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Where are we? =»
Five major sections of this course

. Regression (supervised)
 Classification (supervised)
 Unsupervised models
 Learning theory

- Graphical models




Today =
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Regression (supervised)

regression models

(J Normal Equation

J Gradient Descent (GD)

1 Stochastic GD
] Newton’s method

J Supervised regression models
dLinear regression (LR)

9/7/16

LR with non-linear

basis functions

dLocally weighted LR
LR with Regularizations

J Four ways to train / perform optimization for linear \




Today

A Practical Application of Regression Model

] More ways to train / perform optimization for
linear regression models

] Gradient

J Gradient Descent (GD) for LR
1 Stochastic GD (SGD)

J Newton’s method
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Linear Regression Models

-

= e.g. Linear Regression Models

y=f(x)=0,+0,x +6,x"

9/7/16

» Features:
Living area, distance to
campus, # bedroom ...

» Targety:

Rent = Continuous
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training / learning goal

e Using matrix form, we get the

following general representation 0[" goall
f

of the linear function on train set:

N
Y=X0
Traming
set

e QOur goal is to pick the optimal @

Learning ]

that minimize the following cost alg":“‘m
(SSE) fu nction: X —— @ —> predicted y

(hiving area of (predicted price)
£ za)

1 - A — house.) of housze
JO)== 3 G-y | |
i=1

9/7/16 6
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Method |: normal equations

e Write the cost function in matrix form: _‘
J(H):%i(xfé?—yi)z L X, —- - - V1 -
L (x0-5Y (x0-5) X-| 7% T yo|
:%(QTXTXH—HTXT)‘;—yTX¢9+)7T)7) - x| | yn |
To minimize J(0), take its gradient and set to
Zero: u o i £
= | X'X6=X"y XX J,% gt
The normal equations FS D
¢ Jio) CﬁV\VUt-

o =(x"x) X"y 1
e AT 9?
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e.g. A Practical Application of
Regression Model

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{maheshj,dipanjan, kgimpel, nasmith}@cs.cmu.edu

Abstract
We consider the problem of predicting a
movie’s opening weekend revenue. Previous Proceedings of
work on this problem has used metadata about p
a movie—e.g., its genre, MPAA rating, and HLT "2010
cast—with very limited work making use of Human

text abour the movie. In this paper, we use Language

the text of film critics’ reviews from several

sources to predict opening weekend revenue. Tech nologies:

We describe a new dataset pairing movie re-

views with metadata and revenue data, and

show that review text can substitute for meta-
9/7/16 data, and even improve over it, for prediction.




1. The Story in Short

\/

** Use metadata and critics' reviews to predict
opening weekend revenues of movies

\/

¢ Feature analysis shows what aspects of
reviews predict box office success

e

Il. Data

&

L)

* 1718 Movies, released 2005-2009

» Metadata (genre, rating, running time,
actors, director, etc.): www.metacritic.com

» Critics’ reviews (~7K): Austin Chronicle,
Boston Globe, Entertainment Weekly, LA
Times, NY Times, Variety, Village Voice

L)

&

L)

L)

4

L)

L)

4

* Opening weekend revenues and number of
opening screens: www.the-numbers.com
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Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

A

and Hastie, 2005)

1

0 = argmln

0=(5o ,ﬁ)

P(B) =

[

Z(yz'_

% Linear regression with the elastic net (Zou

(—IL,\__/J/ <D

7 (30

—~
2
(Bo + m;rﬂ)) + |

@)B2 +a|3)))
L, [ y

Use linear regression to directly predict the opening weekend gross

earnings, denoted y, based on features x extracted from the movie
metadata and/or the text of the reviews. 10




Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

'IV. Features o~

|| Lexical n-grams (1,2,3)

Il| Part-of-speech n-grams (1,2,3)

llli Dependency relations (nsubj,advmod,...)

U.S. origin, running time, budget (log),

# of opening screens, genre, MPAA
Meta rating, holiday release (summer,
Christmas, Memorial day,... ), star power
(Oscar winners, high-grossing actors)

J
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www.dark.cs.cmu.edu/movies$-data

to movies
The feature weights can be

directly interpreted as U.S. blooper
dollars contributed to the poop
predicted value y~ by each Will Smith
occurrence of the feature.

torso

documentary

running time N

philosophical
bogeyman

this series

straightforward midlife crisis
arthouse
is rated R anticipation

1 1 1 1
-10° —10" 0 10" 10°
feature weight in dollars
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Today

A Practical Application of Regression Model

] More ways to train / perform optimization for
linear regression models

] Gradient Descent

J Gradient Descent (GD) for LR
1 Stochastic GD (SGD)

J Newton’s method

9/7/16 13
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Review: Definitions of gradient
(from review handout)

-

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m X n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of

=» Denominator layout

" Af(A)  8f(A) Bf(A) T

o1Ch o1 o1Ch
VAJL‘(A) e Rmxn — 3A21 3/122 T 3A2n

9f(4) B8f(4)  Bf(A)
0Am1 OA o OAmn _

9/7/16 14
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Review: Definitions of gradient
(from http://en.wikipedia.org/wiki/
Matrix_calculus#Scalar-by-matrix)

The derivative of a scalar y function of a matrix X of
independent variables, with respect to the matrix X o*qr 1S

given as - h
=>» Numerator layout _()L _()L 2@ e _dL
dri1 0z Oz p1
. Yy Yy oy
d Yy dxr12  dx9 0T 52

IxX

dr1q Ox2g JTpq

Notice that the indexing of the gradient with respect to X
is transposed as compared with the indexing of X.

o7 =>» numerator layout o
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Review: Definitions of gradient
(from review handout)

| e Size of gradient is always the same as _‘
the size of

=» Denominator layout

0f(z)

5:131 .
/@ 1c R if x € R"
me(il?) — :2

54 ()

OTn,

9/7/16 16




(from http://en.wikipedia.org/wiki/ T
Matrix_calculus#Scalar-by-vector)

L2
The derivative of a scalar y by a vector X = s
=>» Numerator layout £z n

Jx dx, 0xg 0x,,

My dy Oy My

This gradient is a 1xn row vector whose entries
respectively contain the n partial derivatives

=» numerator layout

9/7/16 17
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A little bit more about [ Optimization ]

* Objective function F(x) — j‘(@) _‘
e Variables X - Q

5 - 1
Constraints —> Q¢ R

To find values of the variables
that minimize or maximize the objective function

while satisfying the constraints

9/7/16 18




The gradient points in

e.g. Gradient Descent the direction of the
greatest rate of
( Ste e pest Desce nt ) ( incre'ase of th.efum:'tio;
the slope of the graph
A first-order optimization in that direction
algorithm. —— |

To find a local minimum of a
function using gradient

descent, one takes steps

\
proportional to the < i !) )
negative of the gradient of |\ § j
the function at the current \ Y
point. \ R

— 1 7

9/7/16 _VXF(Xk—l ) 19




Dr. Yanjun Qi / UVA CS 6316 / f16

lllustration of Gradient Descent
(2D case)

-

The gradient points in
the direction of the
greatest rate of
increase of the function
and its magnitude is
the slope of the graph
in that direction

9/7/16 20







Gradient Descent (GD)

* Initialize k=0, choose x,

* While k<k ., For the k-th epoch

X =X _ — OCVXF(Xk_l)
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>
\

(6) Review: Derivative of a Quidratic Functon
2
y=x" -3

(x+h)2 —3—(x2 —3)

1

(98]
1

\9)

N = O —_ N W B

o v 7

 eaeed
Y _£%O X

1
WT
I 4
\®]

I 4
[E—

. 0
A y'zlim2x+/ﬁ

h—0

NIV VR e

y'=2x<

y//:2
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%: )(o ~ O(VF/Xb)
= -3

9/7/16

24
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o =9,a=0.1

)
Xi=2.¢

Fq

9/7/16

25
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o =3,a=0.0

e =X ™ anF(Xk—l)

N Fiy,)

s}

4 Xi=3 -
3t A} } VB
21 = ~0,é
1 &

9/7/16 26




Dr. Yanjun Qi / UVA CS 6316 / f16
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YI: -o',{
+2v0./‘(~0.é
=_0.%

28




X =X _ — O‘VXF(XH)
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5130:3,0420.1

Xi=3- 4Xo.[¥3

=

{ :‘(%

?,XZ

TO<)=

| Xt Yo 2
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Review: Derivative of a Quidratic Functon
2
y=x" -3

e s
) ‘?f 2 2
_ a , (x+h) —3—(x -3
302\ -1 0 1 /2 3 °
| y =lm
5 h—0 h
6
5 \
4 ;o Aok
) y =lm
, h—0 X
1 0
321 1.2 3 ’ .
o y =lm2x +/ﬁ
-2 Th.is. convex function. is . h%O
3 minimized @ the unique point
whose derivative (slope) is zero. )
-4 => If finding zeros of the y — zx
-5 derivative of this function, we
6 can also find minima (or maxima)
9/7/16 ) of that function. 31

y//:2
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lllustration of Gradient Descent (2D case)

N

Ay
%

F(x) 4»‘,
555

b
Lo

PRI

2= !

New point in
weight space

9/7/16

%
' ’4'::':""5,'!!"

Original point in
weight space

32
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Comments on Gradient Descent Algorithm

 Works on any objective function F(x \
—we can evaluate the gradient

— this can be very useful for minimizing complex functions

e Local minima

— Can have multiple local minima

— (note: for LR, its cost function only has a single global minimum, so
this is not a problem)

— If gradient des to the closest local minimum:
* solutionfrandom restartd from multiple places in weight space

9/7/16 33
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Today

A Practical Application of Regression Model _‘

] More ways to train / perform optimization for
linear regression models

] Gradient Descent

1 Gradient Descent (GD) for LR

1 Stochastic GD (SGD)

J Newton’s method

9/7/16 34




Review: Normal Equation based on
Convex loss function

* |ntuitively, a convex function has a single
point at which the derivative goes to zero,

and this point is a minimum. o
](49)=EZ(f(X,-)—y,-)2

* To minimize J(6), take derivative and set to

Zero:
= | X' X0=X"y

The normal equations

o = (XTX)_I X"y
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LR with batch GD

e The Cost Function: GK"” :2(“ - (J
J(@):%i(xf’e— 1) vﬁT K

* Consider a gradient descent algorithm:

—

_ 80 - 9t+1 — Ot az(yl . XiTet)Xi \
0 =1
o= :
H};_l Hjt+l — ij —OfﬁJ(e) For the (t+1)'th epOCh
| f t

n

- T i

9/7/16 — Ojt +a2(y1 _ Xi Ot )XIJ
=1

36
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76)= (%6-7)7(X6-Y)~

= («6)-Y")(20-Y )5
= (6"-97)(25-9)= )
= (o"x'20 - 6'x'y- 726 4 YL
T
Sue XY =1Y 20
(X8.Y> <4,26D

_ - T T 7 \, r’dC&SQ
_(szgjz&’m#“dﬂl 30

> T quinin fncod B; ET:’/
E
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S hednt 41443 2 matiy alubs f#al;fm—-)é'z/rlat
V, @%36)= 2xx 6 (F=4)
Vo(0¥)= 2xy (B4
Vo (4Y) =0

5 g, T0)= (¥30- ¥)
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= g ~ X10-9 F[,_: ) x’wf

ll.’ :

n T
9/7/16 - Z) xi (X{G‘yi)l {X\
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’//3: N
Y

1 1




LR with batch GD

* Steepest descent/ GD

— Note that:
T
o 0 n Based on Handout’s
VJZ{@L---»@]} =—Y (y,—-x,6)x, Definition of
1 k =1 Gradient

(Denominator)

0" =0"+a ) (y,—x"0)x
i=1

—This is as a batch gradient descent algorithm

n
t+1 _ 't =Tty j Update Rule Per
i=1 (Variable-Wise
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lllustration of Gradient Descent

(2D case)

9/7/16 42
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Choosing the Right Step-Size /
Learning-Rate is critical

9/7/16

43
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Today

A Practical Application of Regression Model

] More ways to train / perform optimization for
linear regression models

] Gradient Descent

J Gradient Descent (GD) for LR
1 Stochastic GD (SGD)

J Newton’s method

9/7/16 44
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LR with Stochastic GD =

e Batch GD rule: _‘
9t+1 _I_QZE — Te Q

 Therefore, for a single tramm%nt (i-th), we have:

6" = 6" + o@ -%0%, |

t+1 _ Nt g I'nt
0" =6"+a(y,—%,'6)x,

— This is actually a "stochastic"”, "coordinate" descent algorithm
— This can be used as an on-line algorithm

9/7/16

a5
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Stochasticgradient descent /
Online Learning Algorithm

46
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Stochastic gradient descent :
More variations

* Single-sample:

0% = 0f + o (%-%16%) X,

 Mini-batch:
8
6% - 6% Tl = (%- W),

9/7/16 47
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Stochasticgradient descent (1)

Very useful when training with massive datasets, e.z‘
not fit in main memory

* SGD can be used for offline training, by repeated
cycling through the data

— Each such pass over the whole data = an epoch !

* |In offline case, often better to use mini-batch SGD
— B=1 standard SGD
— B=N standard batch GD
— E.g. B=100

9/7/16 48
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0, Masie Pata
5 Stochasticgradient descent (2)
g

Intuitively, one can get d fairly gootl estimate of the by looking
at jus Carefully evaluating precise gradients using large
datasets 15 often a waste of time, since the algorithm will have to recom-
pute the gradient again anyway at the next step. It is often a better use

of computer time to have a noisy estimate and t@ove rapid@ough
parameter space.

it 1s quite popular in the
machine learning communify for fitting models such as neural networks
and deep belief networks with non-convex objectives.

7/1 ) . .4
9/7/16 Dr. Nando de Freitas’s tutorial sﬁde




When to stop (S)GD ?

Lots of stopping rules in the literature,

There are advantages and disadvantages to
each, depending on context

E.g., a predetermined maximum number of
iterations

E.g., stop when the improvement drops below
a threshold
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Summary so far: three ways to learn LR

* Normal equations Q9 = (XTX)_IXTy )
— Pros: aC_\ O( /F >_\— { )

single—shoﬁlgorithm! Easiest to impleme

— Cons: need to compute pseudo-inverse (X™X) ! {expensive) numerical
issues (e.g., matrix is singular ..), although there are ways to get around this

n
t+1 t T Nt
* GD or Steepest descent 6" =6 +0¢2(yi—xi 0 )XI,
=1
— Pros: easy to implement, conceptually clean, guaranteed convergence
— Cons: batchMi:W)
. t+1 t - I pt\=
e Stochastic GD 6 =6 +0((yl. — X, 6 )Xl.

— Pros: on-line, ;;w per-step cos @t conver@nd perhaps less prone to

local optimum
— Cons: convergence to optimum not always guaranteed

9/7/16

61
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Direct (normal equation) vs.
Iterative (GD) methods

e Direct methods: we can achieve the solution in a_‘
single step by solving the normal equation

— Using Gaussian elimination or QR decomposition, we
converge in a finite number of ste

— It can be @ nherndata are streamNng in in real
time, or opverylarge Amoun

* |terative methods: stochastic or steepest gradient
— Converging in a limiting-sense
— But more attractive | practical problems
— Caution is needed for deciding the learning raté]

9/7/16 52
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Scale up to bign or bigp ?

Given: A labeled training set, {x;,7;}i-1.» x, e R%,y; €N
n~ O(100M),d ~ O(100K)

Goal: Learn a predictive function f(x;w) = w! x+ W

w=XXT + D Xy

O(nd*)
N y,
0(d?)

Matrix multiplication is slower than inversion!
n~O0(100M),d ~O(100K)  Matrix inversion is intractable!
First-order linear solvers Aw =567

But this is just linear ! Dr. Sanjay Kumar slide




Convergence rate

* Theorem: the steepest descent equation algorithm converge
to the minimum of the cost characterized by normal
equation:

pl>o) = (XTX)~1XxTy

If the learning rate parameter satisfy =»

0 < <2/ Amax[ X' X]

A formal analysis of GD-LR need more math; in practice, one
can use a small a, or gradually decrease a. ) g

No

Dr. EricXing’s tutorial slide
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Performance vs. Training Size

for an example

Mean square error on test set

Variation of Test mean square error with percentage of data used for training

2000

1500

1000

T

500+

T T

— Batch update
— 1 Nprmal equation
—{Ohline update

9/7/16

10 20 30 40 50 60 70 80 90 100
Percentage of data used for training

: : : : , e The results from Band O

update are almost identical.
So the plots coincide.

e The test MSE from the

normal equation is more
than that of B and O during
small training. This is
probably due to overfitting.

In B and O, since only 2000
(for example) iterations are
allowed at most. This
roughly acts as a
mechanism that avoids
overfitting.

Dr. EricXing’s tutorial slide
55
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Today

A Practical Application of Regression Model

] More ways to train / perform optimization for
linear regression models

] Gradient Descent

J Gradient Descent (GD) for LR
1 Stochastic GD (SGD)

1 Newton’s method

9/7/16 56




Review: Convex function

* |ntuitively, a convex function (1D case) has a single
point at which the derivative goes to zero, and this
point is a minimum.

* |ntuitively, a function f (1D case) is convex on the
range [a,b] if a function’s second derivative is positive
every-where in that range.

* |ntuitively, if a function's Hessians is psd (positive
semi-definite!), this (multivariate) function is Convex

— Intuitively, we can think “Positive definite” matrices as
analogy to positive numbers in matrix case
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Newton’s method for optimization

* The most basic second-order optimization _‘
algorithm
GD- B pui=0c -9,

Noton:  Ok41 =0 — ;{1819
Y
PP

e

* Updating parameter with

9/7/16 58




Review: Hessian Matrix / h==2 case

Singlevariate —> multivariate J(x,)
[ o)
e 1stderivative to gradient, g=Vf= Z;
L7
/ 82_f 82 \
ox2 0xdy
» 2nd derivative to Hessian 1 = A
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Review: Hessian Matrix
| ]

Suppose that f : R™ — R is a function that takes a vector in R" and returns a real number.
Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n x n
matrix of partial derivatives,

F B Be) . B) -

ax% 0r1019 0x10z,,

P M) .. )

V2f($)ERnxn: 029011 6(33 02902y
&L . N '

e B . B

L 0rn,027 02,019 0z .

9/7/16 60
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Newton’s method for optimization

* Making a quadratic/second-order Taylor _‘

series approximation

?;:ad(g) = f(0x) + & (0 — 6x) + %(6 ~ ) B (6= 8)

Finding the minimum
solution of the above
right quadratic
approximation
(quadratic function
minimization is easy !)

9/7/16




)= §16+ 42 (0-6¢) +
L (6-9) Hk (6-Ok)

:, \\U'( T T
2 (9‘*/’//‘ v, "'Z@ HI< 9/4"" 6I<HI<O{<>

- W
9/7/16 :-% 9: 8[( - Hk g'# jkfgp




Newton’s Method / second-order
Taylor series approximation

-
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Newton’s Method / second-order
Taylor series approximation

9/7/16

-

64
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Newton’s Method / second-order
Taylor series approximation

9/7/16

-

65
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Newton’s Method / second-order
Taylor series approximation

9/7/16

-

66




e At each step:

Newton’s Method

Hk+1 — Hk _ f,(Hk)
/6,

Dr. Yanjun Qi / UVA CS 6316 / f16

-

0., =0, —H"(6,)VFO,)

* Requires 15t and 2"9 derivatives
* Quadratic convergence

 =» However, finding the inverse of the Hessian
matrix is often expensive

9/7/16

67
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Newton vs. GD for optimization

* Newton: a quadratic/second-order Taylor _‘
- series approximation /i O =0k — H(&) 5(6)

fquad(e) (Ok) + i (9 Ok + — (9 Ok)THk(H Ok)

Flndlng the minimum solution of
. . the above right quadratic
* GD: a apprOXImal‘lon approximation (quadratic

function minimization is easy !)

! 1
Tovad(0) = F(05) + &F (0 — 05) + 5 (0 — 6,)"—(6 — 6y

Y O = 9\(_ ~d a(Q\L)

9/7/16 68
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Comparison

e Newton’s method vs. Gradient descent _‘

A comparison of gradient descent

(green) and Newton's method Q
(red) for minimizing a function ‘
(with small step sizes). Q g QD

\

5

Newton’s method uses curvature )
information to get a more direct Xo
route ...

S/77/16 69
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Tt - = (/-26)" (-X0)

_—

-3 1229 2
Vpl(0)= 'R O- XY
H = VeT) = %%

Newton’s method
for Linear Regression
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Today Recap

A Practical Application of Regression Model

] More ways to train / perform optimization for
linear regression models

] Gradient Descent

J Gradient Descent (GD) for LR
1 Stochastic GD (SGD)

J Newton’s method

9/7/16 71




Evaluation : ](e)zéi(f’i(’?i)—yi)z
for Regression Models -1

Sum of squared error
(SSE) on training set

e Testing MSE (mean-squared-error) to report:

1 n+m

MSEtest - 2 (XiTH* _-yi:)2

* Training MSE to report:

1 )
MSEtrain = ZE(XiTQ - -yi)2
=1
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References

* Big thanks to Prof. Eric Xing @ CMU for _‘
allowing me to reuse some of his slides

1 Notes about Gradient Descent from
Toussaint: http://ipvs.informatik.uni-
stuttgart.de/mlr/marc/notes/
gradientDescent.pdf

http://en.wikipedia.org/wiki/Matrix calculus
] Prof. Nando de Freitas’s tutorial slide
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