61

THE REMAINING TROUBLESPOTS IN ALGOL 60%*
D. E. KNUTH

This paper lists the ambiguities remaining in the language
ALGOL 60, which have been noticed since the publication of
the Revised ALGOL 60 Report in 1963.

There is little doubt that the programming language
Avrcorn 60 has had a great impact on many areas of com-
puter science, and it seems fair to state that this language
has been more carefully studied than any other program-
ming language.

When Arcon 60 was first published in 1960 [1}, many
new features were introduced into programming languages,
primarily with respect to the generality of “procedures.”
It was quite difficult at first for anyone to grasp the full
significance of each of the linguistic features with respect
to other aspects of the language, and therefore people
commonly would discover ArcoL 60 constructions they
had never before realized were possible, each time they
reread the Report. Such constructions often provided
counterexamples to many of the usual techniques of com-
piler implementation, and in many cases it was possible to
construct programs that could be interpreted in more than
one way.

The most notable feature of the first Argon 60 Report
was the new standard it set for language definition, based
on an almost completely systematic use of syntactic rules
that prescribed the structure of programs; this innovation
made it possible to know exactly what the language
Arcor G0 was, to a much greater degree than had ever
been achieved previously. Of course it was inevitable that
a complex document such as the Arcow 60 Report (roughly
75 typewritten pages, prepared by an international com-
mittee) would contain some ambiguities and contradic-
tions, since it involves a very large number of highly inter-
dependent elements. As time passed, and especially as
ALGoL 60 translators were written, these problems were
noticed by many people, and in 1962 a meeting of the
international committee was called to help resolve these

*Reprinted from Comm ACM 10, 10, 1967, 611-617.

The preparation of this paper bhas been supported in part by the
National Science Foundation and in part by the Burroughs Cor-

poration.

issues. The result was the Revised Arncorn 60 Report [2],
which cleaned up many of the unclear points.

Now that several more years have gone by, it is reason-
able to expect that Argoxn 60 is pretty well understood. A
few points of ambiguity and contradiction still remain in
the Revised ArcoL 60 Report, some of which were left
unresolved at the 1962 meeting (primarily because of high
feelings between people who had already implemented
conflicting interpretations of ambiguous aspects), and some
of which have come to light more recently.

In view of the widespread interest in Avgor 60 it seems
appropriate to have a list of all its remaining problem
areas, or at least of those which are now known. This list
will be useful as a guide to users of Argorn 60, who may
find it illuminating to explore some of the comparatively
obscure parts of this language and who will want to know
what ambiguous constructions should be avoided; and
useful also to designers of programming languages, who
will want to avoid making similar mistakes.

The following sections of this paper therefore enumerate
the blemishes which remain. A preliminary list of all the
known trouble spots was compiled by the author for use
by the ArcoL subcommittee of the ACM Programming
Languages committee in November 1963; and after re-
ceiving extensive assistance from the committee members,
the author prepared a revised document which appeared
in mimeographed form in ALGOL Bulletin 19, AB19.3.7
(Mathematisch Centrum, Amsterdam, January 1965). The
present paper is a fairly extensive modification of the
ALGOL Bulletin article; it has been prepared at the request
of several people who do not have ready access to the
ALGOL Bulletin and who have pointed out the desirability
of wider circulation.

The following list is actually more remarkable for its
shortness than its length. A complete critique which goes
to the same level of detail would be almost out of the
question for other languages comparable to Arcor 60,
since the list would probably be a full order of magnitude
longer.

This paper is divided into two parts, one which Lists
ambiguities and one which lists corrections which seem to be
necessary to the Revised Report. The word “‘ambiugous”
is itself quite ambiguous, and it is used here in the follow-
ing sense: An aspect of AvgoL 60 is said to be ambiguous
if, on the basis of the Revised ArgoL 60 Report, it is

e

62 The ALGOL Family

possible to write an Argon 60 program for which this
feature can be interpreted in two ways leading to different
computations in the program, and if it is impossible to
prove conclusively from the Revised Report that either of
these conflicting interpretations is incorrect. So-called
“syntactic ambiguities” are not necessarily ambiguities of
the language in this sense, although the original Avrcou 60
Report contained some syntactic ambiguities that did lead
to discrepancies. (See [3] and [4] for a discussion of the
former ambiguities; and see correction 7 below and the
discussion at the end of Section 3 in [5] for comments on
syntactic ambiguities remaining in the Revised Report.)

The distinction between an “ambiguity’” in Arcorn 60
and a “correction” that is necessary to the Report is not
clear cut; for when the Report contains an error or con-
tradictory statement, this might lead to ambiguous inter-
pretations, and conversely any ambiguity might be con-
sidered an error in the Report. The difference is mainly a
‘matter of degree; the true meanings of the points that
merely need to be corrected are almost universally agreed
upon by people who have studied the Report ecarefully,
because of the overall spirit of the language in spite of the
fact that some of the rules are incorrectly stated.

Frequent references are made in the discussions below
{0 the numbered sections of the Revised' Report [2], and
the reader is advised to have this document available for
comparison if he is going to understand the significance of
the comments which follow.

People who have studied the Argorn Report carefully
have often been called “Avgon theologians,” because of
the analogy between the Bible and the Revised Report
(which is the ultimate source of wisdom about Argor 60).
Using the same analogy, it is possible to view the following
sections as a more or less objective discussion of the con-
flicting doctrines that have been based on these Seriptures.

1. Ambiguities

Avmieurry 11 Sive ErrrcTs

A “side effect” is conventionally regarded as a change
(invoked by a function designator) in the state of some
quantities which are own variables or which are not local
to the function designator. In other words, when a pro-
cedure is being called in the midst of some expression, it
has side effects if in addition to computing a value it does
input or output or changes the value of some variable that
is not internal to the procedure.

For example, let us consider the following program:
begin integer q;

integer procedure f(z,y)}; value y,z; integer y,z;

a:=fi=g+1;

integer procedure g(z); integerz; z := g ;= a 4+ 2;

a ;= 0; oulreal (1, a 4 fla, g(a))/gla)) end,
Here both f and g have as a side effect the alteration of an
external variable.

It is clear that the value output by this program depends
heavily upon the order of ecomputation. Many compilers
find more efficient objeet programs are obtained if the
denominator of a complicated fraction is evaluated before

the numerator; if we first compute g(a), then f(a, g{a)),
then a + f(a, g(a))/¢(a), and if the evaluation of the valve
parameters in f(a, g(a)) is done in the order a, g(a), then
we get the answer 4}. Other possible answers are 3§, £, 3,
%, %, 8%, 3%, 5%, 3%, and 73.

The major point left unresolved in the Revised Report
was the ambiguity about side effects: Are they allowed in
Avcor 60 programs, and if so what do the programs mean?
If side effects are allowable, then the order of computation
must be specified in the following places: evaluating the
primaries of an expression; evaluating the subscripts of a
variable; evaluating bound pairs in a block head; evalua-
ting value parameters; and (perhaps) the step-until ele-
ment of a for clause. Note, for example, that value param-
eters (which are to be evaluated just after entry to a pro-
cedure, Section 4.7.3.1.) might conceivably be evaluated
in the order of their appearance in the parameter list or in
the value part.

An argument may actually be made for the opinion that
side effects are implicitly outlawed by the fifth paragraph
in Section 4.5.3.2; or at least that paragraph says that all
side effects oceurring during the evaluation of an if clause
of a conditional statement must be cancelled if the Boolean
expression comes out false! A similar situation occurs in
Section 4.3.5 where side effects, occurring during the
evaluation of a designational expression which is ulti-
mately undefined, must presumably be nullified. (On the
other hand, the wording of these sections is probably just
an oversight, and the implication about side effects was
probably not intended.)

How close does the Report come to preseribing the
order of computation? Section 3.3.5 says “the sequence of
operations within one expression is generally from left to
right,” but the context here refers to the order of carrying
out arithmetic operations; and it does not say whether the
value of the first term “a’’ in the above example should be
calculated before or after the second term “f(a, g(a))/g(a)"”
since no “operation” in the sense of the Report is involved
here. Section 4.2.3.1 says subscript expressions in the left
part variables of an assignment statement are evaluated
“in sequence from left to right.” (So in the assignment
statement

4la + Blf(@)] + g(@)] := Cla] := 0

we are perhaps to evaluate “a + B[f(a)] + g¢(a)” first,
then “f(a)”’ again, then “a’’?)

Section 1, footnote 4, says “Whenever . ..the out-
come of a certain process is left undefined ... a program
only fully defines a computational process if accompanying
information specifies . . . the course of action to be taken
in all such cases as may occur during the execution of the
computation.” In Section 3.3.6 we read, “It is indeed
understood that different hardware representations may
evaluate arithmetic expressions differently.”” The latter
remark was made with reference to arithmetic on real
quantities (i.e., floating-point arithmetic), but it is re-
markable when viewed also from the standpoint of side
effects! Footnote 4 says essentially that Arcor 60 is not

intended to be free of ambiguity, and much can be said
for the desirability of incompletely specified formalisms;
indeed, this incompleteness is the basis of the axiomatic
method in mathematics and it is also the basis of many
good jokes. But it is doubtful whether the ambiguity of
side effects is a desirable one; for further remarks in this
vein see Ambiguity 9.

In view of the ambiguities of side effects, which many
people do not realize because they know only the inter-
pretations given by the Arcon compiler they use, the
author has founded SPASEPA, the Society for the Pre-
vention of the Appearance of Side Effects in Published
Algorithms. Members and/or donations are earnestly
solicited.

It may be of value to digress for a moment here and to
ask whether side effects are desirable or not; should ALcoL
or comparable languages allow side effects? Do side effects
serve any useful purpose or are they just peculiar con-
structions for programmers who like to be tricky? Objec-
tions to side effects have often been voiced, and the most
succinet formulation is perhaps that due to Samelson and
Bauer in ALGOL Bulletin 12, pp. 7-8. The principal points
raised are that (i) an explanation of the “use’” of side
effects tends to waste inordinate amounts of classroom
time when explaining Avrcor, giving an erroneous impres-
sion of the spirit of the language; (i) familiar identities
such as f(z) + ¢ = « + f(z) are no longer valid, and this
is an unnatural deviation from mathematical conventions;
(ii) many “applications” of side effects are merely pro-
gramming tricks making puzzles of programs; other uses
can almost always be reprogrammed easily by changing a
furiction designator to a procedure call statement. Essen-
tially the same objections have been voiced with respect
to the concept of parameters “called by name,” which
was the chief new feature of AvcoL 60.

Another objection to side effects is that they may cause
apparently needless computation. I'or example, consider

“if gla) = 2\ gla) = 3 then 1 else 0

in connection with the procedure g(z) above; according to
the rules of the Revised Report it is necessary to evaluate
g(a) twice, thereby increasing a by 4 even if the first
relation involving g(a) is found to be true.

We might also mention the fact that ALaor’s call-by-
name feature is deficient in the following respect: It is
impossible to write an ArcowL 60 procedure ‘‘sncrement (z)”
which increases the value of the variable z by unity. In
particular the procedure statement “increment (A[z])”
should increase the current value of A[z] by unity, where ¢
is a function designator which may produce different
values when it is invoked twice.

On the other hand, consider the following procedure:

real procedure SIGMA (2,1, u, 2);
real z;

begin real 5; s := 0;

SIGM A := s end.

value [, u; integer i, [, u;

for ¢ := lstepluntiludo s := s +z;

This procedure computes >.%., x and has the additional
side effect of changing variable 7. It is quite natural to be

The Remaining Troublespots in ALGOL 60 63

able to write
SIGMA (i, 1, m, SIGMA (j, 1, n, A[i, j1)) for 22 A

i) Jel
without adding special summation conventions to the
language itself; this is a tame and unambiguous use of
side effects which also is the principal example that has
been put forward to point out the uséfulness of parameters
called by name. (See [6] for further discussion.)

If we alter the above procedure by inserting “integer
i0; 10 := 1;’ after “real s;’ and *; 4:= 40" before
“end”, we would find that no side effect is introduced
as a consequence of the total execution of the function
SIGM A (i, 1, u, x), provided the actual parameter x does
not involve side effects. So the above example does not
constitute an inherent use of side effects; in fact, a study
of this particular case indicates that it might be better to
have some sort of facility for defining dummy variables
(like 7 and j) which have existence only during the evalu-
ation of a function but which may appear within the argu-
ments to that function.

We should remark also that the principal objection to
allowing parameters called by name, even in natural situa-
tions like the above example, is that the machine language
implementation of these constructions is necessarily much
slower than we would expect a simple summation opera-
tion to be; the inner loop (incrementation of ¢, testing
against u, adding x to s) involves a great deal of more or
less irrelevant bookkeeping because ¢ and z are called by
name, even on machines like the Burroughs B5500 [12]
whose hardware was specifically designed to facilitate
Avcor’s call by name. The use of “macro” definition
facilities to extend languages, instead of relying solely on
procedures for this purpose, results in a more satisfactory
running program.

Other situations for which function designators with
side effects can be useful are not uncommon, e.g., in con-
nection with a procedure for input or for random number
generation. Side effects also arise naturally in connection
with the manipulation of data structures, when a function
changes the structure while it computes a value; for ex-
ample, it is often useful to have a function “pop(S)” which
deletes the top value from a ‘“‘stack” S and which retains
the deleted value as its result. See also [7] for examples of
Boolean function designators with side effects that are
specifically intended for use in constructions like p V ¢,
where ¢ is never to be evaluated when p is true and where
p is to be evaluated first in any case.

The objection above that 2 + f(z) should be equal to
f@) + =z, because of age old mathematical conventions, is
not very strong; there are simple and natural rules for
sequencing operations of an expression so that a program-
mer knows what he is doing when he is using side effects.
The people who complain about “x 4 f(z)’’ are generally
compiler writers who don’t want to generate extra code to
save ¢ in temporary storage before computing f(z), since
this is almost always unnecessary. Such inefficiency is the
real reason for the objections to side effects. These same
people would not like to see “z = 0 \V f(z) = 0” be treated

64 The ALGOL Family

the same as “f(z) = 0 \/ =z = 0" since the former relation
can be used to suppress the computation of “f(z) = 07
when it is known that “z = 0”;in fact one naturally likes
to write “z = 0V flz) = 0” in situations where f(0) is
undefined.

Awpreurry 2: INcoMPLETE FUNCTIONS

The question of exit from a function designator via a
go to statement is another lively issue. This might be
regarded as a special case of point 1, since such an exit is a
““side effect,” and indeed the discussion under point 1 does
apply here. Some further points are relevant to this case,
however.

Some people feel this is an important feature because of
“error exits.” However, the same effect can be achieved
by using a procedure call statement and adding an output
parameter.

Two rather convincing arguments can be put forward
to contend that this type of exit is not really allowed by
Arcor, so the matter is not really an ambiguity at all.

(a) In Section 3.2.3 we read, “Function designators

define single numerical or logical values.” An incomplete.

funetion would not. Or, if it would, there would be mys-
terious, ambiguous consequences such as this:

begin real z,y; real procedure F; begin F 1= 1;
go to L end;
g:=F4+1;, y:=1, L: end.

We question whether z is replaced by 2, and if so, whether
y is replaced by 1 (thus incorporating simultaneity into the
language?). After all, F rigorously defines the value 1 and
“the value so assigned is used to continue the evaluation
of the expression in which the function designator occurs.”
(Cf. Section 5.4.4.)

(b) The discussion of the control of the program in
Section 5.4.3.2 is based entirely on the values of the Boole-
an expressions, and the language used there implicitly
excludes such a possibility. In many places the Report
speaks of expressions as if they have a value, and no men-
tion is ever made of expressions that are left unevaluated
due to exits from function designators.

A further point about incomplete functions (though not
really part of the ambiguity) concerns the implementation
problems caused when such an exit occurs during the
evaluation of the bound expressions while array declara-
tions are being processed. Since the control words for a
storage allocation scheme are not entirely set up at this
time, such exits have caused bugs in more than one AraoL
compiler!

Ameigurry 3: SteEP-UNTIL

The exact sequence occurring during the evaluation of
the “step-until” element of a for clause has been the sub-
ject of much (rather heated) debate. The construction

for V := A step B until { do 8

(where V is a variable, 4, B, (' are expressions, and S is a
procedure) can be replaced by a procedure call

for (V, 4, B, C, §)

with suitable procedure called “for.” The debate centers,
more or less, on which of these parameters are to be
thought of as called by value, and which as called by name.

Conservative ArLcoL theologians follow the sequence
given in Section 4.6.4.2 very literally, so that if statement
S is executed n times, the value of 4 is computed once, B
is computed 2Xn -+ 1 times, C is computed 7 -+ 1 times,
and (if V is subscripted) the subscripts of ¥ are evaluated
3%n -+ 2 times. Liberal theologians take the expansion
more figuratively, evaluating these things just once. There
are many points of view between these two “‘extremist”
positions. As a result, the following program will probably
give at least four or five different output values when run
on different present-day ArcoL implementations:

begin array V, 4, C[1:1]; integer k;
integer procedure i; begini :=1; k:=k+1 end;
ki=0; AQl] :=1; C[1]:=3;
for V[i] := A[i] step AlZ] until C[i] do;
ouireal (1, k) end;

The liberal interpretation gives an output of 4, the con-
servative interpretation gives something like 23, and
intermediate interpretations give intermediate values; for
example the compromise suggested in [9] gives the value
16.

The conservative argument is, “Read Section 4.6.4.2.”
The liberal arguments are: (a) “If Section 4.6.4.2 is to
be taken literally, it gives a perfectly well defined value
for the controlled variable upon exit. Since Section 4.6.5
says the value is undefined, however, it must mean Sec-
tion 4.6.4.2 is not to be taken literally.” (b) “The repeated
phase ‘the controlled variable’ is always used in the
singular, implying that the subseript(s) of the variable
need be evaluated only once during the entire for clause.
Other interpretations make Section 4.6.5 meaningless.”

Examination of published algorithms shows that in well
over 99% of the uses of for statements, the value of the
“step” B is 41, and in the vast majority of the exceptions
the step is a constant. It is clear that programmers seldom
feel the need to make use of any ambiguous cases. The
liberal interpretation is clearly more efficient and it would
be recommended for future programming languages; a
programmer who really feels the need for some of the
woollier uses of a for statement can be told to write the
statements out by adding a tiny bit of program instead of
using a for statement. Even though uses can be contrived
for examples like

for x := .l step £ until 10°
or
for y := 1step 1 untily -+ 1

these are rewritten easily using the “while” element.

AMBIGUITY 4: SPECIFICATIONS

The wording of Section 5.4.5 can be interpreted as
saying that parameters called by value must be specified
only if the specification part is given at all! Furthermore, it
is not stated to what extent, ¢f any, the actual parameters
must agree with a given specification, and to what extent

the specifications which do appear will affect th: meaning
of the program. For example, is the following program
legitimate?
begin integer array 4, B, C(0:10]; array D(0:10];
procedure P(4, B, C); array A, B, C;
begin integer ¢;
for i := 0 step 1 until 10 do
Cli] := Al)/Bl]
end;
integer 7;
for i ;= 0 step 1 until 10 do
begin Ali] ;= 1; B[] := 2 end;
P(4, B, C); P(4,B,D)
end.

If so, the assignment statement inside the procedure will
have to round the result or not depending on the actual
parameter used. Consider also the same procedure with the
formal parameters specified to be integer arrays. Tor further
discussion see [9].

AMBIGUITY 5: REPEATED PARAMETERS
Several published algorithms have a procedure heading
like
procedure invert (4) order: (n) oulpul: (A)

where two of the formal parameters have the same name.
The Report does not specifically exclude this, and it does
not say what interpretation is to be taken.

AmBreouITY 6: VALUE LABELS

It has not been clear whether or not a designational
expression can be called by value, and if so, whether its
value may be “undefined” as used in Section 4.3.5. This
may or may not be allowed by the language of Section
4.7.3.1 (which talks about “assignment” of values to the
formal parameters in a “fictitious block”). Cf. Section
4.7.5.4; if a designational expression could be called by
value, a switch identifier with a single component could be
also, in the same way as an array identifier can be called
by value. The first paragraph of Section 2.8 is relevant here
also.

Aumpieurty 7: Own

This has so many interpretations it will take too much
space to repeat the arguments here. See [8, 9] for a discus-
sion of the two principal interpretations, “dynamic” and
“gtatic,” each of which can be useful. The additional com-
plications of own arrays with dynamically varying sub-
seript bounds combined with recursion, adds further
ambiguities; for one apparently reasonable way to define
this, see [11].

Ampigurty 8: NuMmeERic LABELS AND “QUANTITIES"

Most Ancon compilers exclude implementation of nu-
meric labels, primarily because a correct implementation
requires an unsigned integer' constant parameter to be
denoted, in machine language, both as a number and a
label. Consider for example

procedure Pl(g, r); if g < 5 then go to1;
procedure P2(q, r); ifr < 5 then go to ¢;
procedure W(Z); procedure Zy Z(2,2);
s W(PL); z:=0; W(P2); 2:

The Remaining Troublespots in ALGOL 60 65

There is no ambiguity here in the sense we are considering,
just a difficulty of implementation in view of the double
meaning of a parameter “2.”

The author has shown the following procedure to several
authoritative people, however, and a 50 % split developed
between those saying it was or was not valid ALGoL:

procedure P(g); if ¢ < 5 then go to ¢;

The idea of course is that we might later call P(2) where
2 i a numeric label. Actually this seems to be specifically
outlawed by Section 2.4.3 (the identifier ¢ cannot refer to
two different quantities). But consider

procedure P(q); if B{g) then G(Q);

procedure G(g); go to g;
Boolean procedure B{g); B := ¢ < §;

Is this now valid?
Consider also

begin integer I; array Al0:0];
procedure P1(X); array X; XI[0] := 03
procedure P2(X); integer X, X:=0
procedure call (X, Y); X(Y);

call (P1, A); call (P2,I) end

The identifier ¥ is used to denote two different quantities
(an array and a simple variable) which have the same
scope, yet this program seems to be valid in spite of the
wording of Section 2.4.3.

The latter procedure is believed to be admissible because
the expansion of procedure bodies should be considered
from a dynamic (not static) point of view. For example
consider

integer procedure factorial (n); integer n;
factorial := if n > 0 then n X factorial (n — 1) else 1;

In this procedure body the call of factorial (n — 1) should
not be expanded unless n > 0, or else the expansion will
never terminate. From the dynamic viewpoint the identi-
fier Y in call (X, Y) never does in fact denote two different
quantities at the same time.

Another strong argument can be put forward that even
our earlier example “if ¢ < 5 then go to ¢" is allowable.
Notice that Section 2.4.3 does not say that an identifier
may denote a string; but in fact a formal parameter may
denote a string. Therefore we conclude that Section 2.4.3
does not apply specifically to formal parameters; this is
consistent with the entire spirit of the Report, which
does not speak of formal parameters except where it tells
how they are to be replaced by actual parameters. The
syntax equations in particular reflect this philosophy. Con-
sider for example

procedure P(Q, S); procedure @; string S; QS);~

there is no way to use the syntax of ALGoL to show that
“Q(S)” is a procedure statement and at the same time to
reflect the fact that S is a string. We show S is an (identi-
fier), but to show it is an (actual parameter) we must
show it is either an (expression), an (array identifier), a
(switch identifier), or a (procedure identifier), and it
really is not any of these. So the only way to account for

66 The ALGOL Family

this is to first replace @ and S by their actual parameters,
in any invocation of P, and then to apply the syntax
equations to the result.

The distinction between what is valid and what is not
according to Section 3.4.3 is unclear,

Ameigurry 9: Resn ARITEMETIC

The precision of arithmetic on real quantities has in-
tentionally been left ambiguous (see Section 3.3.6), In an
interesting discussion van Wijngaarden [13] gives argu-
ments to show among other things that because of this
ambiguity it is not necessarily true that the relation “3.14
= 3.14’" is the same as ‘“‘true” in all implementations of
ArcoL. As we have mentioned above, ambiguities as such
are not necessarily undesirable; but is clear that ambi-
guities 1-8 are of a different nature than this one, sinee it
can be quite useful to describe fixed ArgoL programs with
varying arithmetic substituted.

So a language need not be unambiguous, but of course
when intentionally ambiguous elements are introduced it is
far better to state specifically what the ambiguities are,
not merely to leave them undefined, lest too many people
think they are writing unambiguous programs when they
are not.

2. Corrections

CoRREcCTION 1: OMITTED else
In Section 8.3.3 it is stated that “the construction

else (simple arithmetic expression)

is equivalent to the construction

else if true then (simple arithmetic expression)

But the latter construction is erroneous since if fails to
meet the syntax; we cannot write 4 := if B then C else if
true then D. The original incorrect sentence adds nothing
to the Report and means little or nothing to non-Lisp
programmers,

CoRRECTION 2: CONDITIONAL STATEMENT SEQUENCE

In Section 4.5.3.2, the paragraph “If none .. .dummy
statement” should be deleted or at least accompanied by a
qualification that it applies only to the second form of a
conditional statement. This well-known error and salso
Correction 11 would have been fixed in the Revised
Report except for the fact that these proposals were tied
to other ones involving side effects; in the heated discus-
sion which tock place, the less controversial issues were
overlooked,

The Revised Report changed the syntax of conditional
statements and this makes Section 4.5.3.2. even more
erroneous. And the explanation is incorrect in yet another
respect, since control of the program should not pass to the
statement called “S4” when the conditional statement is g
procedure body or is preceded by a for clause.

Therefore Section 4.5.3.2 should be completely rewritten,
perhaps as follows:

4.5.3.2. Conditional statement. According to the syn-
tax, three forms of unlabelled conditional statements are

possible. These may be illustrated as follows (with Sec-
tion 4.5.4 eliminated):

if B then 8,

if B then S, else §

if B then Sy,
Here B is a Boolean expression, S, is an unconditional
statement, S is a statement, and Sy,, is a for statement,.

The execution of a conditional statement may be de-
scribed as follows: The Boolean expression B is evaluated.
If its value is true, the statement S, or S, following
“then” is executed. If its value is false and if the con-
ditional statement has the second form, the statement §
following “else” is executed. (This statement S may of
course be another conditional statement, which is to be
interpreted according to the same rule.)

If a go to statement refers to a label within S, or Sy,
the effect is the same as if the remainder of the conditional
statement (namely “if B then,” and in the second case
also “else §"’) were not present.

Correction 3: For ExaMPLE

The second example in Section 4.6.2 is not very good
since (precluding side effects) it nearly always gets into an
unending loop. Therefore, change “V1” to “k” in both
places.

CorrecrioN 4: TuncrioN VALUES

Two sentences of Section 5.4.4 should say . .. as a left
part...” rather than “...in a left part...” since a
function designator may appear in a subscript. A clarifica-
tion, stating that the value is lost if a real, integer, or
Boolean procedure is called in a procedure statement,
might also be added here.

Change sentence 2, Section 4.2.3 . . . a function desig-
nator of the same name ... ”. This makes an implied rule
explicit. Or else, consider

real procedure 4; A := B := (;
integer procedure B(k); if k > 0 then A else B := 2;

which appears to conform to all of the present rules.

CorrecTION 5: FEXPRESSIONS

In the second sentence of Section 3, insert “labels,
switch designators,” after “function designators.” This
describes the constituents of expressions much more accur-
ately.

CorrEcCTION 6: DivisioN BY ZERO

Insert after the second sentence ot 3.3.4.2: “The opera-
tion is undefined if the factor has the value zero. In other
cases,” The present wording of this section seems to imply
1/0 is defined somehow.

CoRRECTION 7: STRING SYNTAX

The advent of syntax-oriented compilers and the fact
that the syntax of Argow is (in large measure) formally
unambiguous, make it desirable to change the most flag-
rantly ambiguous syntax rule in the Report. Therefore it is
suggested that in Section 2.6.1 the definition of open string
be replaced by
{open string):: = (proper string) |

{open string) (string) (proper string}

~

CORRECTION 8: LIBRARY PROCEDURES

Section 2.4.3 says “[Identifiers] may be chosen freely
(cf. however, Section 3.2.4, Standard Functions).” Sec-
tion 3.2.4 says “Certain identifiers should be reserved for
the standard functions of analysis, which will be expressed
as procedures.” If the quotation from 2.4.3 is not self-
contradictory it seems to be saying that an identifier like
“gbs” may not be used by a programmer. But this would
be disastrous since the list of reserved identifiers is not
defined. A programmer using the name ‘“gamma” for a
variable may find out next year that this identifier is
reserved for the gamma, function. It should be made clear
that any identifier may be redeclared (although this can
of course lead to some difficulties when a procedure is
copied from the literature into the middle of a program).

Moreover, the fourth paragraph of Section 5 specifically
disallows the use of any procedures assumed to exist
without declaration, except function designators denoting
s“gtandard functions of analysis.” Thus, procedures such as
“inreal,” ete. for accomplishing input would have to be
declared in any program which uses them! A suggested
change (which I think most people would say was no
change from the original intention) would be to drop
the sentence “Apart from labels. .. must be declared”
from the paragraph mentioned, and to add the following
paragraph to Section 5:

«Tt is understood that certain identifiers may have
meaning without explicit declaration, as if they were de-
clared in a block external to the entire program (cf. Section
3.2.4). Such identifiers might include, for example, names
of standard input and output procedures. Apart from
labels, formal parameters of procedure declarations, and
these standard identifiers, each identifier appearing in a
program must be declared.”

This paragraph makes available other types of identifiers
if there is a need for them, e.g., an identifier denoting a
real-time clock, or a label denoting a particular part of a
control program, ete.

CorrecrioN 9: OurEr Bounps

The statement of Section 5.2.4.2: “Consequently in the
outermost block of a program only array declarations with
constant bounds may be declared,” should be amended to
allow for the possibility of calls on standard functions (or
other standard identifiers as noted in correction 8). The
declaration

array A[0: abs(—2)]

is allowsable in the outermost block, or the word ‘“‘conse-
quently’’ does not apply.

CorrecTION 10: LABELLED PROGRAMS

The syntax for (program) allows a program to be labelled
but the remainder of the Report always talks about labels
being local to some block. T rectify this, insert three words
into Section 4.1.3:
¢ . a procedure body or a program must be considered ... ”

The Remaining Troublespots in ALGOL 6¢ 67

This is in fact the way a compiler should probably do the
implementation (see [10]). As an example, consider the
following:

A: begin array B[L: read]; outarray (B); go to A end;

CorrrctioN 11: UNDEFINED go to

The use of the word “undefined” in Section 4.3.5 is
highly ambiguous, and under some interpretations it leads
to undecidable questions which would make ArcoL 60
truly impossible to implement. Under what conditions is a
switch designator “undefined”’? For example we could say
it is undefined if its evaluation procedure makes use of
real arithmetie, or if its evaluation procedure never termi-
nates. By a suitable construction, the latter condition can
be made equivalent to the problem of deciding whether or
not a Turing Machine will ever stop.

The following procedure is an amusing (although un-
ambiguous) example of the application of an undefined go
to statement, which points out how difficult it can be for
an optimizing Areow 60 translator to detect the fact that
a procedure is being called recursively:

begin integer nn;

switch A := BJ[l], B[2];

switech B := A[G], 4(2];

integer procedure F(n, §); valuen; integern; switch S;
begin nn := n; go to S[1]; F := nn end F;

integer procedure G;
begin integer n;
n = nn; @ := 0;
nn 1= if n < 1 then n else F(n—1, 4) + F(n—2, 4)
end S;

outreal (1, F(20, 4)) end.

The output of this program should be 6765 (the twentieth
Fibonacel number).

CorrEcTioN 12: CALL BY NAME

Instead of ‘“‘Some important particular cases of this
general rule” at the end of Section 4.7.5, it should be e.g.,
“Some important particular cases of this general rule, and
some additional restrictions.” The restrictions of Subsec-
tion 4.7.5.2 are not always special cases of the general rule,
as shown in the following amusing example:

begin procedure S{z); =z := 0;
real procedure r; S(r);
real z; 2z :=1;
S (ifz = 1 then r else z); outreal (1, z) end.

This program seems to have a historical claim of being the
last “surprise” noticed by ArcoL punsters; it contains two
unexpected twists, the first of which was suggested by P.
Ingerman:

(8) Procedure r uses S(r) to set the value of r to zero.

(b) The expansion of the procedure statement on the
last line, according to the rules of “call by name,” leads to
a valid ALgor program which has a completely different
structure than the body of S:

ifz = 1thenrelsez ;=0

68 The ALGOL Family

Here an unconditional statement plus a conditional expres-
sion has become a conditional statement.

Fortunately both of these situations have been ruled out
by Section 4.7.5.2.

Conclusion

For centuries astronomers have given the name Argow to
a star whieh is also called Medusa’s head. The author has
tried to indicate every known blemish in [2}; and he hopes
that nobody will ever scrutinize any of his own writings as
meticulously as he and others have examined the Argor
Report.

RecpIveDd JANUARY 1067; revisEp Juny 1967

REFERENCES

1. Naur, P. (Ed.) Report on the algorithmic language Arcon
60. Comm. ACM 3 (1960), 299-314.

2. NAUR, P., anp Woopaer, M. (Eds.) Revised report on the
algorithmie language Avaown 60. Comm. ACM 6 (1963), 1-20.

10.

11,

12.

13.

. Apramams, P. W. A final solution to the dangling else of

Arcor 60 and related languages. Comm. ACM 9 (1966), 679-
682.

. MerneR,J. N. Discussion question. Comm. ACM § (1964), 71,
. KnvutH, D. E. On the translation of languages from left to

right. Inf. Contr. 8 (1965), 607-639.

. Diskstra, E. W. Letter to the editor. Comm. ACM 4 (1961),

502-503.

. LieavenworTtH, B. M. Fortran IV as a syntax language.

Comm. ACM 7 (1964), 72-80.

. Knurh, D. E., AND MERNER, J. N. Aveor 60 confidential,

Comm. ACM 4 (1961), 268-272.

. INgERMAN P. Z., AND MERNER, J. N. Suggestions on AngowL

60 (Rome) issues. Comm. ACM 6 (1963), 20-23.

RaNDELL, B, AND RUssELL, L. J. ALGOL 60 Implementation.
Academic Press, London, 1964.

Naur,P. Questionnaire. ALGOL Bullelin 14, Regnecentralen,
Copenhagen, Denmark, 1962.

B5500 Information processing systems reference manual.
Burroughs Corp., 1964.

VAN WIINGAARDEN, A. Switching and programming. In
H. Aiken and W. F. Main (Eps.), Switching Theory in Space
Technology, Stanford U. Press, Stanford, 1963, pp. 275-283.

PROGRAMMING
LANGUAGES:

A GRAND TOUR

ELLIS HOROWITZ
University of Southern California

COMPUTER SCIENCE PRESS

scifTech. Cin

Copyright © 1983 Computer Science Press, Inc.

Printed in the United States of America.

All rights reserved. No part of this book may be reproduced in any form, in-
cluding photostat, microfilm, and xerography, and not in information stor-
age and retrieval systems, without permission in writing from the publisher,
except by a reviewer who may quote brief passages in a review or as provided
in the Copyright Act of 1976.

Computer Science Press
11 Taft Court
Rockville, MD 20850 U.S.A.

1 23 45 6 88 87 8 85 84 83

Library of Congress Cataloging in Publication Data
Main entry under title:

Programming languages, a grand tour.

Includes index.
1. Programming languages (Electronic computers)
1. Horowitz, Ellis.

QA76.7.P78 001.64 24 82-7370
ISBN 0-914894-67-6 AACR2

