UVA CS 6316/4501 - Fall 2016 Machine Learning

Lecture 9: Review of Regression

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- ☐ Classification (supervised)
- Unsupervised models
- Learning theory
- ☐ Graphical models

Today

- Review of basic pipeline
- Review of regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations
- ☐ Feature Selection
- ☐ Model Selection

A Typical Machine Learning Pipeline

5

Traditional Programming

Machine Learning

e.g. SUPERVISED LEARNING

$$f:X\longrightarrow Y$$

• Find function to map input space X to output space Y

 Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

A Dataset

$$f:[X] \longrightarrow [Y]$$

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

SUPERVISED LEARNING

Evaluation Metric

e.g. for linear regression models

$$\mathbf{X}_{train} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix} \qquad \vec{y}_{train} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$
training dataset

$$\mathbf{X}_{test} = \begin{bmatrix} -- & \mathbf{x}_{n+1}^T & -- \\ -- & \mathbf{x}_{n+2}^T & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n+m}^T & -- \end{bmatrix} \quad \vec{y}_{test} = \begin{bmatrix} y_{n+1} \\ y_{n+2} \\ \vdots \\ y_{n+m} \end{bmatrix}$$

Evaluation Metric

e.g. for linear regression models

Testing MSE (mean squared error) to report:

$$J_{test} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\mathbf{x}_i^T \boldsymbol{\theta}^* - y_i)^2$$

Evaluation Choice-I:

- ✓ Training (Learning): Learn a model using the training data
- ✓ Testing: Test the model using unseen test data to assess the model accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}}$$

Evaluation Choice-II:

e.g. 10 fold Cross Validation

- Divide data into 10 equal pieces
- 9 pieces as training set, the rest 1 as test set
- Collect the scores from the diagonal

e.g. Leave-one-out (n-fold cross validation)

Machine Learning in a Nutshell

Today

- ☐ Review of basic pipeline
- ☐ Review of regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations
- ☐ Feature Selection
- ☐ Model Selection

(1) Multivariate Linear Regression

$$\hat{y} = f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2$$

(1) Linear Regression (LR)

$$f: X \longrightarrow Y$$

→ e.g. Linear Regression Models

$$\hat{y} = f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2$$

→ To minimize the "least square" cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_i(\vec{x}_i) - y_i)^2$$

Linear regression (1D example)

$$\theta^* = \left(X^T X\right)^{-1} X^T \vec{y}$$

 x_1

 We can represent the whole Training set:

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix} = \begin{bmatrix} x_{1}^{0} & x_{1}^{1} & \dots & x_{1}^{p-1} \\ x_{2}^{0} & x_{2}^{1} & \dots & x_{2}^{p-1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n}^{0} & x_{n}^{1} & \dots & x_{n}^{p-1} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

 Predicted output for each training sample:

$$\begin{bmatrix} f(\mathbf{x}_1^T) \\ f(\mathbf{x}_2^T) \\ \vdots \\ f(\mathbf{x}_n^T) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T \theta \\ \mathbf{x}_2^T \theta \\ \vdots \\ \mathbf{x}_n^T \theta \end{bmatrix} = X\theta$$

Method I: normal equations

Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$= \frac{1}{2} (X\theta - \bar{y})^{T} (X\theta - \bar{y})$$

$$= \frac{1}{2} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \bar{y} - \bar{y}^{T} X \theta + \bar{y}^{T} \bar{y})$$

$$X = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix}$$

$$\bar{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

To minimize $J(\theta)$, take derivative and set to zero:

$$\Rightarrow X^T X \theta = X^T \vec{y}$$
The normal equations

$$\boldsymbol{\theta}^* = (X^T X)^{-1} X^T \vec{y}$$

Method II: LR with batch Steepest descent / Gradient descent

$$\theta_{t} = \theta_{t-1} - \alpha \nabla J(\theta_{t-1})$$

For the t-th epoch

$$\nabla_{\theta} J = \left[\frac{\partial}{\partial \theta_{1}} J, \dots, \frac{\partial}{\partial \theta_{k}} J \right]^{T} = -\sum_{i=1}^{n} (y_{i} - \vec{\mathbf{x}}_{i}^{T} \theta) \mathbf{x}_{i}$$

$$\theta_j^{t+1} = \theta_j^t + \alpha \sum_{i=1}^n (y_i - \vec{\mathbf{x}}_i^T \theta^t) x_i^j$$

This is as a batch gradient descent algorithm

Method III: LR with Stochastic GD -

From the batch steepest descent rule:

$$\boldsymbol{\theta}_{j}^{t+1} = \boldsymbol{\theta}_{j}^{t} + \alpha \sum_{i=1}^{n} (y_{i} - \overline{\mathbf{x}}_{i}^{T} \boldsymbol{\theta}^{t}) x_{i}^{j}$$

For a single training point, we have:

- a "stochastic", "coordinate" descent algorithm
- This can be used as an on-line algorithm

Method IV: Newton's method for optimization

- The most basic second-order optimization algorithm $m{ heta}_{k+1} = m{ heta}_k \mathbf{H}_K^{-1} \mathbf{g}_k$
- Updating parameter with

$$\Rightarrow 0^{t+1} = 0^{t} - H^{-1} \nabla f(0)$$

$$= 0^{t} - (XX)^{-1} [X^{T}X 0^{t} - X^{T}Y]$$

$$= (X^{T}X)^{-1} X^{T}Y$$
Normal Eq?

Newton's method for Linear Regression

(2) Multivariate Linear Regression with basis Expansion

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)\theta$$

(2) LR with polynomial basis functions

 LR does not mean we can only deal with linear relationships

$$y = \theta_0 + \sum_{j=1}^{m} \theta_j \varphi_j(x) = \varphi(x)\theta$$

• E.g.: polynomial regression:

$$\varphi(x) := \left[1, x, x^2, x^3\right]$$

$$\boldsymbol{\theta}^* = \left(\boldsymbol{\varphi}^T \boldsymbol{\varphi}\right)^{-1} \boldsymbol{\varphi}^T \vec{\mathbf{y}}$$

e.g. polynomial regression

For example, $\phi(x) = [1, x, x^2]$

LR with radial-basis functions

 LR does not mean we can only deal with linear relationships

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)\theta$$

• E.g.: LR with RBF regression: $K_{\lambda}(\underline{x},r) = \exp\left(-\frac{(\underline{x}-r)^2}{2\lambda^2}\right)$

$$\varphi(x) := \left[1, K_{\lambda=1}(x,1), K_{\lambda=1}(x,2), K_{\lambda=1}(x,4)\right]$$

$$\boldsymbol{\theta}^* = \left(\boldsymbol{\varphi}^T \boldsymbol{\varphi}\right)^{-1} \boldsymbol{\varphi}^T \vec{\mathbf{y}}$$

(3) Locally Weighted / Kernel Regression

(3) Locally weighted regression

 aka locally weighted regression, locally linear regression, LOESS, ...

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

LEARNING of Locally weighted linear regression

→ Separate weighted least squares at each target point x₀

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_i, x_0) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$

(4) Regularized multivariate linear regression

(4) LR with Regularizations / Regularized multivariate linear regression

• Basic model

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

• LR estimation:

$$\min J(\beta) = \sum \left(Y - \hat{Y}\right)^2$$

LASSO estimation:

$$\min J(\beta) = \sum_{i=1}^{n} \left(Y - Y \right)^{2} + \lambda \sum_{j=1}^{p} \left| \beta_{j} \right|$$

• Ridge regression estimation:

$$\min J(\beta) = \sum_{i=1}^{n} \left(Y - \hat{Y} \right)^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

Error on data

Regularization

33/54

LR with Regularizations / Ridge Estimator

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

$$\hat{\beta}^* = (X^T X + \lambda I)^{-1} X^T \vec{y}$$

 The ridge estimator is solution from RSS (regularized sum of square errors)

$$\hat{\beta}^{ridge} = \arg\min J(\beta) = \arg\min(y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$$

to minimize, take derivative and set to zero

Today

- ☐ Review of basic pipeline
- ☐ Review of regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations
- Feature Selection
- Review of Model Selection

Summary: filters vs. wrappers vs. embedding

Main goal: rank subsets of useful features

10/5/16

From Dr. Isabelle Guyon

$$(X^{T}X + \lambda I)^{-1}Xy$$

$$\Rightarrow X^{T}X + \lambda I)^{-1}Xy$$

$$\Rightarrow (\text{omputationally}, \text{choose to } \text{make } p \text{ if we can}$$

The principle of Occam's razor

Dr. Yanjun Qi / UVA CS 6316 / f16 image at:

ww.butterflyeffe ct.ca/.../ OccamsRazor.ht mlRemove frame

Occam's razor:

states that the explanation of any phenomenon should make as few assumptions as possible, eliminating those that make no difference to any observable predictions of the theory

Occam's razor: law of parsimony

Basically it says that explanations must not include elements that have nothing to do with the phenomenon under analysis.

...not as often stated:

"The simplest explanation is the correct one"

As it is not about simplicity or complexity

William of Occam 1288 - 1348

Today

- Review of basic pipeline
- ☐ Review of regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations
- Feature Selection
- Review of Model Selection

Regression: Complexity versus Goodness of Fit

Which function *f* to choose? Which function *f* to choose? Which file Many possible choices , e.g. LR with polynomial basis functions

Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

Choose f that generalizes well!

Which kernel width to choose? e.g. locally weighted LR

Figure 3: The estimator variance is minimized when the kernel includes as many training points as can be accommodated by the model. Here the linear LOESS model is shown. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

an example (ESL Fig3.8),

Ridge Regression

when varying

 λ , how θ_j varies.

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

Probabilistic Interpretation of Linear Regression (LATER)

Many more variations

of LR from this

perspective, e.g.

binomial / poisson

(LATER)

Let us assume that the target variable and the inputs are related by the equation:

on:

$$y_i = \theta^T \mathbf{x}_i + \varepsilon_i$$
Point

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

By iid (among samples) assumption:

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Linear regression (1D example)

$$\theta^* = \left(X^T X\right)^{-1} X^T \vec{y}$$

 x_{1}

References

- ☐ Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Alexander Gray's slides