
IBCM: The Itty Bitty Computing Machine

A one-week module to teach machine language in computing courses

Aaron Bloomfield
University of Virginia

aaron@virginia.edu

William Wulf
University of Virginia
wulf@virginia.edu

ABSTRACT
We present the development and implementation of the Itty
Bitty Computing Machine (IBCM), a machine language de-
signed specifically to be taught to lower-level undergradu-
ate students. The presentation of the material takes about
one-week of lecture, and allows understanding of all the con-
cepts of machine language without having to deal with the
complexity of modern machine language implementations,
such as x86 and MIPS. A number of pedagogical aspects are
addressed concisely via IBCM, such as treating all data as
untyped and performing arithmetic on instructions.

While we are not the first to introduce a short machine
language module, we do provide a number of benefits over
older versions: a modern browser-based implementation, a
full set of pedagogical tools, and a decade of experience
teaching this module. All of the necessary materials, includ-
ing compilers, simulators, and documentation, are available
online and licensed through Creative Commons licenses.

Categories and Subject Descriptors
D.3.m [Software]: Programming LanguagesMiscellaneous;
D.2.6 [Softwa re Engi ne e ri ng]: Programming Environments

General Terms
Languages

Keywords
machine language, pedagogy

1. INTRODUCTION
Understanding machine language is vital for any computer

science undergraduate. While all undergraduate programs
will have their students understand this topic by gradua-
tion, the question persists as to how and when best to intro-
duce these concepts to the students. Some institutions have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

a separate assembly language course that touches on ma-
chine language, whereas others include it in a computer ar-
chitecture course. We are not aware of any institutions that
have an entire required computer science course dedicated to
machine language. We recognize that hardware-based com-
puter engineering curricula, including ours at the University
of Virginia, will have such material as upper-level courses.
These courses tend to be specialized computer hardware or
computer engineering courses, and are typically not required
for a computer science degree.

We present a pedagogical module designed to teach ma-
chine language in a single week in a low-level undergraduate
course. While the depth of knowledge obtained by the stu-
dents is limited due to the short time spent on the topic,
the students are still able to understand the fundamental
concepts. This allows machine language to be introduced to
the students early in the curriculum, with a more detailed
approach potentially taught in later classes.

We have developed a machine language that we have called
the Itty Bitty Computing Machine, or IBCM. This language
is intended to be very simple – there are only 16 commands.
Yet it is still fully functional, and is a Turing complete pro-
gramming language.

2. RELATED WORK
We are certainly not the first to propose a simplified ma-

chine language as a pedagogical tool. Andrew Tanenbaum’s
original 1984 text, Structured Computer Organization – now
in its 5th edition – presents the Mic-1 micro architecture
and the Mac-1 machine language [10]. Indeed, the Mac-1
machine language has many similarities with IBCM – this
is not surprising, as there are many common elements that
must be present in all small instruction set machine lan-
guages. Further research in that decade presented imple-
mentations of those languages [5, 6]. The Mic-1 simulator,
which is focused on assembly language, is available online
[9]. Simulators for the Mac-1 machine language do exist, but
seem to be independently developed, and without a modern
set of implementation software.

A number of high quality simulators exist at the assembly
level. Pep/8 [11, 12] is a 16-bit CISC architecture designed
to teach assembly language concepts. While it can be used
for machine language – and can trace program execution at
the machine language level – the primary pedagogical design
is at the assembly language level. Another example is SPIM,
which is a full featured MIPS 32-bit simulator [4].

Additional research on machine language simulators has

371

often focused on the register transfer level [7], or is restricted
to a single client operating system [1].

More recent research by Stone has focused on a similar
machine language implementation [8]. Although developed
independently, our research can be seen as an extension of
Stone’s, as we add a number of additional aspects: signifi-
cant pedagogical tools, a fully downloadable package so this
system can be used in any course, a proof of Turing com-
pleteness, and a discussion of pedagogical concerns.

We are not aware of any machine language simulators that
are available with the set of modern tools that we present
with IBCM.

3. THE IBCM LANGUAGE
The Itty Bitty Computing Machine is an accumulator-

based machine language with 16-bit two’s complement inte-
ger arithmetic. There are no registers other than the accu-
mulator. IBCM has 4096 words of memory, and each word
is also 16 bits.

All instructions are likewise 16 bits: the first four bits are
the opcode, and the rest are interpreted differently, depend-
ing on the opcode. The instruction format can be seen in
Figure 2.

0 1 2 3 4 5 . . . 15

0 0 0 0 (unused) halt

0 0 0 1
I/O
op

(unused) I/O

0 0 1 0
shift
op

(unused) count shifts

opcode address others

Figure 2: IBCM instruction format

An opcode of 0x0 halts the IBCM. The remaining 12 bits
are not used by this instruction, and can hold any value.

An opcode of 0x1 will perform either an input or output
operation. All input is written to the accumulator, and all
output is read from the accumulator. The two bits following
the opcode specify which operation: the 5th bit specifies
either a read (if 0) or a write (if 1), and the 6th bit specifies
if the value being read or written is a four digit hexadecimal
word (if 0) or an ASCII character (if 1).

An opcode of 0x2 will perform a shift operation on the bits
in the accumulator. The bit following the opcode specifies
whether the operation is a shift (if 0) or a rotate (if 1). A
rotate takes the bits that “fall” off one “end” of the 16-bit
word, and move them to the empty spots on the other “end”
of the word. The 6th bit of the instruction specifies if the
shift or rotate operation is to the left (if 0) or right (if 1).
The last 4 bits of the 16-bit word (called ’count’ in Figure 2)
specify how many bit positions the shift or rotation should
move.

The remaining 13 opcodes (0x3 to 0xf) are classified as
’address’ instructions, as the remaining 12 bits generally
specify the memory address that the opcode will use. A
few of the instructions do not need the 12 bit address: in
particular, the not and nop operations. All of 13 these ’ad-
dress’ instruction opcodes are shown in Figure 1. In that
figure, note that a represents the accumulator register, and
mem[] represents memory. Of these 13 operations, the first

8 manipulate data, and last 4 perform program flow con-
trol; the nop instruction does nothing. Note that PC, the
program counter, is the address of the current instruction
being executed.

An IBCM file is simply a text file, and the simulator only
reads in the first 4 bytes of each line; the remaining char-
acters on the line are ignored. In the sample program that
is shown below (in Figure 4), additional opcodes are used
for clarity. These are so that one can read an assembly-like
opcode for each line.

• dw (for “declare word”), for declaring variables
• readH and printH are for reading or writing a hexadec-

imal value
• readC and printC are for reading or writing an ASCII

character
• shiftL and shiftR are for the shifts
• rotL and rotR are for the rotations

All the functionality of a modern procedural programming
language can be implemented using IBCM. Conditionals (if-
then-else) are implemented through comparing a number!–
or a number minus a constant!– to zero, and using the vari-
ous jump commands (jmp, jmpe, jmpl) to access the differ-
ent parts of the conditional. As in any assembly or machine
language, iteration is achieved through looping, such as the
jmp command. Subroutines can be implemented through
the brl instruction, which stores the return address in the
accumulator upon jumping to the subroutine start address.
The brl command is discussed in more detail below, as well
as an IBCM example that uses subroutines.

A specific design decision with IBCM was to include only
basic operations – for example, multiplication and division
are not included, but can be replicated by using repeated
addition or subtraction. We wanted students to see that
any program, no matter how complicated, can be broken
down into very simple instructions. Indeed, this is the point
of the concept of Turing machines, but they are often not
taught when students are first seeing machine language.

4. EXAMPLE PROGRAMS
We present one example IBCM program in its entirety

here in Figures 3 and 4. We discuss two other programs
in this article, and their full program listings can be found
online [2].

The first program will compute the sum of the integers 1
through n, where n is read from the keyboard; the resulting
sum is printed to the screen. The program then halts after
printing the sum. The C++ code for the program is shown
in Figure 3 – this is presented to help show the conversion
to IBCM.

int main(void) {

int n, s = 0;

cin >> n;

for (int i = 0; i <= n; i++)

s += i;

cout << s << endl;

}

Figure 3: C++ summation program

The IBCM program is shown in Figure 4. Note that the
only part of the program that the simulator reads in is the

372

Hex Opcode HLL-like meaning English explanation
3 load a:= mem[addr] load accumulator from memory
4 store mem[addr] := a store accumulator into memory
5 add a := a + mem[addr] add memory to accumulator
6 sub a := a - mem[addr] subtract memory from accumulator
7 and a := a & mem[addr] bitwise ’and’ of memory and accumulator
8 or a := a | mem[addr] bitwise ’or’ of memory and accumulator
9 xor a := a ⊕ mem[addr] bitwise ’xor’ of memory and accumulator
A not a := ∼a bitwise complement of accumulator
B nop do nothing (no operation)
C jmp goto addr jump to ’addr’
D jmpe if a = 0 goto addr jump to ’addr’ if accumulator equals zero
E jmpl if a < 0 goto addr jump to ’addr’ if accumulator less than zero
F brl a := PC; goto addr set accumulator to PC; jump (branch) to ’addr’;

Figure 1: IBCM instructions

first four characters on the line. The rest of the line in the
text file is solely for comments. The column headers shown
in the figure are heavily abbreviated to fit in the width of
a column, but are, in order: the actual 4 hexadecimal digit
memory value, the hexadecimal location (used for determin-
ing jump targets and variable addresses), the label (used to
refer to jump and variable targets), the opcode (from Fig-
ure 1), the target address (which refers to a given label),
and any English comments.

Mem Loc’n Label Opcode Adr Comments
C006 00 jmp init jmp past vars
0000 01 i dw int i
0000 02 s dw int s
0000 03 n dw int n
0001 04 one dw
0000 05 zero dw
1000 06 init readH read n
4003 07 store n
3004 08 load one i = 1
4001 09 store i
3005 0A load zero s = 0
4002 0B store s
3003 0C loop load n if i>n, jmp xit
6001 0D sub i
E016 0E jmpl xit
3002 0F load s s += i
5001 10 add i
4002 11 store s
3001 12 load i i += 1
5004 13 add one
4001 14 store i
C00C 15 jmp loop goto loop
3002 16 xit load s print s
1800 17 printH
0000 18 halt halt

Figure 4: IBCM summation program

Another program that was developed computes the prod-
uct of two numbers, x and y, through a recursive multipli-
cation subroutine that uses only addition. Both x and y are
read from the keyboard, and the resulting product is printed
to the screen. The program is just over 100 lines of IBCM
opcodes, and is available online [2].

The C++ code for the multiplication program can be seen

in Figure 5. We did not create a tail recursive multiply()

routine, as the IBCM compiler and language is (intention-
ally) far too simple to optimize for tail recursion.

int mult(int x,int y) {

if (y == 0)

return 0;

else

return x+mult(x,y-1);

}

int main(void) {

int x, y;

cin >> x;

cin >> y;

cout << mult(y,x)

<< endl;

}

Figure 5: C++ multiplication program

This IBCM program creates a stack similar to x86: the
stack starts at the end of addressable memory, and grows
downward. An activation record is created for each recur-
sive call, which consists of the two parameters and the return
address – other fields typically in an activation record (e.g.,
backup of registers) are not necessary in IBCM. The brl

instruction was used to allow for subroutine calls – the re-
turn address is saved in the accumulator, and is stored on
the stack immediately upon subroutine activation. We were
able to run the program with the second parameter (which
is decremented in each recursive call) set as high as 1,243
(0x4db), beyond which point IBCM runs out of available
memory for the stack.

This recursive multiplication program is beyond what we
would expect of a student to be able to program after a one-
week introduction to IBCM. However, it is very illustrative
of two important points about IBCM. One is that complex
functionalities (such as multiplication) can be achieved by
using only the simple capabilities available in IBCM (such as
addition). The other is that subroutines are fully realizable
in IBCM.

5. TURING COMPLETENESS
We were conflicted as to how much to discuss about Tur-

ing completeness in this article. IBCM is similar to a Ran-
dom Access Stored Program (RASP) machine [14], which is
itself Turing complete, so it is perhaps not surprising that
IBCM is also Turing complete. However, we felt that break-
ing down a complex task (a Turing machine simulator) and
programming it into IBCM was a worthwhile task to discuss,

373

0 1 2 3

0/R

1/L

0/L
1/R

0/L

1/S

Figure 6: Four state Busy Beaver automaton

as it emphasizes a primary design goal of IBCM – that you
can take any program and write it in IBCM.

Obviously, no physical computer with a finite amount of
memory can be truly Turing complete. Thus, we will in-
stead show that the IBCM computational model is Turing
complete.

We define the IBCM computational model as the same
IBCM computer defined above, but allowing any sized inte-
ger to be held in a single memory location, as well as having
an infinite amount of memory. Thus, other fields that make
up part of a given instruction, such as the ’address’ or ’count’
fields (see Figure 2), can also hold any size integer.

Given this model of computation, we will show how to sim-
ulate a Turing machine in IBCM. Hopcroft and Ullman [3]
define a Turing machine as a 7-tupleM = 〈Q,Γ, b,Σ, δ, q0, F 〉
where:

• Q is a finite set of states
• Γ is the finite set of allowable tape symbols
• b ∈ Γ is the blank symbol
• Σ ⊆ Γ \ b is the set of input symbols
• δ : Q× Γ → Q× Γ× {L,R} is the transition function
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final states

We will make two modifications to the above definition, to
allow for ease of implementation in IBCM. We will allow a
no-shift transition of S (in addition to L and R), which will
not move the tape. The Turing machine programs allowed
by the no-shift are equivalent to the ones described above
[15]. Furthermore, we will define f , a single final state, which
all states in F move to on a no-shift transition.

To represent the transition functions in IBCM, we will
represent state q ∈ Q and symbol Σ ∈ Γ each as a (16-bit)
word in IBCM. Thus, states and symbols will be a single
integer each. While this limits the number of states (and
symbols) to 216 = 65, 536 in our IBCM implementation, it
is not limited in the formal IBCM computational model.
Thus, one can encode any amount of states, symbols, and
transition functions into IBCM’s memory.

To simulate a Turing machine, we will define an arbitrary
memory location to represent the current state of the Turing
machine, and another arbitrary memory location to contain
the current address of the head of the tape. The transition
function quintuples, δ, will start at a specific (but arbitrary)
memory address, take up five words each, and will contain
the five parts listed above (Q,Γ, Q,Γ, {L,R,S}). The tape
itself will start at different arbitrary memory location. Fur-
thermore, we define a initial state q0 and a (single) final
state f . The blank symbol b will be an arbitrary value, such
as -1 (0xffff in 16-bit 2’s complement integer).

Any Turing machine that requires a significant amount of
tape will need to be a one-way tape Turing machine, as the
program code and state transitions will lie at a lower address

than the initial head position. Thus, only a finite amount of
tape space is available in the lower memory address direc-
tion. The particular automaton example that we provide,
below, uses a two-way tape, but that is because we know
the finite amount of tape space necessary. Note that one-
way tape Turing machines are equivalent in computational
power to two-way tape Turing machines [3].

What is needed, then, is an IBCM program that will iter-
ate through the following steps:

• Read the current state s, initially set to the start state.
If the current state is the (single) final state, then exit.

• Read the current head position.
• Read the current input symbol t at the head position
• Search the list of transition functions until the appro-

priate one is found, based on the current state s and
the input symbol t.

• Perform the action specified in the transition function
by updating the state s, writing the specified symbol
to the tape position, and then moving the tape left or
right (or, on an S, not at all).

We have developed such a program, which we describe
here. The full listing of the program is available online [2].
The program consists of 67 IBCM commands, and 15 vari-
ables – note that numeric constants are considered variables
in an IBCM program. This program only used half of the
instructions: halt, load, store, add, sub, nop, jmp, and
jmpe.

To test the Turing machine, we choose a four state Busy
Beaver automaton, which is described in more detail in the
Wikipedia page on Turing machine examples [16]. The Mea-
ly machine finite automaton is shown in Figure 6. For each
transition, the input symbol (0 or 1) is shown, along with
the tape direction to move (L, R, or S). Note that in this
automaton, upon each transition a 1 is written to the output
tape; this is not shown in the figure to improve clarity. Also
recall that the S transition means to not move the tape, and
is used only on the transition to the final state.

Our implementation can utilize a two-way tape, although
the tape in one direction is finite. We define memory address
1 as the current state variable, and address 2 to store the
location of the current head position. The transitions start
at address 0x060, as our program takes up 82 (or 0x052)
instructions. The states are numbered as per the diagram
in Figure 6, with 0 being the initial state and 3 being the
final state. The program has constants that specify both the
initial and final states of the automaton.

The encoding of the automaton shown in Figure 6 is very
straightforward. The transition from 2 to 1, executed on
an input symbol of 0, will print 1 to the tape and then
move the tape to the left. The quintuple to be encoded is
Q × Γ → Q × Γ × {L,R, S}. The respective values for this
transition are 2, 0, 1, 1, 0; we map the integer values {0, 1, 2}
to, respectively, the transition directions {L,R, S}.

374

6. PEDAGOGY
IBCM was originally developed to complement our CS 3

course entitled Program and Data Representation, which is
still taught today. This course shows how one represents
both data and program code from high levels – such as ab-
stract data types – all the way down to the lowest (software)
level, which is the IBCM machine language.

IBCM allows students to easily make the mental connec-
tion between assembly opcodes and the machine language
that they get translated into. At the University of Virginia,
we follow the presentation of IBCM with a two-week in-
troduction to assembly language. This allows students to
understand both machine language, as well as a modern
processor’s assembly language (we use Intel x86), without
having to delve into the details of x86 machine language.

Students are exposed to a number of concepts during the
IBCM module that they often have not seen previously.
They become aware that in both assembly language and
machine language, data is untyped, and the operations on
the data determine the type – this is quite different than the
typed high-level programming languages to which they are
accustomed. By this point in our course, students have been
exposed to how a 32-bit value can be interpreted either as
a two’s-complement signed integer or an IEEE 754 floating
point number.

Another concept taught through IBCM is self-modifying
programs. A non-trivial IBCM program requires arithmetic
on instructions – in fact, only the first example program
shown in Figure 4 did not use this feature. Array indexing,
for example, requires starting with a load instruction, and
adding to that value both the base address of the array and
the current index. This value is then stored in memory
which is shortly thereafter executed. The second example
program provided to the students uses this feature. While
many systems explicitly try to prevent self-modifying code,
as that is an exploit used by a significant amount of malware,
it is still a concept that the students should be familiar with.

The development of self-modifying IBCM programs leads
to another pedagogical goal of the course: the interplay be-
tween data and program code. Indeed, there is little differ-
ence between data and program code, other than the values
(obviously), and how it is interpreted (and, in modern sys-
tems, what segment of an executable in which the data is
found). This concept seems trivial to instructors, but is one
that students who have only programmed using high-level
languages are often unfamiliar with.

What IBCM does not teach, of course, is how binary
machine language instructions are executed on the proces-
sor. Understanding of this material is typically beyond all
but senior-level undergraduate courses; at many institutions,
this is also outside the standard computing curriculum.

7. RESULTS
At the University of Virginia, this module is taught about

half-way through our CS3 course, which is where we teach
data structures. Our CS1 and CS2 course are both in Java.
At this point in the CS3 course, the students have learned
to implement a number of data structures in C++. We in-
troduce machine language using IBCM for one week, follow
that with two weeks of assembly programming (x86), and
then return to C++ for the remainder of the semester. The
lectures used to teach IBCM typically take three 50-minute

class periods. This is followed by an IBCM lab the follow-
ing week. All of the lecture slides and labs are available
online [2].

We have taught machine language using IBCM in our CS3
class for over a decade. Student reactions to IBCM have
varied greatly. With the usage of the modern tool set pre-
sented in this article, those reactions have generally been
positive, as shown below While they often do not like being
constrained to such a limited set of instructions, they see the
purpose of learning machine language, and generally enjoy
the IBCM assignments. We have found that the quality of
the software tools is directly related to student perception
of IBCM – in the past, when our IBCM simulator was less
refined, student reaction was significantly more negative.

Objective comparison with other programming languages,
including assembly language, are difficult due to the vast
differences between both the capabilities and the required
learning curve. We have instead focused on subjective as-
sessment. In the most recent semester in which IBCM was
used (fall of 2010), six questions were asked of the students.
All questions were asked on a Likert scale, where 1 means
strongly agree, 2 is agree, 3 is neutral, 4 is disagree, and 5
is strongly disagree. For all the questions, n = 89.

The first two questions focused on how much the students
felt they learned from the IBCM module. The middle two
questions focused on the ease of use and enjoyability. And
the last two questions focused on how worthwhile this mod-
ule was, both for this course and future courses.

Question Avg Stdev

IBCM increased my understanding
of the basics of machine language

1.67 0.58

IBCM increased my understanding
of how computers work at a low level

1.89 0.65

IBCM was easy to use, once I got
the hang of programming in it

1.92 0.88

I enjoyed learning IBCM 2.01 0.98
Considering what was taught,
IBCM was a worthwhile module to
have in this course

1.75 0.68

IBCM should be used in future iter-
ations of this course

1.76 0.72

The results clearly show that the module was generally
well received. The lowest score, enjoyment of learning IBCM,
still was in the ’agree’ category.

8. MATERIALS AVAILABLE
We have developed and made available a wide range of

materials for the purpose of teaching the IBCMmodule. The
materials are all released under various Creative Commons
licenses. They are available online [2], and consist of:

• A PowerPoint slide set to introduce the concepts dur-
ing a lecture-based course. This 42 slide set takes
about three 50-minute lectures to present.

• A Principles of Operation document, which describes
the IBCM computer and language, and how to write a
program. It covers similar content to the lecture slides.

• Sample programs, one of which was shown in Figure 4,
above. We also provide sample programs on array in-
dexing, for example. All the programs mentioned in
this article are available online.

375

Figure 7: Web-based IBCM interface

• Sample student assignments, which require students to
write additional IBCM programs beyond the sample
programs provided. One of the assignments is to write
a quine, or an IBCM program that will print itself out –
the smallest quine produced is nine IBCM commands.

• An online PHP/Javascript simulator, which is the pri-
mary way that the students program in IBCM. This
is shown above in Figure 7. The PHP is used to
allow loading of an IBCM program from a text file;
the Javascript implements the IBCM simulator in the
browser itself. The simulator works across all major
browsers on all major operating systems.

• A C++-based command-line program, which can both
compile and execute IBCM programs. Not surpris-
ingly, this is much faster than the online simulator.
This is particularly useful for automated compilation
and execution of IBCM programs for grading, or for
very long programs, such as the recursive multiply rou-
tine described above.

Furthermore, a GUI-based tool for executing IBCM pro-
grams is available separately [13]. This tool allows for drag-
and-drop loading of IBCM files into the GUI, and compiles
natively for each operating system.

We very specifically have not developed an IBCM assem-
bler, which would take in the opcodes in an assembly lan-
guage format and output hexadecimal machine code. The
purpose of IBCM is to teach the students machine language;
given an IBCM assembler, this module ends up being just a
different assembly language for the students to learn.

9. CONCLUSION
We have used IBCM for over a decade at the University of

Virginia in our CS3 class. During that time, we have refined
it into the pedagogical tool presented here. With the set of
current pedagogical tools provided, we have found it to be
an effective means of teaching the basic concepts of machine
language without having to go into the complexity of modern
machine languages that is beyond the scope of a lower-level
undergraduate course. All of the necessary materials are
available online for adoption at other institutions.

10. REFERENCES
[1] B. Lewis Barnett, III. A visual simulator for a simple

machine and assembly language. In SIGCSE ’95:
Proceedings of the twenty-sixth SIGCSE technical
symposium on Computer science education, pages
233–237, New York, NY, USA, 1995. ACM.

[2] Aaron Bloomfield. Itty bitty computing machine
online. http://www.cs.virginia.edu/~asb/ibcm/.

[3] John E. Hopcroft, Rajeev Motwani, and Jeffrey D.
Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing
Company, 3rd edition, 2006.

[4] James Larus. SPIM: A MIPS32 Simulator.
http://pages.cs.wisc.edu/~larus/spim.html.

[5] Jerry E. Sayers and David E. Martin. A hypothetical
computer to simulate microprogramming and
conventional machine language. SIGCSE Bull.,
20(4):43–49, 1988.

[6] Delmar E. Searls. An integrated hardware simulator.
SIGCSE Bull., 25(2):24–28, 1993.

[7] Dale Skrien and John Hosack. A multilevel simulator
at the register transfer level for use in an introductory
machine organization class. SIGCSE Bull.,
23(1):347–351, 1991.

[8] Jeffrey A. Stone. Using a machine language simulator
to teach cs1 concepts. SIGCSE Bull., 38(4):43–45,
2006.

[9] Andrew Tanenbaum. Mic-1 download website.
http://www.ontko.com/mic1/.

[10] Andrew S. Tanenbaum. Structured Computer
Organization. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1984.

[11] J. Stanley Warford and Chris Dimpfl. The pep/8
memory tracer: visualizing activation records on the
run-time stack. In Proceedings of the 41st ACM
technical symposium on Computer science education,
SIGCSE ’10, pages 371–375, New York, NY, USA,
2010. ACM.

[12] J.S. Warford. Computer Systems. Jones & Bartlett
Learning, 2009.

[13] Jacob Welsh. JWelsh’s useful programs.
http://www.eemta.org/~jwelsh/progs/.

[14] Wikipedia. Random access stored program machine.
http://en.wikipedia.org/wiki/Random_access_

stored_program_machine.

[15] Wikipedia. Turing machine.
http://en.wikipedia.org/wiki/Turing_machine.

[16] Wikipedia. Turing machine examples. http://en.
wikipedia.org/wiki/Turing_machine_examples.

376

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

