## Take care with floating-point values

## Consider

$$
\begin{aligned}
& \text { double } a=1 ; \\
& \text { double } b=0.1+0.1+0.1+0.1+0.1+0.1 \\
& \\
& \quad+0.1+0.1+0.1+0.1
\end{aligned}
$$

E Two true expressions!

$$
c=b \quad b!=a
$$

■ Two false expressions!

$$
a=b \quad b!=c
$$

E- Problem lies with the finite precision of the floating-point types

- Instead with the ordering operators for closeness


## How to solve this

E- Don't compare floating-point values if you can help it!
= Both doubles and floats
\#- Need to test if the two doubles are "close" in value
final double EPSILON = 0.000001;
bool ean foo $=$ Math. abs $(a-b)<E P S I L O N ;$

