REPORT ON THE ALGORITHMIC LANGUAGE ALGOL 60%*
P. NAUER, EDITOR

THIS MATERIAL MAY BE PROTECTED BY
., COPYRIGHIT LAW (TITLE 17, US. CODE)

e

Dedicaled to the Memory of Wirrram Turanskr

SUMMARY

The report gives a complete defining description of the
international algorithmic language ALGOL 60. This is
a language suitable for expressing a large class of nu-
merical processes in a form sufficiently concise for direct
automatic translation into the language of programmed
automatic computers,

The introduetion contains an account of the preparatory
work leading up to the final conference, where the language
was defined. In addition, the notions, reference language,
" publication language and hardware representations are
explained.

In the first chapter, a survey of the basic constituents
and features of the language is given, and the formal
notation, by which the syntactic structure is defined, is
explained.

The second chapter lists all the basic symbols, and the
syntactic units known as identifiers, numbers and strings
are defined. Further, some important notions such as
quantity and value are defined.

The third chapter explains the rules for forming ex-
pressions and the meaning of these expressions. Three
different types of expressions exist: arithmetie, Boolean
(logical) and designational,

The fourth chapter describes the operational units of
the language, known as statements. The basic statements
are: assignment statements (evaluation of a formula),
go to statements (explicit break of the sequence of ex-
ecution of statements), dummy statements, and pro-
cedure statements (call for execution of a closed process,
defined by a procedure declaration). The formation of
more complex structures, having statement character, is
explained. These include: conditional statements, for
statements, compound statements, and blocks.

In the fifth chapter, the units known as declarations,
serving for defining permanent properties of the units
entering into a process described in the language, are
defined.

The report ends with two detailed examples of the use
of the language and an alphabetic index of definitions,

CONTENTS

InTRODUCTION
1. STRUCTURE OF THE LANGUAGE

1.1. Formalism for syntactic deseription
2. Basic SyumsoLs, IpeNTIFIERS, NUMBERS, AND STRINGS.

Basic Concerrs.

2.1. Letters

2.2. Digits. Logical values.

2.3. Delimiters

2.4. Identifiers

2.5. Numbers

2.6, Strings

2.7. Quantities, kinds and scopes

2.8. Values and types
3. ExprEssIoNs

3.1. Variables

3.2. Function designators

3.3. Arithmetic expressions

3.4. Boulean expressions

3.5. Designational expressions
4. STATEMENTS

4.1, Compound statements and blocks

4.2. Assignment statements

4.3. Go to statements

4.4. Dummy statements

4.5. Conditional statements

4.6. For statements

4.7. Procedure statements
5. DucLaraTIONS

5.1. Type declarations

5.2. Array declarations

5.3. Switch declarations

5.4. Procedure declarations
ExaMpPLES OF PROGEDURE DECLARATIONS
ALPHABETIC INDEX oF DeFINITIONS of CONCEPTS AND

SyNTacric Units

*Reprinted from Comm ACM, 6, 1, 1963, 1-17, copyright 1963,

Report on the Algorithmic Language ALGOL 60 45

INTRODUCTION

Background

After the publication of a preliminary report on the
algorithmic language ALGoL,'* as prepared at a conference
in Zirich in 1958, much interest in the ALgoL language
developed.

As s result of an informal meeting held at Mainz in
November 1958, about forty interested persons from
several European countries held an ALcoL implementa-
tion conference in Copenhagen in February 1959. A
“hardware group’’ was formed for working cooperatively
right down to the level of the paper tape code. This
conference also led to the publication by Regnecentralen,
Copenhagen, of an ALGOL Bulletin, edited by Peter
Naur, which served as a forum for further discussion.
During the June 1959 ICIP Conference in Paris several
meetings, both formal and informal ones, were held.
These meetings revealed some misunderstandings as
to the intent of the group which was primarily responsible
for the formulation of the language, but at the same time
made it clear that there exists a wide appreciation of the
effort involved. As a result of the discussions it was de-
cided to hold an international meeting in January 1960
for improving the ArcoL language and preparing a final
report. At a European ALGOL Conference in Paris in
November 1059 which was attended by about fifty people,
seven European representatives were selected to attend
the January 1960 Conference, and they represent the
following organizations: Association Frangaise de Caleul,
British Computer Society, Gesellschaft fiir Angewandte
Mathematik und Mechanik, and Nederlands Reken-
machine Genootschap. The seven representatives held a
final preparatory meeting at Mainz in December 1959,

Meanwhile, in the United States, anyone who wished to
suggest changes or corrections to ALGoL was requested to
send his comments to the Communications of the ACM,
where they were published. These comments then became
the basis of consideration for changes in the ArcoL lan-
guage. Both the SHARE and USE organizations estab-
lished Arcor working groups, and both organizations
were represented on the ACM Committee on Program-
ming Languages. The ACM Committee met in Washing-
ton in November 1959 and considered all comments on
Arcor that had been sent to the ACM Communications.
Also, seven representatives were selected to attend the
January 1960 international conference. These seven
representatives held a final preparatory meeting in Boston
in December 1959.

January 1960 Conference

The thirteen representatives,® from Denmark, England,
France, Germany, Holland, Switzerland, and the United
States, conferred in Paris from January 11 to 16, 1960.

Prior to this meeting a completely new draft report was
worked out from the preliminary report and the recom-
mendations of the preparatory meetings by Peter Naur

and the conference adopted this new form as the basis for
its report. The Conference then proceeded to work for
agreement on each item of the report. The present report
represents the union of the Committee’s concepts and the
intersection of its agreements.

April 1962 Conference [Edited by M. Woodger]

A meeting of some of the authors of ArLgoL 60 was held
on April 2-3, 1962 in Rome, Italy, through the facilities
and courtesy of the International Computation Centre.
The following were present:

Authors Advisers Qbserver
F. L. Bauer M. Paul W. L. van der Poel
J. Green R. Franciotti (Chairman, IFIP
C. Katz P. Z. Ingerman TC 2.1 Working
R. Kogon Group ALGOL)
(representing J. W.
Backus)
P. Naur
K. Samelson G. Seegmiiller
J. H. Wegstein R. BE. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known
errors in, attempt to eliminate apparent ambiguities in,
and otherwise clarify the AreoL 60 Report. Extensions
to the language were not considered at the meeting.
Various proposals for correction and clarification that
were submitted by interested parties in response to the
Questionnaire in ALGOL Bulletin No. 14 were used as a
guide.

This report* constitutes a supplement, to the ArcoL 60
Report which should resolve a number of difficulties
therein. Not all of the questions raised concerning the
original report could be resolved. Rather than risk hastily
drawn conclusions on a number of subtle points, which
might create new ambiguities, the committee decided to
report only those points which they unanimously felt
could be stated in clear and unambiguous fashion.

Questions concerned with the following areas are left
for further consideration by Working Group 2.1 of IFIP,
in the expectation that current work on advanced pro-

* (Ep1ror’s Note. The present edition follows the text which
was approved by the Couneil of IFIP. Although it is not clear from
the Introduction, the present version is the original report of the
January 1960 conference modified according to the agreements
reached during the April 1962 conference. Thus the report nen-
tioned here is incorporated in the present version, The modifica-
tions toueh the original report in the following sections: Changes
of text: 1 with footnote; 2.1 footnote; 2.3; 2.7; 3.3.3; 3.3.4.2; 4.1.3;
12.3; 4.2.4; 4.3.4; 4.7.3; 4.7.3.1; 47.3.3; 4.7.5.1; +.7.5.4; 4.7.6;
5; 5.3.3; 5.3.5; 5.4.3; 5.4.4; 5.4.5. Changes of syntax: 341 4.1
42.1;4.5.1.1

1 Preliminary report—International
Comm. ACM 1,12 (1958), 8.°

2 Report on the Algorithmic Language ALGOL by the ACM
Committee on Programming Languages and the GAMM Com-
mittee on Prugramming, edited by A. J. Perlis and K. Sumelson.
Num. Math. 1 (1959), 41-60.

3 Williom Turanski of the American group was killed by an
automobile just prior to the January 1960 Conference.

Algebraic Language.

46 The ALGOL Family

gramming languages will lead to better resolution:

1. Side effects of functions

2. The call by name concept

3. own: static or dynamic

4. For statement: static or dynamic

5. Conflict between specification and declaration

The authors of the Arcor 60 Report present at the
Rome Conference, being aware of the formation of a
Working Group on Ancor by IFIP, accepted that any
collective responsibility which they might have with
respect to the development, specification and refinement
of the ArLecoL language will from now on be transferred to
that body.

This report has been reviewed by IFIP TC 2 on Pro-
gramming Languages in August 1962 and has been ap-
proved by the Council of the International Federation
for Information Processing.

As with the preliminary Arcor report, three different
levels of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations.

REFERENCE LANGUAGE

1. It is the working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual
understanding and not by any computer limitations,
coders notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication
language to any locally appropriate hardware representa-
tions.

7. The main publications of the ALcoL language itself
will use the reference representation.

PuBLICATION LANGUAGE

1. The publication language admits variations of the
reference language according to usage of printing and hand-
writing (e.g., subseripts, spaces, exponents, Greek letters).

2. It is used for stating and communicating processes,

3. The characters to be used may be different in
different countries, but univocal correspondence with
reference representation must be secured.

HARDWARE REPRESENTATIONS

1. Each one of these is a condensation of the reference
language enforced by the imited number of characters on
standard input equipment.

2. Each one of these uses the character set of a particu-
lar computer and is the language accepted by a translator
for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from Publication or Refer-
ence language.

For transliteration between the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Publication Language

Lowering of the line between the
brackets and removal of the
brackets ‘

Raising of the exponent

Any form of parentheses, brackets,
braces

Raising of the ten and of the follow-
ing integral number, inserting of
the intended multiplication sign

Reference Language
Subscript bracket []

Exponentiation 1
Parentheses ()

Basis of ten 1o

DESCRIPTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations—reference,
hardware, and publication—and the development de-
seribed in the sequel is in terms of the reference repre-
sentation. This means that all objects defined within the
language are represented by a given set of symbols—and
it is only in the choice of symbols that the other two
representations may differ, Structure and econtent must
be the same for all representations.

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of calculating rules is the well-known arith-
metic expression containing as constituents numbers, vari-
ables, and functions. From such expressions are com-
pounded, by applying rules of arithmetic composition,

Was sich Qberhaupt sagen lisat, lasat
sich klar aagen; und wovon man nicht
reden kann, dar(iber muss man schweigen.
Loowra WiTrenNareIN.
self-contained units of the language—explicit formulae
—called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound
statement,

Statements are supported by declarations which are not
themselves computing instructions but inform the trans-
lator of the existence and certain properties of objects
appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an

array of numbers, or even the set of rules defining a fune-
tion. A sequence of declarations followed by a sequence of
statements and enclosed between begin and end con-
stitutes a block. Every declaration appears in a block in
this way and is valid only for that block.

A program is a block or compound statement which is
not contained within another statement and which makes
no use of other statements not contained within it.

In the sequel the syntax and semantics of the language
will be given.t

1.1. ForMaLISM FOR SYNTAcTIC DESCRIPTION

The syntax will be deseribed with the aid of metalin-
guistic formulae.® Their interpretation is best explained
by an example

(ab) = (| [| (ab) (| (ab){d)

Sequences of characters enclosed in the brackets () repre-
sent metalinguistic variables whose values are sequences
of symbols. The marks ::= and | (the latter with the
meaning of or) are metalinguistic connectives. Any mark
in a formula, which is not a variable or a connective,
denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in a formula
signifies juxtaposition of the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
values of the variable (ab). It indicates that (ab) may
have the value (or [or that given some legitimate value
of (ab), another may be formed by following it with the
character (or by following it with some value of the vari-
able (d). If the values of (d) are the decimal digits, some
values of (ab) are:

{(((1@37(
(12345¢(
(((

[86

In order to facilitate the study, the symbols used for
distinguishing the metalinguistic variables (i.e. the se-
quences of characters appearing within the brackets ')
as ab in the above example) have been chosen to be words
describing approximately the nature of the corresponding
variable. Where words which have appeared in this manner
are used elsewhere in the text they will refer to the corre-
sponding syntactic definition. In addition some formulae
have been given in more than one place.
Definition:

{empty) ::=
{i.e. the null string of symbols).

+ Whenever the precision of arithmetic is stated as being in
general not specified, or the outecome of a certain process is left
undefined or said to be undefined, this is to be interpreted in the
sense that a program only fully defines a computational process
if the accompanying information specifies the precision assumed,
the kind of arithmetic assumed, and the course of action to he
taken in all such cases as may oceur during the execution of the
computation.

s Cf. J. W. Backus, The syntax aund semuntios of the proposed
international algebraic language of the Ziirich ACM-GAMM
conference. Proc. Internat. Conf. Inf. Proc., UNESCO, Paris,
June 1959.

Report on the Algorithmic Language ALGOL 60 47

2. Basic Symbols, Identifiers, Numbers, and

Strings. Basic Concepts.

The reference language is built up from the following
basic symbols:

(basic symbol) ::= {letter)|{digit}| (logical value)| (delimiter)

2.1. LETTERS

(letter) :i= albleldlelflghlililk(lminlolplair|s|tule|wlzly|z]
A|B|C|D\EIFIGIHIIITIK|LIMINIOIPIQIRISITITIVIWIXIY]Z
This alphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not

coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning. They are
used for forming identifiers and strings® (cf. sections 2.4.
Identifiers, 2.6. Strings).

2.2.1. DiGgirs
{digit) 1:= 0|1(2{3|4(5|6!7!819

Digits are used for forming numbers, identifiers, and
strings.

2.2.2. LogicaL VALUES

(logical value) ::= true|false
The logical values have a fixed obvious meaning.
2.3. DELIMITERS

{delimiter) ::= (operutur)l(sepamtor)l(brucket)|(declurator)l
(specificator)

(operator) :i== (arithmetic operator)|(relational operator)|
{logical operator)| {sequential operator)

(arithmetic operator) ::= +|—Ix/I+1T

(relational operator) ::= <|s|=|z|>|*

{logical operator) ::= ={D|VIAl=

{(sequential operator) :i= go tolif|then|else!for|do’

{separator) :1= ol :];]:= |ujstepluntillwhile/comment
(bracket) ::= (|)|[]]{*{’|begin|end
(declarator) 1= ownlBooleanIintegeﬂreallnrrny[switch|

procedure
(specificator) ::= string|label|value

Delimiters have a fixed meaning which for the most part
is obvious or else will be given at the appropriate place
in the sequel.

Typographical features such as blank space or change
to a new line have no significance in the reference language.
They may, however, be used freely for facilitating reading.

Tor the purpose of including text among the symbols of

¢ It should be particularly noted that throughaout the reference
lunguage underlining [in typewritten copy; boldface tvpe in
printed copy—Ed.] is used for defining independent hagic symbols
(see sections 2.2.2 and 2.3). These are understood to have no relu-
tion to the individual letters of which they are composed, Within
the present report [not including headings—Ed.}, boldfnce will be
used for no vther purpose.

7 do is used in for statements. It hus no relation whatsoever
to the do of the preliminary report, which is not included in
ALGOL 60.

48 The ALGOL Family
a program the following ‘‘comment” conventions hold:

The sequence of basic symbols: is equivalent lo

: comment {any sequence not containing ;1; ;
hegin comment (any sequence not containing ;); begin
end {(any sequence nat containing end or ; or else) end

By equivalence is here meant that any of the three strue-
tures shown in the left-hand column may be replaced, in
any occurrence outside of strings, by the symbol shown on
the same line in the right-hand column without any
effect on the action of the program. It is further understood
that the comment structure encountered first in the text
when reading from left to right has precedence in being
replaced over later structures contained in the sequence.

'2.4. IDENTIFIEES
2.4.1. Syntax

{identifier} ::= (letter)](identifier){letter)| {identifier’(digit)
2.4.2, Examples

1
Soup

Vila
a34kTMN s
MARILYN

2.4.3. Semantics
- Identifiers have no inherent meaning, but serve for the
identification of simple variables, arrays, labels, switches,
and procedures. They may be chosen freely (cf., however,
section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two
different quantities except when these quantities have
disjoint scopes as defined by the declarations of the pro-
gram (cf. section 2.7. Quantities, Kinds and Scopes, and
section 3. Declarations).

2.5. NUMBERS
2.5.1. Syntax

{unsigned integer) ::= (digit}|{unsigned integer)(digit)

(integer) ::= (unsigned integer)|+ (unsigned integer)|
— (unsigned integer)

(deeimal fraction) ::= _(unsigned integer)

(exponent part) ::= w(integer)

(decimal number)
{unsigned integer){decimal fraction)

{unsigned number) ::= (decimal number)|{exponent part)|
(decimal number){exponent part)

(number) ::= ({unsigned number){4 (unsigned number)|
—{unsigned number)

2.5.2. Examples.

0 ~-200.084 —.08310—02
177 +07.43108 —107
5384 9.3410+10 10—4q
+0.7300 2—wd +w+5

2.5.3. Semantics
Decimal numbers have their conventional meaning,

The exponent part is a scale factor expressed asan integral
power of 10,

:t= (unsigned integer}|{decimal fraction)|

2.5.4. Types
Integers are of type integer. All other numbers are of
tvpe real (cf. section 5.1. Tvpe Declarations).

2.6. STRINGS
2.6.1. Syntax
{proper string) ::= (any sequence of hasic symbols not containing
for ') (empty)
{open string) ::= (proper string)i‘(open string)’,
{upen string){open string®
(string) ::= ‘(open string)’

2.6.2. Examples

Sk, — ([[‘A=/TE”
‘.. This uis u a u ‘string”
2.6.3. Semantics
In order to enable the language to handle arbitrary
sequences of basic symbols the string quotes ‘ and ’ are
introduced. The symbol u denotes a space. It has no
significance outside strings.
Strings are used as actual parameters of procedures
(cf. sections 3.2, Function Designators and 4.7. Procedure
Statements).

2.7, QuanTITIES, KINDS AND SCOPES

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and
expressions in which the declaration of the identifier asso-
ciated with that quantity is valid. For labels see section
4.1.3.

2.8. VaLugs anp TyrEs

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con-
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. seetion 3.1.4.1).

The various “types” (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactic units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro-
grams describing algorithmic processes are arithmetic,
Boolean, and designational expressions., Constituents of
these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defini-
tion of expressions, and their constituents, is necessarily
recursive,

(expression) ::= (arithmetic expression)| (Boolean expression}|
(designational expression)

3.1. VARIABLES
3.1.1. Syntax

{variable identifier) ::= (identifier)

(simple variable) ::= (variable identifier)

(subscript expression) ::= (arithmetic expression)

{subscript: list) :i= (subseript expression)| (subseript list),
{subseript expression)

{(array identifier) ::= (identifier)

(subseripted variable) ::= (array identifier Y[(subseript list)]

{variable) ::= (simple variable)| (subseripted variable)

3.1.2. Examples

epsilon
detd
al?

Q[7.2]
z[sin(nX i/2),Q[3,n,4]]

3.1.3. Semantics

A variable is a designation given to a single value. This
value may be used in expressions for forming other values
and may be changed at will by means of assignment state-
ments (section 4.2). The type of the value of a particular
variable is defined in the declaration for the variable
itself (cf. section 5.1. Type Declarations) or for the corre-
sponding array identifier (cf. section 5.2. Array Declara-
tions).

3.1.4. Subscripts

3.1.4.1. Subscripted variables designate values which
are components of multidimensional arrays (cf. section
5.2. Array Declarations). Each arithmetic expression of
the subscript list occupies one subscript position of
the subscripted variable, and is called a subscript. The
complete list of subseripts is enclosed in the subscript
brackets []. The array component referred to by a sub-
scripted variable is specified by the actual numerical value
of its subscripts (cf. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of
type integer and the evaluation of the subscript is under-
stood to be equivalent to an assignment to this fictitious
variable (cf. section 4.2.4). The value of the subscripted
variable is defined only if the value of the subscript ex-
pression is within the subscript bounds of the array (c?.
section 5.2. Array Declarations).

3.2. FuncrioN DESIGNATORS
3.2.1. Syntax

(procedure identifier) ::= (identifier)
{actual parameter) ::= (string){{expression)| {array identifier)|
{switeh identifier)| (procedure identifier}
(letter string) ::= (letter)|(letter string)(letter)
{parameter delimiter) ::= ,[) (letter string) +(
{actual parameter list) ::= (actual parameter)|
{actual parameter list)(parameter delimiter)
{actual parameter)
{nctual parameter part) 1= {empty}|({actual parameter list)
(function designator) ::= (procedure identifier)
(actual parameter part)

Report on the Algorithmic Language ALGOL 60 49

3.2.2. Examples

sin(a—b)
J(v+3,n)
R

S(3—5)Temperature:(T)Pressure:(P)
Compile(* := " Stack: (@)
3.2.3. Semantics
Function designators define single numerical or logical
values, which result through the application of given sets
of rules defined by a procedure declaration (cf. section 5.4.
Procedure Declarations) to fixed sets of actual param-
eters. The rules governing specification of actual param-
eters are given in section +.7. Procedure Statements. Not
every procedure declaration defines the value of a function
designator.

3.2.4. Standard functions

Certain identifiers should be reserved for the standard
functions of analysis, which will be expressed as procedures.
It is recommended that this reserved list should contain:

abs(E) for the modulus (absolute value) of the value of the

expression E .

sign(B) for the sign of the value of E(+1 for E>0, 0 for E=0,
—1 for E<0}

aqri(E) for the square root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

arctan(E) for the prineipal value of the arctangent of the value
of &

in(E) for the natural logarithm of the value of E

exp(E) for the exponential funetion of the value of B (o%).

These functions are all understood to operate indifferently
on arguments both of type real and integer. They will
all yield values of type real, except for sign(E) which will
have values of type integer. In a particular representa-
tion these functions may be available without explicit
declarations (cf. section 5. Declarations).

3.2.5. Transfer functions

It is understood that transfer functions between any
pair of quantities and expressions may be defined. Among
the standard functions it is recommended that there be

one, namely,
enlier(B),

which “transfers” an expression of real type to one of
integer type, and assigns to it the value which is the
largest integer not greater than the value of E.

3.3. ARITHMETIC EXPRESSIONS
3.3.1. Syntax

(adding operator) ::= 4|~
{multiplying operator) ::= X |/\+
{primary) ::= (unsigned number)| {variable)|
{function designator)| ({arithmetic expression Y
{factor) 1= (primary)|(fn.cbor}T(primnry)
(term) 1:= (factor)| (term) (multiplying operator){factor)
(simple arithmetie expression) 1= (term)|
(adding operasor){term)| (simple arithmetic
{adding operator){term)
{if clause) ::= if (Boolean expression)then
(arithmetic expression) ::= (simple arithmetie . expression)|
(if clause)(simple arithmetic expression)else
(arithmetic expression)

expression)

50 The ALGOL Family

3.3.2. Examples
Primaries:

7.39410-8

sum

w(i+2,8]
cos(y+2X3)
(a—38/y+vut8)

Factors:

omega
sumTcos(y+2x3)
7.304 10 —8twli+2,8]T(a—~3/y-+vuT8)

Terms:

U
omegaX sumlcos(y+2X3)/7.3%4w0—~8Twli+2,8]1
(a—3/y+vulB)

Simple arithmetic expression:

U— Yu+omegaX sumlcoa(y+2X3) /7.3941~8Twl+2,8]t
(a=3/y+vul8)

Arithmetic expressions:

wXu—Q(8+Cu)12

if g>0 then §+3XQ/4 else 2X8+3Xq

if a<0 then U<V else if aXb>17 then U/V else if
k#y then V/U else 0

aXain(omegaX t)

0.571012X a[N X (N—1)/2, 0}

(A Xarctan(y)+2)1(14Q)

if ¢ then n—1 else n

if a<0 then A/B else if b=0 then B/4 else z

3.3.3. Semantics

An arithmetic expression is a rule for computing a
numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith-
metic operations on the actual numerical values of the
primaries of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers, For variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising. from
the computing rules defining the procedure (cf. section

5.4.4. Values of Funection Designators) when applied to

the current values of the procedure parameters given in
the expression. Finally, for arithmetic expressions en-
closed in parentheses the value must through a recursive
analysis be expressed in terms of the values of primaries
of the other three kinds.

In the more general arithmetic expressions, which in-
clude if clauses, one out of several simple arithmetic ex-
pressions is selected on the basis of the actual values of the
Boolean expressions (cf, section 3.4, Boolean Expressions).
This selection is made as follows: The Boolean expressions
of the if clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The
value of the arithmetic expression is then the valye of
the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

is understood). The construction:
else (simple arithmetic expression)
is equivalent to the construction:
else if true then (simple arithmetic expression)

3.3.4. Operators and types

Apart from the Boolean expressions of if clauses, the
constituents of simple arithmetic expressions must .be of
types real or integer (cf. section 5.1. Type Declarations).
The meaning of the basic operators and the types of 'the
expressions to which they lead are given by the following
rules:

3.3.4.1. The operators +, —, and X have the conven-
tional meaning (addition, subtraction, and multiplication),
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/(factor) and (term) +
(factor) both denote division, to be understood as & mul.tz-
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (cf. section 3.3.5).
Thus for example

a/bXT/(p—q)Xv/s
means
{(((laX BNXNIX ((p—)™))X)X (379

The operator / is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator -+ is defined only for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

a-+bm= sign (a/b)Xentier(abs(a/b))

(cf. sections 3.2.4 and 3.2.5).

3.3.4.3. The operation (factor)f(primary) denot(.as ex-
ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

21ntk means (2")*

while

means o™

21 (ntm)
Writing ¢ for a number of integer type, r for a number of

real type, and a for a number of either integer or real
type, the result is given by the following rules:

aft If i>0, aXaX ... Xa (¢ times), of the same type a3 a,
If i=0, if a0, 1, of the same type as a.
if a=0, undefined. '
If <0, if a#0, 1/(aXaX ... Xa) (the denominator has
—1 factors), of type real.
if a=0, undefined.
alr If >0, exp(rxin(a)), of type real.
If a=0, if r>0, 0.0, of type real.
if r50, undefined.
If a<0, always undefined.

3.3.5. Precedence of operators)
The sequence of operations within one expression I8

generally from left to right, with the following additional
rules:

3.3.5.1. According to the syntax given in section 3.3.1
the following rules of precedence hold:

first: t
second: X/+
third: <+-—

3.3.5.2. The expression between a left parenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Consequently
the desired order of execution of operations within an
expression can always be arranged by appropriate posi-
tioning of parentheses.

3.3.6. Arithmetics of real quantities

Numbers and variables of type real must be interpreted
in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a finite deviation from the
mathematically defined result in any arithmetic expression
is explicitly understood. No exact arithmetic will be
specified, however, and it is indeed understood that
differént hardware representations may evaluate arith-
metic expressions differently. The control of the possible
consequences of such differences must be carried out by
the methods of numerical analysis. This control must be
considered a part of the process to be deseribed, and will
therefore be expressed in terms of the language itself.

3.4. BooLEAN EXPRESSIONS
3.4.1. Syntax

(relational operator) ::= <|S|={Z[>|#
{relation) ::= (simple arithmetic expression)

(relational operator)(simple ‘arithmetic expression)
{Boolean primary) ::= (logical value)| {variable)|

{(function designator)|({relation}{({Boolean expression))
(Boolean secondary) ::= (Boolean primary }|-1 (Boolean primary)
{Boolean factor) ::= (Boolean secondary)|

{Boolean factor)/ (Boolean secondary)
(Boolean term) ::= (Boolean factor)|(Boolean term)

\/ (Boolean factor)
(implieation) ::= (Boolean term)|(implication)>(Boolean term)
{(simple Boolean) ::= (implication)|

{simple Boolean)= (implication})
(Boolean expression) ::= (simple Boclean)|

(if elause)(simple Boolean) else (Boolean expression)

3.4.2. Examples

= —2

Y>VVz<gq

a+b > —5 A z—d > q12

pAg V z#y

gzt —aAbA - cV/dVeD- f

if k<1 then s>w else hs¢

if if if o then b else ¢ then d else f then g else h<k

3.4.3. Semantics

A Boolean expression is a rule for computing a logical
value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4. Types

Variables and function designators entered as Boolean

Report on the Algorithmic Language ALGOL 60 51

primaries must be declared Boolean (cf. section 3.1
Type Declarations and section 5.4.4. Values of Function
Designators).

3.4.5. The operators

Relations take on the value true whenever the corre-
sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators— (not), A (and),
V (or), D (implies), and = (equivalent), is given by the
following function table.

true
true
false
true
true
true
true

false
true

true
false

bl false
b2 false

false
false
true

false
false

true
false
true
true
false

-bl true
blADb2 false
bi\/b2 false
b1>Db2 true
bl=b2 true

3.4.6. Precedence of operators

The sequence of operations within one expression is
generally from left to right, with the following additional
rules:

3.4.6.1. According to the syntax given in section 3.4.1

the following rules of precedence hold:

first: arithmetic expressiona according to section 3.3.5.

gecond: < S==>
third: =
fourth: A
fifth: \Y4
sixth: D
seventh: =

3.4.6.2. The use of parentheses will be interpreted in
the sense given in section 3.3.5.2.

3.5. DESIGNATIONAL EXPRESSIONS
3.5.1. Syntax

(label) 1= (identifier)| {unsigned integer)

(awitch identifier) :i= {identifier)

{awitch designator) ::= (switch identifier)[{subseript expression)]

(simple designational expression) ;= (label)| {(switch designator)|
((designational expression))

(designational expression) ::= {(simple designational expression)|
{if clause){simple designational expression) else
(designational expression)

3.5.2, Examples

17

P9

Choose[n—1)

Town[if y<0 then N else N+1]

if Ab<c then 17 else g(if w=0 then 2 else n]

3.5.3. Semantics

A designational expression is a rule for obtaining a label
of a statement (cf. section 4. Statements). Again the
principle of the evaluation is entirely analogous to that of
arithmetic expressions (section 3.3.3). In the general case
the Boolean expressions of the if clauses will select a
simple designational expression. If this is a label the
desired result is already found. A switch designator refers
to the corresponding switch declaration (cf. section 3.3.

52 The ALGOL Family

Switech Declarations) and by the actual numerical value
of its subscript expression selects one of the designational
expressions listed in the switch declaration by counting
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua-
tion is obviously a recursive process.

3.5.4. The subseript expression

The evaluation of the subseript expression is analogous
to that of subscripted variables {(cf. section 3.1.4.2). The
value of a switch designator is defined only if the subscript
expression assumes one of the positive values 1, 2,3, ... ,n,
where n is the number of entries in the switch list.

3.5.5. Unsigned integers as labels

Unsigned integers used as labels have the property that
leading zeros do not affect their meaning, e.g. 00217
denotes the same label as 217,

4, Statements

The units of operation within the language are called
statements. They will normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their suecessor
explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

In order to make it possible to define a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive. Also since decla-
rations, described in section 3, enter fundamentally into
the syntactic structure, the syntactic definition of state-
ments must suppose declarations to be already defined.

4.1. CoMPOUND STATEMENTS AND BLoCKS
4.1.1. Syntax

{unlabelled basic statement) ::= (assignment statement)|
{go to statement)| (dummy statement)| {procedure statement

{basic statement) ::= (unlabelled basic statement }|{label):
(basic statement)

(unconditional statement) ::= (basic statement)]
{compound statement }| (bloek)

(statement) ::= (unconditional statement)|
{conditional statement)|{for statement)

{compound tail) ::= (statement) end |{statement)
{compound tail}

(block head) ::= begin (declaration)|{block head)
{declaration)

(unlabelled compound) ::=begin (compound tail)

{unlabeiled bloek) ::= (block head) ; ({(eomponnd tail}

{compound statement) :;= (unlabelled compound}]
(label): {compound statement)

(block) ::= (unlabelled block}| (label }:(block)

{program} ::= (block)!{compound statement)

This syntax may be illustrated as follows: Denoting arbi-
trary statements, declarations, and labels, by the letters

S, D, and L, respectively, the basic syntactic units take
the forms:

Compound statement:

LiL:..begin8 ; S ; .8 ; Send

Block:

L: L: ...
S end

begin D ; D ; . D ; 8 ; 8 ; .8 ;

It should be kept in mind that each of the statements S
may again be a complete compound statement or block.
4.1.2. Examples

Basic statements:

a = p+q
go to Naples
START: CONTINUE: W .= 7.993

Compound statement:

beginz := 0 ; fory := 1 step 1 until n do
z = z+Aly]
if r>q then go to STOP else if x>w~2 then
gotoS ;
Aw: St: W := z+bob end

Bloek:

Q: begin integer i,k ; real w ; .
for | := 1 step 1 until m do
for k := i1 step 1 until m do
begin w 1= A[{, k] ;
Al k] = Ak, 1]
Alk, 1] 1= w end for z and &
end block Q

4.1.3. Semantics

Every block automatically introduces a new level of
nomenclature. “This is realized as follows: Any identifier
oceurring within the block may through a suitable declara-
tion (ef. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the block has no
existence outside it, and (b) that any entity represented
by this identifier outside the block is completely inacces-
sible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose
brackets begin and end enclose that statement. In this
context a procedure body must be considered as if it were
enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block
the concepts local and nonlocal to a block must he under-
stood recursively. Thus an identifier, which is nonlocal
to a block A, may or may not be nonlocal to the block B
in which A is one statement.

4.2. ASSIGNMENT STATEMENTS
4.2.1. Syntax

(left part) ::= (variable) := |(procedure identifier) :=

(left part list) ::= (left part)|/left part list)(left part)

{(assignmentatatement) ::= (left part list) (arithmetic expressinn)|
{left part list){Boolean expression)

