.cmu.edu/~zkolter/course/ 15-884/linalg-review.pdf (please read)
- ☐ Prof. Alexander Gray's slides