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Where are we ? =
Five major sections of this course

[ Regression (supervised) _‘
] Classification (supervised)

J Unsupervised models

J Learning theory
1 Graphical models
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Today

] Review of basic pipeline

1 Review of regression models
— Linear regression (LR)
— LR with non-linear basis functions
— Locally weighted LR
— LR with Regularizations

] Feature Selection
] Model Selection
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A Typical Machine Learning Pipeline

Optimization

X

Low-level Pre- Feature Feature
sensing processing Extract Select

e.g. Data Cleaning  Task-relevant

Inference,
Prediction,
Recognition

Label
Collection

Evaluation
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Traditional Programming

-

Data
Output
Program
Machine Learning
Data
Program
Output / Model
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e.g. SUPERVISED LEARNING

_________________________

* Find function to map input space X to
output space Y

_____________________________________________________________

» Generalisation: learn function / hypothesis

I/

from past data in order to “explain”, “predict”,:
“model” or “control” new data examples

|

|

|

|

|

|

|

1 |
1 |
\ /
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X, X, X, Y

A Dataset

_-==3

fiXi—Y

Sq o S

So
Sq - \

« Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]

10/5/16 7



Dr. Yanjun Qi / UVA CS 6316 / f16

SUPERVISED LEARNING

target/class
|
‘;’* Training dataset
B model  |consists of input-
training .
dataset i learn f output pairs
B
test
dataset

apply
model

e || m | o

A :
Measure Loss on pair

f(xq) > (f(xy), y>)
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training
dataset

test

dataset
iX
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train

test

y train =

ytest =
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Evaluation Metric

e.g. for linear regression models

Vi
Y)

Vi

y n+l

y n+2

yn+m

-
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Evaluation Metric
e.g. for linear regression models

e Testing MSE (mean squared error) to report: _‘

n+m

—Z(XTH -y)

1 n+1
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Evaluation Choice-I:

v’ Training (Learning): Learn a model using the _‘
training data

v’ Testing: Test the model using unseen test
data to assess the model accuracy

Traming l.curmng
N algorithm

data

N

Step | Tramming Step 2: Testing

Number of correct classifications
Accuracy = :

10/5/16 Total number of test cases




Evaluation Choice-11I:
e.g. 10 fold Cross Validation

Divide data into
10 equal pieces
9 pieces as
training set, the
rest 1 as test set
Collect the
scores from the
diagonal

model

10

P7 P8 P9 P10

P1 P2 P3 P4 P5 P6

train test train train train train train train train train

test train train train train train train train train train
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e.g. Leave-one-out (n-fold cross
validation)

.

| | ||
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Machine Learning in a Nutshell

Task

1

Representation

1

Score Function

1

Search/Optimization

1

Models,
Parameters
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An Operational Model of I\/Iachin/g )
ler al.
Consists of input- Lea rning Dt /25t

r output pairs _‘
Huparn (& CV/T% ) .

- —
- ‘\
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Today

[ Review of basic pipeline
[ Review of regression models

— Linear regression (LR)

— LR with non-linear basis functions
— Locally weighted LR

— LR with Regularizations

] Feature Selection
] Model Selection

-
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(1) Multivariate Linear Regression

Task Regression
Representation . Y= Weighled linear sum
1 of X’s
Score Function Least-squares

Searcthrtimization Linear algebra /QM

Models, i Regression
Parameters i coefficients

y=f(x)=0,+ Hlxl + 92x2

17
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(1) Linear Regression (LR)

fiX —Y T

= e.g. Linear Regression Models

y=f(x)=6,+60,x +Hx

= To mmlmlze the “ least
square ’ cost functlon

72 E (G.(F)-y)"
o -
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Linear regression (1D example)

y ]|

A

y =00+ 01 x,
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* We can represent the

I—whole Training set:

X=
Vi
Y=|
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Y

0 1 p-1
- .xl xl cee xl

0 | p-1
- _ X2 x2 “ee x2

0 1 p-1
o 'xn xn xn

* Predicted output
for each training
sample:

Dr. Yanjun Qi / UVA CS

Traming
set

Learning
algorithm

6I16 / 16

I
x—b @ — predicted ¥
(living area of (pred:cted price
house.) of houze)
f(x) X, 0
T T
f(fz) _| X0 |_xp
T T
f(x)) X, 0

270
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Method |: normal equations

e Write the cost function in matrix form:

1 n
JO)=2 X (xi0-)’ — x —-
i=1
T
=%(X8—§)T(X6—y) X = X:Z
= %(BTXTXH -0'X"y-5"X0+3") - x! —-

To minimize J(6), take derivative and set to

Zero:
X'X0=X"y

The normal equations

|
o =(x"x) X"y

10/5/16
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Method II: LR with batch Steepest
descent / Gradient descent

@t — HH _ O{VJ(QH) For the t-th epocT‘

T
0 0 L

Vi=|l—],...—]| =- —x"0)x

o {aelj aek] } Z(y’ X o)

—This is as a batch gradient descent algorithm

10/5/16
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Method Ill: LR with Stochastic GD =»

* From the batch steepest descent rule: \
1 - -~ T '
6" =0"+a) (y,—-%, 6')x;
i=1

* For a single training point, we have:
) 0" =6 +a(y,—X'0)X

— a "stochastic", "coordinate" descent algorithm
— This can be used as an on-line algorithm

10/5/16
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Method IV: Newton’s method for
optimization

* The most basic second-order optimization —l

algorithm 0.1 =0 — Hf{lgk
* Updating parameter with

> o gt - K vf©) .
= Q‘t'- (fX)—, [ XTX 6 ’TXT%]
- CXTX )fl zfg Newton’s method

for Linear Regression

10/!
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(2) Multivariate Linear Regression with basis Expansion

10/5/16

Task

1

Representation

1

Score Function

1

Searcthrtimization

Models,
Parameters

Regression

(i= Weighled linear sum

. \_of (X basis expansion)

Least-squares

1

Linear algebra

1

Regression
coefficients

§=0,+  00,(x)=p(x)0

25



(2) LR with polynomial basis functions

*/ LR does not mean we can only deal with linear
relationships

y=0,+) 0,0,(x)=¢(x)0

* E.g.: polynomial regression:
@(x) = [l,x,xz,x3]

0" =(¢"0) @'y
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e.g. polynomial regression

For example, ¢(z) = [1, z, 2°]

Y )
10+ t-L"y? ¢C“‘)@

= (-)¢,+><E)| +X101

10/5/16 27
Dr. Nando de Freitas’s tutorial slide



LR with radial-basis functions

*/ LR does not mean we can only deal with linear
relationships

=0,+ ), 0,0,(x)=g(x)0

2
* E.g.: LR with RBF regression: Kk(x,r)=exp(—()_c _)L’; )
- 2

@(x) = [1, K, (x1),K,_ (x,2),K,_(x, 4)]

0 =(¢"0) @'y
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(3) Locally Weighted / Kernel Regression

Task

1

Representation

1

Score Function

1

Searcthrtimization

Models,
Parameters

_______________________________________________

Regression

Y= Welghled linear sum
of X's

Weighted
Least-squares

min EK (xl,xo)[yl a(x,
a(xy).B(xg)

l_

10/5/16

Linear algebra

|
v

Local Regression
coefficients
(conditioned on
each test point)

S (x0) = )+ B(x,)x,

)— ﬁ(xo)x ]

29



(3) Locally weighted regression

* aka locally weighted regression, locally

linear regression, LOESS, ...

K, (x;,x,)

AD.

X

linear_func(x)->y
->

could represent
only the neighbor
region of x_0

Use RBF function to
pick out/emphasize

the neighbor region
of x 0 =

K, (x;,x,)

Figure 2: Inlocally weighted regr EssI01L, points are weighted by proximity to the current X in question using

a kernel A regression 1s then computed using the weighted points.
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LEARNING of Locally weighted
linear regression

target, \
) model
training

dataset learn . ff.\(xo) — OA((XO) T B(xo )XO

?

X0

= Separate weighted least squares
at each target point x,

N
a(ag},i/sl}xo);& (%, %)Ly; = (%) = B(xo)x, 1

10/5/16 31
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(4) Regularized multivariate linear regression

Task

1

Representation

1

Score Function

1

Searcthrtimization

Models,
Parameters

_______________________________________________

Regression

Y= Welghled linear sum

10/5/16

of X's i
;unmfmi«d
east-squares) => J (0 MAP ( 9>
- A0
subradiont Lars >, S0
i st pOIL
(ﬂgcmm}\

Regression
coefficients

minJ(f) = E(Y Y) +)LE/3

32
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(4) LR with Regularizations /
Regularized multivariate linear regression

A A A A
¢ Basic model Y=/3)O+/3)1x1+---+/3)pxp _‘

AN 2
* LR estimation: m1nJ(/3’)= E(Y—Y)
2
n A P
e L ASSO estimation: mln](ﬁ) = E(Y - Y) 1 A’EVJ}J‘
i=1 j=1
n A\ 2 p
e Ridge regression estimation: min J(/))) = E(Y — Y) + AE ﬁ]z
i=1 Jj=1
\_ v,

33/54

Error on data + Regularization
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LR with Regularizations /
Ridge Estimator

Y=0+0,x++p,x,
B =(X"X+Al) X'y

* The ridge estimator is solution from RSS
(regularized sum of square errors)

B = argmin J(B) = argmin(y - X8)" (y— X)+ AB" B

to minimize, take derivative and set to zero



Today

[ Review of basic pipeline

J Review of regression models
— Linear regression (LR)
— LR with non-linear basis functions
— Locally weighted LR
— LR with Regularizations

] Feature Selection

J Review of Model Selection
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Summary: filters vs. wrappers vs.

embedding

s Main goal: rank subsets of useful features \

Feature

All features

All features

All features

10/5/16

—— Filter ——

Multiple
Feature
subsets

Wrapper

subset —— Predictor

»| Predictor

A 4

Embedded
method

Feature

/ subset

I

Predictor

36
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(XX 4 ) X

(mrf‘*‘/ma///)
7 1»? %Zxr O (M) Chose 1,
- . 3 mage P/
%CX XJ{XL} . O{/r) ~ o we cay
T *
> %y : O(np)
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ww.butterflyeffe
ct.ca/.../
OccamsRazor.ht
mIRemove frame

The principle of
Occam's razor

Occam's razor:
states that the explanation of any phenomenon

should make as few assumptions as possible,
eliminating those that make no difference to
any observable predictions of the theory

10/5/16 38
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Occam’s razor: law of parsimony

Basically it says fthat explanations must not T
INnclude elements that have nothing to do with
the phenomenon under analysis.

...not as often stated:
“The simplest explanation is the correct one"

As it is not about simplicity or complexity

William of Occam 1288 - 1348

plg/rg/i{pony: extreme unwillingness to spend money or use resources. .



Today

[ Review of basic pipeline

J Review of regression models
— Linear regression (LR)
— LR with non-linear basis functions
— Locally weighted LR
— LR with Regularizations

] Feature Selection

1 Review of Model Selection
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Regression:

Complexity versus Goodness of Fit
N Too simple? _‘

y 1 Training data
y
® ® e e -~
Q@ .. ° ® ® ”.” Q@
@ e .-
® o .-~ RN
o Leg Low Variance /
> > High Bias
X X
A !\ Too complex ? N About right ?
I \
y ! '
: \ L \ :\. , 3/
¥ T % b ! _e___ o
Iy I (5] - e @ ~_
Hll. ° : \ ! \ / ./”. .
| \, \ i Qs
I, \\ " v, R
.||| \ 1 \/ /.
v > 4 >
I X ’ g
X

AN

Low Bias
/ High Variance

10/5/16
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Which function f to choose?
Many possible choices , e.g. LR with
polynomial basis functions

(Generalisation: learn function /

hypothesis from past data in order Choose f that
to “explain”, “predict”, “model” o generalizes well !
“control” new data examples
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Which kernel width to choose ?
e.g. locally weighted LR

-

Choose kernel width

kernel too wide — includes nonlinear region

ﬂkemel just right
kernel too narrow — excludes some of linear reg

X
Figure 3: The estimator vantance 15 minirnized when the kernel mcludes as many traimng points as can be
acconm/lodated by the model. Here the inear LOESS model 15 shown. Too large a kernel includes pomts that
degra e the fit; too small a kernel neglects points that imcrease confidence in the fit.




an example
(ESL Fig3.8),

Ridge
Regression

when varying

A, how 0, Fseo

VCI?' leS . - /A lncreases

10/5/16



Regularization
path of a Lasso
Estimator

10/5/16
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T T
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Shrinkage Factor s

0.8

|

A =0

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotied versus s =t/ Y} |8;|. A vertical line is draun at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.



Y
r| Yanjun Qi / UVA CS 6316 / f16

Probabilistic Interpretation of
Linear Regression (LATER)

Let us assume that the target variable and the inputs are w
related by the equation:
' i Creor Axtn ow A

y.=0'x @ /d’Ulv\{
where € is an error term of unmodeled effects or random noise

Now assume that € follows a Gaussian N(0,0), then we
have:

Many more variations

1 0Ty ) of LR from this
exp(_ (y,—6"x) ]

| x.;0)= perspective, e.g.
p(yz | l ) \/EO' 20_2

binomial / poisson
By iid (among samples) assumption:

(LATER)
" 1 n ” i_HT i 2
L<9>=Hp<yi|x,-;9>=[ > ]exp[—z“(y %) J
i=1
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Linear regression (1D example)

y ]|

A

y =00+ 01 x,
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