THE INTERCAL PROGRAMMING LANGUAGE
REVISED REFERENCE MANUAL

Donald R. Woods
and
James M. Lyon

C-INTERCAL evisions:
Louis Howell
and

Eric S. Raymond

Copyright (C) 1973 by Donald R. Woods
and James M. Lyon
Copyright (C) 1996 by Eric S. Raymond
Redistribution encoaged under GPL

(This version distributed with C-INTERCAL 0.15)

1. INTRODUCTION

The names you are about to ignore are trueweder, the story has been changed significaniiny
resemblance of the programming language portrayed here to other programming languzges,dead,
is purely coincidental.

1.1 Originand Purpose

The INTERCAL programming languagea® designed the morning of May 26, 1972 by Donald 8od4/
and James M. Lyon, at Princeton abity. Exactly when in the morning will become apparent in the
course of this manual.

Eighteen years later (g a take a w nonths) Eric S. Raymond perpetrated a UNIX-hosted INTERCAL
compiler as a weekend hack. The C-INTERCAL implementation has since been maintaingtbadede
by an international community of technomasochists, including Louis Howelke Stesles, Michael Ernst,
and Brian Raiter.

(There wasédently an Atari implementation sometime between these two; notes on it got appended to the
INTERCAL-72 manual. The culprits ra £nsibly declined to identify themselves.)

INTERCAL was inspired by one ambition: toveaa @mpiler language which has nothing at all in
common with ay other major language. By 'major’ag meant anything with which the authors were at all
familiar, eg., FORTRAN, BASIC, COBOL, ALGOL, SNOBOL, SPITBOL, FOCAL, SOLVE, TEHA,

APL, LISR and PL/I. For the most part, INTERCAL has remained true to this goal, sharing only the basic
elements such asamables, arrays, and the ability to do 1/0, and eschewing alleatonal operations
other than the assignment statement (FORTRAN "=").

1.2 Aconym

The full name of the compiler is "Compiler Languag&hANo Pronounceable Acronym", which is, for
obvious reasons, abbreviated "INTERCAL".

1.3 A&knowledgments

The authors are deeply indebted to Eric Min\and Daniel J. Wmenhwen, without whose unwitting
assistance this manual would stilvedeen possible.

2. FUNDAMENTAL CONCEPTS

In this section an attempt is made to describe &ud why INTERCAL may be used; i.e., what it is éik
and what it is good for.

2.1 Samplé’rogram

Shawn belav is a relatively simple INTERCAL program which will read in 32-bit unsigned gees, treat
them as signed, 2's-complement numbers, and print out their absalues.vThe program exits if the
absolute alue is zero. Note in particular thevénsion routine (statements 6 through 14), which could be
greatly simplified if the subroutine library (see section 7) were used.

A more detailed analysis of a program is made in section 8 of this manual.

DO (5) NEXT
(5) DO FORGET #1
PLEASE WRITE IN :1
DO .1 <- 'V":17'#32768¢#0"¢C#1'~#3
DO (1) NEXT
DO :1 <- "'V":17'#65535¢C#0™"¢#65535"
“TTH#0¢C#65535"¢" V" 17 #0¢#65535™
¢#65535"7 ' #0¢#65535™
DO :2 <- #1
PLEASE DO (4) NEXT
(4) DO FORGET #1
DO .1 <- "V':17:2'¢#1""#3
DO :1 <- "'V":17'#65535¢#0™¢":2"7"#65535

CH#HO'" ™' #0C#65535"¢" V" : 17 #0
¢#65535™"¢" 2" #65535¢#0™ "’ #0¢#65535 "
DO (1) NEXT
DO :2 <- ":2" ' #0¢#65535"
¢" " 27 #65535CH0"CH#0 " #32767CHL"

DO (4) NEXT
DO RESUME .1
PLEASE DO (2) NEXT
PLEASE FORGET #1
DO READ OUT :1
PLEASE DO .1 <- 'V"':1%:1 "#1"¢C#1 ~#3
DO (3) NEXT
PLEASE DO (5) NEXT
(3) DO (2) NEXT
PLEASE GIVE UP

2.2 Usedor INTERCAL

—~~
=N
~— —

INTERCAL's main advantage v@ other programming languages is its strict simplicitly has fav
capabilities, and thus there aravfeestrictions to be kept in mind. Since it is an exceedingly easy language
to learn, one might expect it would be a good language for initiating novice programiestgaps
surprising, than, is theatt that it would be more likely to initiate a novice into a search for another line of
work. As it turns out, INTERCAL is more useful (which issaying much) as a challenge to professional
programmers. Thoswho doubt this need only refer back to the sample program in section 2.1. This
22-statement program took somfeere from 15 to 30 minutes to write, whereas the same algiectin be
achieved by sngle-statement programs in either SNOBOL;

PLEASE INPUT POS(0) (- !
+ (SPAN('0123456789") $ OUTPUT)
+ *NE(OUTPUT) :S(PLEASE)F(END)

or APL;

[1] -020 IO

Admittedly, neither of these is likely to appear more intelligible tyare unfamiliar with the languages
involved, but thg took roughly 60 seconds and 15 seconds, resghgtito write. Such is the
overwhelming power of INTERCAL!

The other major importance of INTERCAL lies in its seeminglxiraistible capacity for amazing oge’
fellow programmers, confounding programming shop managers, winning friends, and influencing people. It
is a well-known and oft-demonstrated fact that a person whose work is incomprehensible is held in high

esteem. For example, if one were to state that the simplest way to store a value of 65536 in a 32-bit
INTERCAL variable is:

DO :1 <- #0¢#256

ary sensible programmer would say that that was absurd. Since this is indeed the simplest method, the
programmer wuld be made to look foolish in front of his boss, who would of course happened to turn up,
as bosses are wont to do. The effect would be no lgastdgng for the programmer having been correct.

3. DESCRIPTION

The examples of INTERCAL programming whichvhagppeared in the preceding sections of this manual
have probably seemed highly esoteric to the reader unfamiliar with the langudttetheé/aim of making
them more so, we present here a description of INTERCAL.

3.1 \ariables

INTERCAL allows only 2 different types of variables, th&bit integer and the32-bit integer. These are
represented by a spot (.) orawspot (), respeatély, followed by ay number between 1 and 65535,
inclusive. These wariables may contain only nongative rumbers; thus thehavethe respectie ranges of
values: 0 to 65535 and 0 to 4294967295. Note: .123 and :123 auestimct variables. On the other hand,
.1 and .0001 are identical. Furthermore, the latter may bwritten as 1E-3.

3.2 Constants

Constants are 16-bit ®lues only and may range from 0 to 65535.yThee prefixed by a mesh (#).
Caution! Under no circumstances confuse the mesh with the inveertparator except under confusing
circumstances!

3.3 Arrays

Arrays are represented by a tail (,) for 16-talwes, or a hybrid (;) for 32-bit values, followed by a number
between 1 and 65535, inclusi The number is stiked by the word SUB, followed by the subscripts,
separated optionally by spaces. Subscripts may pegmessions, including thosevinlving subscripted
variables. This occasionally leads to ambiguous constructions, which are resolved as discussed in section
3.4.3. Definitionof array dimensions will be discussed later in greater detail, since discussing it in less
detail would be difficult. As before, ,123 and ;123 are distinct. In sumni#, :123, #123, ,123, and

:123 are all distinct.

3.4 Opeators

INTERCAL recognizes 5 operators -- 2 binary and 3 ur@ease be kind to our operators: ytheay not
be very intelligent, but there all weve gt. In a £nse, all 5 operators are binaag hey are all bit-
oriented, but it is not our purpose here to quibble about bits of trivia.

3.4.1 BinaryOperators

The binary operators araterleave (also calledningle) and select, which are represented by a change (¢)
and a sqiggle [sic] (), respeetly. (In C-INTERCAL'S ASCII environment, EBCDIC ¢ is replaced by a
big mong ($).)

The interlese gerator takes tav 16-bit values and produces a 32-bit result by alternating the bits of the
operands. Thus, #65535¢#0 has the 32-bit binary form 101010....10 or 2863311530 decimal, while
#0¢#65535 = 0101....01 binary = 1431655765 decimal, and #255¢#255valesgub #65535.

The select operator takes from the first operand whétlits correspond to &’in the second operand, and
packs these bits to the right in the res@both operands are automatically padded on the left with zeros to
32 bits before the selection takes place, so the variable types are unresifictetde than 16 bits are
selected, the result is a 32-bit value, otherwise it is a 16-bit value. For example, #1797#201 &hirary v
10110011711001001) selects from the first argument the 8th, 7th, 4th, and 1st from last bits,108hely
which = 9. But #2017#179 selects from binary 11001001 the 8th, 6th, 5th, 2nd, and 1st from lastirigts, gi
10001 = 17. #1797#179 has the value 31, while #201"#201 has the value 15.

3.4.1.1 Returniype of SELECT

INTERCAL-72 defined the return type of a SELECT operation to depend on the number of bits
SELECTed. TheC-INTERCAL compiler takes the easier route of defining the return type to be that of the
right operand, independent of its actualwe. Thisform has the advantage that all types can be determined
at compile time.Putting in run time type checking would add significavgrbead and complication, to
effect a very minor change in language semantics.

The only time this distinction makesyadifference is when a unary operator is applied to the SELECT
result. Thishappensxdremely rarely in practice, the only known instance being the 32-bit greater-than test
in the standard librarywhere an XOR operator is applied to the result of SELBGE number agnst

itself. TheINTERCAL-72 authors first SELECT the result against #65535¢#65535 to insure that XOR
sees a 32-bitalue. Wth the current compiler this extra step is unnecesbatjharmless.

The cautious programmer should write code that does not depend on the compiler version beMd used.
therefore suggest the following guideline for determining the SELECT return type:

A SELECT operation with a 16-bit right operand returns a 16-&iiez Thereturn type of a SELECT
operation with a 32-bit right operand is undefinedt i3 guaranteed to be an acceptable input to a
MINGLE operation so long as 16 or fewer bits are actually selected. Correct code should not depend on
whether the return type is 16 or 32 bits.

Perhaps a simpler way of understanding the operation of the select openaithbe/to examine the logic
diagram on the following page (Figure 1), which performs the select operation up8ibitwalues, A and

B. The gates used areavwhenhweian logic gtes, which means the outputvédour possible values: Vg

high, undefined (value of an uninitialized flip-flop), and oscillating (output of a NOR gate with one input
low and the other input connected to the output). These values are represented symbolically by '0’, '1’, '?’,
and TI'. Note in particular that, while NO-0 is 1 and NOTI-1 is 0 as in Wwo-valued logic, NO-? is ? ad

NOT-0 is 0. The functions of the various gates are listed in Table 1.

s o
e - B 1

st T H A e

A= VL 2 T s R . W)

oL T L L

A e

ST LD B S ED
e ‘ \ L L]

S TOMECESON o

—Ir
o
e DDy D D
\

o \

OO R
o

?;T} —3 *3 WBXIB
DEDLDED D
DESDNDNDaE)

FIGURE 1. CIRCUITOUS DIAGRAM

TO
— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

— NEW

YORK
TO

- PHILA-
DELPHIA

\
Logic gate. Inputs A, B. Output O = AB. \
\
Logic gate. Inputs A, B, C. Output O = A+BC. \
\
3. Logic gate. |Inputs A, B. Output O = A+AB. \
\ \

\ 4. Logic gate. Inputs A, B. Output O = AB ¢ -(A+-B) \

\ o\ \
\' \ 5. Logic gate. Inputs A, B. Output O = AdA + AA \
\ o\ \
\' \ 6. Uninitialized flip-flop. Inputs none. Output O = ? \
Vo \
\' \ 7. Flip-flop-flap. Inputs A, B, C. Output O =1 if \
VA A=0 or B+C=0 and A=1. O = 0 if AC=1, B=0. O =0 if \
A AB=1, C=0. O = ? if ABC=1. O as yet undetermined \
VA for other Warmenhovian inputs. See Figure 2. \
\ o\ \
\ \ 8. Bus line. \
L

v |

Fr -

[[[

[[[

[[[

[[[

[[[

[V| [

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

[[

V| V|

Table 1. Logical (and other) functions.

5

FIGURE 2. FLIP FLAP FLOP

GATE TYPE 9. BLACK BOX
INPUTS A1-8, B1-8.
OUTPUT D1-8 = A1-8°B1=8

FIGURE 1 (CONTINUED). NEWYORK

-10 -

3.4.2 UnaryOperators

The unary operators are & (logicAND), V (logical OR), and V(logical XOR). This last character is
obtained by werpunching a vwarm (=) on a V (V). (In C-INTERCAL'S ASCII environment, EBCDITi¥
replaced by the what (?). The compiler recognizes -<backspace>V as a valaleatjuin case you are
concerned about compatibility with the Princeton compilére operator is inserted between the spat; tw
spot, mesh, or what-ieyou, and the inger, thus: .&123, #\123. Multiple unary operators may not be
concatenated, thus the fornm&3123 is invalid. This will be caoered later when precedence is discussed.
These operators perform their respeetdgical operations on all pairs of adjacent bits, the result from the
first and last bits going into the first bit of the result. Theogfis that of rotating the operand one place to
the right and ANDing, ORing, or XORing with its initiahle. Thus, #&77 (binary = 1001101) is binary
0000000000000100 = 4, #V77 is binary 1000000001101111 = 32879, ai@d #/ binary
1000000001101011 = 32875.

3.4.3 Pecedence

Precedence of operators is as follows:

(The remainder of this page intentionally left bldnk)

1. Keep in mind that the aim in designing INTERCAL was tuéheo precedents.

-11 -

This precedence (or lack thereof) may berled by grouping xpressions between pairs of sparks (') or
rabbit-ears (). Thus '#165¢#203"#358 (binary value '10100101¢110010117101100110) has the value 15,
but #165¢'#2037#358' has thealue 34915, and #165¢#203"#358 igdiul syntax and is completely
valueless (except perhaps as an educational tool to the programmer). A unary operator is applied to a
sparled or rabbit-earedxpression by inserting the operator immediately following the opening spark or
ears. Thus, the walid expression #%123, which was described earli@ould be coded as™#&123’ or
'V'{"™. Note: In the interests of simplifying the sometimegerty-complex form of epressions,
INTERCAL allows a spark-spot combination ('.) to be replaced witloa {). Thus .17.2" is equialent to

117.2’, and 'V.1¢.2’ is equialent to "V!1¢.2™.

Combining a rabbit-ears with a spot to form a rabhitg'hot permitted, although the programmer is free to
use it should he find an EBCDIC reader which will properly translate a 12-3-7-8 punch.

Sparks and/or rabbit-ears must also be used to distinguish among such otherwise ambiguous subscripted
and multiply-subscripted expressions as:

,1 SUB #1 ™ #2
, 1 SUB ,2 SUB #1 #2 #3
, 1SUB",2SUB" ,3SUB#1"#2""#3"

The third case may be isolated into either of its possible interpretations by simply changing some pairs of
rabbit-ears to sparks, instead of adding more ears (whoakdvwenly confuse the issue further). Ambiguous
cases are defined as those for which the compiler being used finds a legitimate interpretation which is
different from that which the user had in mind. See also section 12.

-12 -

4. SATEMENTS
In this section is described the format of INTERCAL statements.
4.1 Geneal Format

Statements may be entered in 'free format’. That is, more than one statement may occur on a single card,
and a statement maydia on one card and end on a later one. Note that if this is done, all intervening cards
and portions thereof must be part of the same statement. That this restriction is necessary is immediately
apparent from the following example of what might occur if statements could be interlaced.

DO .1 <-".1¢'&51™#V1c!12™;&75SUB"VV.1~
DO .2 <- "I1¢"&’;V79SUB",&7SUB:173""INA¢
2'¢,&1SUB:5"#33578""""#65535¢"W#&85™"
#8196™.1"¢.27"#&5¢"#1279¢#4351"#65535™

The abeoe gatements are obviously meaningless. (For that matiexe the statements

DO .1 <-".1¢"&51™#WL¢!127,&75SUB"VV.1"
.2'¢,&1SUB:5"#333578"""""#65535¢"W#&85™"
DO .2 <- "I1¢"&’;V79SUB",&7SUB:173""INA¢
#8196™".1"¢.2"#&5¢"#1279¢#4351"#65535™

but this is not of interest here.)

Spaces may be used freely to enhance program legibility (or at least reduce progibitity)ewith the
restriction that no word of a statement identifier (see section 4.3) may contajyaasas.

4.2 Labels

A statement may lggn with alogical line label enclosed in w@x-wane pairs (()). A statement may novéa
more than one label, although it is possible to omit the label entirélge label is ap integer from 1 to
65535, which must be unique within each program. The user is cautionmes/ehdhat may line labels
between 1000 and 1999 are used in the INTERCAL System Library functions.

4.3 ldentifies and Qualifiers

After the line label (if any), must fol@ one of the following statement identifiers: DO, PLEASE, or
PLEASE DO. These may be used interchangeably to wephe aesthetics of the program. The identifier

is then followed by eitheneither or both of the following optional parameters (qualifiers): (1) either of the
character strings NDor N'T, which causes the statement to be automatically abstained from (see section
4.4.9) when xecution begins, and (2) a number between 0 and 100, preceded by a douhlenof§e

which causes the statement tosdnanly the specified percent chance of beixgcated each time it is
encountered in the course okeution.

4.4 Statements

Fdlowing the qualifiers (qrif none are used, the identifier) must occur one of the 13 valid operations.
(Exception: see section 4.5.) These are described individually in sections 4.4.1 through 4.4.14.2.

4.4.1 Calculate

The INTERCAL equialent of the half-mesh (=) in FORTRANASIC, PL/I, and others, is represented by
an angle (<) followed by aavm (-). This combination is read 'gets’. 32-bit variables may be assigned
16-bit values, which are padded on the left with 16 zero bits. 1&dithles may be assigned 32-kitues

only if the value is less than 65535. Thus, teeihthe least significant bit of the first element of 16-bit
2-dimensional array number 1, one could write:

, ISUB#1#1 <- "Y1SUB#1#1¢#1 ™" #0¢#65535’

Similarly to SNOBOL and SPITBOL, INTERCAL uses the angle-worm to define the dimensions of arrays.
An example will probably best describe the formab. define 32-bit array number 7 as 3-dimensional, the
first dimension being sen, the second being the current value of 16-bit variable numisem,send the

-13 -

third being the currentalue of the seenth element of 16-bit array numbervee (which is one-
dimensional) mingled with the last three bits of 32-bit variable numiven sene vould write (just before
they came to tak hm away):

7 <-#7 BY .7 BY ", 7SUB#7"¢C" . 7T"#7’
This is, of course, different from the statement:
7 <-#7 BY .7 BY ,7SUB"#7¢": 77#7™

INTERCAL also permits the redefining of array dimensioning, which is done the sayn&svis the initial
dimensioning. All values of items in an array are lost upon redimensioning, unlgséatrebeen
STASHed (see section 4.4.5), in which case restoring them also restores the old dimensions.

4.4.2 NEXT

The NEXT statement is used both for subroutine calls and for unconditional transfers. This stat&ment tak
the form:

DO (label) NEXT
(or, of course,
PLEASE DO (label) NEXT

etc.), where (label) representsydogical line label which appears in the program. Thiecefof such a
statement is to transfer control to the statement specified, and to store in a push down list (which is initially
empty) the location from which the transfer takes place. ltems may b&eefnom this list and may be
discarded or used to return to the statement immediatelyintiothe NEXT statement. These operations

are described in sections 4.4.3 and 4.4.4 reseBctiThe programmer is generally advised to discagd an
stack entries which he does not intend to utilize, since the stack has a maximum depth of 79 entries. A
program$ dtempting to initiate an 80th Vel of NEXTing will result in the fatal error message,
"PROGRAM HAS DISAPPEARED IND THE BLACK LAGOON."

4.4.3 FORGET

The statement PLEASE FORGET exp, where exp representxparession (except colloquial andcial
expressions), causes the expression tovale@ed, and the specified number of entries to be vedrfoom

the NEXTing stack and discarded. An attempt to FORGET marislef NEXTing than are currently
stacled will cause the stack to be emptied, and no error condition is indicated. This is because the condition
is not considered to be an errAs described in section 4.4.2, it is good programming practicgdruee a

DO FORGET #1 after using a NEXT statement as an unconditional trasesfeat the stack does not get
cluttered up with unused entries:

DO (123) NEXT

(123) DO FORGET #1
4.4.4 RESUME

The statement PLEASE RESUMEKpehas the same effect as FORGEAcept that program control is
returned to the statement immediately follog the NEXT statement which stored in the stack the last
entry to be remeed. Note that a rough eq@ent of the FORTRAN computed GAOTand BASIC ON &p

GO TO is performed by a sequence of the form:

-14 -

DO (1) NEXT

(1) DO (2) NEXT
PLEASE FORGET #1

(2) DO RESUME .1

Unlike the FORGET statement, an attempt to RESUME momslef NEXTing than been stacked will
cause program termination. See also section 4.4.11.

4.4.5 SASH

Since subroutines are notdicitly implemented in INTERCAL, the NEXT and RESUME statements must

be used toxecute common routines. Maver, as these routines might use the same variables as the main
program, it is necessary for them to/esahe values of anvariables whose values thelter, and later
restore them. This process is simplified by thSH statement, which has the form DO STASH list,
where list represents a string of one or more variable or array names, separated by intersections (+). Thus

PLEASE STASH .123+:123+,123

stashes thealues of tvo variables and one entire arrahe values are left intact, and copies thereof are
saved for later retrigal by (what else?) the RETRIEVE statement (see section 4.4.6). It is not possible to
STASH single array items.

4.4.6 RETRIEVE

PLEASE RETRIEVE list restores the previously STASHed values ofdhiables and arrays named in the

list. If a value has been stashed more than once, the most recently STASHed values are RETRIEVEd, and a
second RETRIEVE will restore the second most recent values STASHed. Attempting to RETRIEVE a
vaue which has not been 8%Hed will result in the error message, "TBW STICK BEFORE
RETRIEVING."

4.4.7 IGNORE

The statement DO IGNORE list causes all subsequent statementsetooheifect upon variables and/or
arrays named in the list. Thus, for example, after the sequence

DO .1<-#1
PLEASE IGNORE .1
DO .1<-#0

16-bit variable number 1 would V& the value 1, not 0. Inputting (see section 4.4.12) into an IGNOREd
variable also has no effect. The condition is annulled via the REMEMBER statement (see section 4.4.8).
Note that, when a variable is being IGNOREd, its value, though immutable, isvatdlbke for use in
expressions and the like.

Though the INTERCAL-72 manual laid down that the value of an IGNOREd variable cannot change, it
was wnclear about whether or not a statement which appears to change an IGNsDiaBle is gecuted or

not. Thismay appear to be a "If a tre@l§ in the forest..." type of question, but if the statement in question
has other side effects it is not.

Since another mechanism alreadysts for ABSTAINing from a statement, C-INTERCALIGNORE
only prevents the changing of the specific variable in question, notdsmigon of the entire statemenin

the presentersion of the language this only makes a difference for the WRITE IN stateAiésrnpting

to WRITE IN to an IGNOREd ariable will cause a number to be read from the input, which will be
discarded since it cannot be stored in the variable.

-15-

4.4.8 REMEMBER

PLEASE REMEMBER list terminates the effect of the IGNORE statement for all variables and/or arrays
named in the list. It does not matter if a variable has been IGNOREd more than once, nor is it an error if the
variable has not been IGNOREAd at all.

4.4.9 ABSAIN

INTERCAL contains no simple equlent to an IF statement or computed GO, Tnaking it difficult to
combine similar sections of code into a single routine which occasionally skips around certain statements.
The IGNORE statement (see section 4.4.7) is helpful in some cases, but a more viable method is often
required. In keeping with the goal of INTERCALMrag nothing in common with gmother language, this

is made possible via the ABSTAIN statement.

This statement takes on one obtforms. It may not ta& on loth at ag one time. DO ABSTAIN FR®M
(label) causes the statement whose logical line label is (label) to be abstained from. PLEASENABST
FROM gerund list causes all statements of the specified type(s) to be abstained from, as in

PLEASE ABSTAIN FROM STASHING
PLEASE ABSTAIN FROM IGNORING + FORGETTING
PLEASE ABSTAIN FROM NEXTING

or PLEASE ABSTAIN FROM CALCULATING

Statements may also be automatically abstained from at the staxemftien via the N@ or N'T
parameter (see section 4.3).

If, in the course ofxecution, a statement is encountered which is being abstained from, it is ignored and
control passes to the next statement in the program (unless it, too, is being abstained from).

The statement DO ABSTAIN FROM ABSTAINING is perfecthalid, as is DO ABSTAIN FRM
REINSTATING (although this latter is not usually recommended)wéler, the statement DO ABIN
FROM GIVING UP is not acceptedyen though DON'T GIVE UP is.

4.4.10 REINSATE

The REINSRATE gatement, lile the ABSTAIN, takes as angument either a line label or a gerund list. No
other form of argument is permitted. For example, the following isvatidrargument:

Given: x£0, y£0, Prove: x+y=0

Since %0, then x+%1, x+ata, X+y2y.

But what is y? y is anything but O.

Thus x+y# anything but 0.

Since x+y cannot equal anything but 0, x+y=0.
Q.E.D.

REINSTATEment nullifies the &cts of an abstention. Either form of REINS Ement can be used to
"free" a statement, gardless of whether the statement was abstained from by gerund list, line label, or
NOT. Thus, PLEASE REINSATE REINSTATING is not necessarily an irrefant statement, since it might

free a DON'T REINSATE command or a REINSATE the line label of which was abstained from.
However, DO REINSTATE GIVING UP is invalid, and attempting to REINSWTE a GVE UP statement

by line label will hae ro efect. Note that this insures that DON'T GIVE UP willvays be a "do-nothing"
statement.

4.4.11 GIVEUP

PLEASE GIVE UP is used taxi from a program. It has the effect of a PLEASE RESUME #80. DON'T
GIVE UR as roted in section 4.4.10, is effeatly a null statement.

4.4.12 Input

Input is accomplished with the statement DO WRITE IN list, where list represents a striagables
and/or elements or arrays, separated by intersections. Numbers are represented on cards, each number on a

-16 -

separate card, by spelling out each digit (in English) and separating the digits with one or more spaces. A
zero (0) may be spelled as either ZEBr OH. Thusthe range of (32-bit) input values permissibtéeads

from ZERO (or OH) through FOUR TW® NINE FOUR NINE SIX SEVEN TV® NINE FIVE. (For the
corvenience of aviators, C-INTERCAL accepts the spelling NINER for NINE. the service of
internationalization, C-INTERCAL also accepts input digits in Sanskrit, Basqaglo§, Classical
Nahuatl, Georgian, Kwakiutl, and Volapuk.

Attempting to write in a alue greater than or equal to SIX FIVE FIVE THREE SIX for a 16-bitable
will result in the error message, "DON'T BYTE OFF MORE THAN YOU CAN CHEW."

4.4.13 Output

Values may be output to the printene value per line, via the statement DO READ OUT list, where the
list contains variables, array elements, and/or constants. Output is in the formtesfdésl" Roman
numerals (also called titchered" Roman numerals), with awedine (') indicating the value belois

"times 1000", and Mer-case letters indicating "times 1000000". Zero is indicated byvedire with no
character underneath. Thus, the range of (32-bit) outmities possible is from through
TveexevCMLXVI TCCXCV. Note: For values whose residues modulo 1000000 are less than 4000, M is
used to represent 1000; falues whose residues are 4000 or gredisrused. Thus #3999 would read out

as MMMCMXCIX 2 while #4000 would readout d&/. Similar rules apply to the use of M and i for
1000000, and to that of m amdor 1000000000.

4.4.14 COMB-ROM

In which we try to precisely define a statement that showler avebeen born, but is nertheless one of
the more useful statements in INTERCAL.

4.4.14.1 Bakground

The earliest known description of the COME®R statement in the computing literature is in [R. L.
Clark, "A linguistic contribution to GDO-less programming,” Commun. ACM 27 (1984), pp. 349--350],
part of the &mous April Fools issue of @M. Thesubsequent rush by language designers to include the
statement in their languagesisvunderwhelming, one mightem say noneistent. Itwas therefore decided
that COME FROM would be an appropriate addition to C-INTERCAL.

4.4.14.2 Description

There are tw useful ways to visualize the action of the COMEMR statement. The simpler is to see that
it acts like a GOTOwhen the program is traced backwards in time. More precibelgtatements

(1) DOc<ary statement>

(20 DOCOME FROM (1)
should be thought of as being eglént to

(1) DOc<ary statement>
(2) DOGOTO (3)

(3) DONOTHING
if INTERCAL actually had a GDO gatement at all, which of course it doesn't.
What this boils down to is that the statement DO COME FROM (labshyteare in the program, places a

2. The original INTERCAL-72 manual claimed that #3999 should render as MMMIM, but the C-INTERGAloplers hae
been unable to find an algorithm that does this and is consistent with the rest of the rules.

-17 -

kind of invisible trap door immediately after statement (labERecution or abstention of that statement is
immediately followed by an unconditional jump to the COMEORR unless the (label)ed statement is an
executed NEXT in which case the jump occurs if the program attempts to RESUME back to that NEXT
statement. lis an error for more than one COME FROM to refer to the same (label).

Modification of the target statement by ABEN or by the % qualifier affects only that statement, not the
subsequent jump.Such modifications to the COME FROM itself, wever, do &fect the jump.
Encountering the COME FROM statement itself, rather than its target, has no effect.

4.5 Comments

Unrecognizable statements, as noted in section 9, are flagged with a splat (*) during compilation, and are
not considered fatal errors unlessytlaee encountered duringkecution, at which time the statement (as

input at compilation time) is printed anseeution is terminated. This alls for an interesting (and, by
necessityunique) means of including comments in an INTERCAL listing. For example, the statement:

* PLEASE NOTE THA THIS LINE HAS NO EFFECT

will be ignored during xecution due to the inclusion of the NQualifier Usersupplied error messages
are also easy to implement:

* DO SOMETHING ABOUT OVERFLON IN ;3

as are certain simple conditional errors:

* (123) DON'T YOU REALIZE THIS STATEMENT SHOULD ONLY BE ENCOUNTERED
ONCE?
PLEASE REINSTATE (123)

This pair of statements will cause an error exit the second tinyeatkeencountered. Caution!! The
appearance of a statement identifier in an intended comment will be taken as the beginningv of a ne
statement. Thus, the first example on the preceding page couldradebka:

* PLEASE NOTE THA THIS LINE DOES NOTHING

The third example, heever, is valid, despite the appearance obteases of D-space-O, since INTERCAL
does not ignore extraneous spaces in statement identifiers.

-18 -

5. OUTSIDECOMMUNICATION

In which we try to remedy the fact that, due to I/O limitations, INTERCAL can wat & principle
perform the same tasks as other languages. It is hoped that this addition will permit INTERCAL users to
waste vast quantities of computer time well into the 21st century.

5.1 Motivation

One of the goals of INTERCAL was to provide a language which, thoudératif from all other
languages, is wertheless theoretically capable of all the same taBK$ERCAL-72 failed to accomplish
this because its I/O functions could not handle arbitrary streams of bitegroarbitrary sequences of
characters. Aanguage which caheven snd its input directly to its output can hardly be considered as
capable as other languages.

5.2 Turing Text Model

To remedy this problem, character 1/O iswnprovided in a form based on the "TuringgX@™ model,
originally proposed by Jon Blo The C-INTERCAL programmer can access this capability by placing a
one- dimensional array in the list of itemsegi to a WRITE IN or READ OUT statement. Ornxecution of

the statement, the elements of the array will, from first to last, be either loaded from the input or sent to the
output, as appropriate, in the manner describedwbelhere is currently no support for I/Ovinlving
higher-dimensional arrays, but some form of graphics might be a possible 2-D interpretation.

The heart of the Turingekt model is the idea of a continuous loop of tape containing, in ,cafiehe
characters in the machisetharacter set. When a character is nembby the input routine, the tape is
adwanced the appropriate number of spaces to bring that character under the tape head, and the number of
spaces the tape was wed is the number that is actually seen by the INTERCAL programother way to

say this is that the number placed in an INTERCAL array is tHergifce between the character just
receved and the previous charactenodulo the number of characters in the machine character set.

Output works in just the oppositashion, except that the characters being output come from the other side
of the tape. From this position the characters on the tape appear to \da cederand are indridually
backwards as well.(We would shaev you what it looks like, bt we dont havea font with backwards letters
awailable. Useyour imagination.) The effect is that a number is taken out of an INTERCAL, array
subtracted from the last character output--- i.e., the result of the last subtraction---and then senttba do
output channel.The only catch is that the character as seen by the INTERCAL program is the mirror
image of the character as seen by the machine and theThigebits of the character are therefore taken in
reverse order as it is sent to the outpdote that this bit neersal affects only the character seen by the
outside world; it does not affect the character stored internally by the program, from which the next output
number will be subtracted. All subtractions are done modulo the number of characters in the character set.

Two different tapes are used for input and for output tonaflor future expansion of the language to
include multiple input and output channels. Both tapes start at character 0 when a progjresn be
execution. Oninput, when an end of file makis reached the number placed in the array is one greater
than the highest- numbered character on the tape.

5.3 Exampld’rogram

If all this seems terribly complicated, it should be made perfectly clear by theifgl@example program,
which simply maps its input to its output @ila smplified UNIX "cat"). It assumes that characters are 8
bits long, but thas$ fine since the current version of C-INTERCAL does ttiouses the standard library
routines for addition and subtraction.

-19 -

DO ,1<-#1
DO .4 <- #0
DO .5 <- #0
DO COME FROM (30)
DO WRITE IN ,1
DO .1 <- ,1SUB#1
DO (10) NEXT
PLEASE GIVE UP
(20) PLEASERESUME '?.1$#256™#256$#256’
(10) DO(20) NEXT
DO FORGET #1
DO .2 <- .4
DO (1000) NEXT
DO .4 <- .37#255
DO .3 <- I3#15'$I3"#240’
DO .3 <- I3#15'$I3"#240’
DO .2 <- I3#15'$13"#240’
DO .1<-.5
DO (1010) NEXT
DO .5 <- .2
DO ,1SUB#1 <- .3
(30) PLEASEREAD OUT ,1

For each number recegd in the input arraythe program first tests the #256 bit to see if the end of file has
been reached. If not, the previous input character is subtradtéal @jtain the current input character
Then the order of the bits isveesed to find out what character should be sent to the output, and the result
is subtracted from the last character sénhally, the diference is placed in an array andegito a READ

OUT statementSee? W told you it was simple!

-20 -

6. TNINTERCAL

In which it is revealed that bitwise operations are too ordinary for hard-core INTERCAL programmers, and
extensions to other bases are discussHtkse are not, strictly speaking, extensions to INTERCAL itself,
but rather nev dialects sharing most of the features of the parent language.

6.1 Motivation

INTERCAL is really a pretty sissy language. It tries hard to Herifit, but when you get right down to its
roots, what do you find¥ou find bits, that what. Plainold ones and zeroes, in groups of 16 and 32, just
like every other language yowe eser heard of. And what operations can you perform on these Bik&?
INTERCAL operators may arrange and permute them in weird and wonderful ways, but at the thiele
operators are the same AND, OR and XOR ye@en countless times before.

Once the prospest INTERCAL programmer masters the unusual syntax, she finds hem&lihg with

the familiar Boolean operators on perfectly ordinary unsigned integetsw Exen the constants she uses

are Bmiliar. After all, who would not immediately recognize #65535 and #32768? It mayataist a
moment more to figure out #65280, and #21845 and #43690 could be puzzles until she notices that the
sum to #65535, but basically sketill on her home turf. The 16-bit limit on constants actually works in

the programmes’ favar by insuring that gry long anonymous constants can not appear in INTERCAL
programs. Andhis is in a language that is supposed to be different frgnother!

6.2 AbandorAll Hope...

Standard INTERCAL is based on variables consisting of ordinary bitsaamtiafr Boolean operations on

those bits.In pursuit of uniqueness, it seems appropriate to providevadiadect, otherwise identical to
INTERCAL, which instead uses variables consisting of trits, i.e. ternary digits, and operators based on
tritwise logical operationsThis is intended to be a separate dialect, rather than an extension to INTERCAL
itself, for a number of reasons. Doing it this wagids word-length conflicts, does not spoil thegeatee

of the Spartan INTERCAL operator set, and dodges the objections of those who might feel it too great an
alteration to the original languagerimarily, though, giving INTERCAL programmers the ability to
switch numeric base at will amounts taessve functionality So much better that a programmer choose a
base at the outset and then be forced to stick with it for the remainder of the program.

6.3 CompilerOperation

The same compilerck, supports both INTERCAL andiINTERCAL. Thishas the adantage that future
bug fixes and additions to the language not related to arithmetic immediately apply todystbns. The
compiler recognizes INTERCAL source files by thxéeasion ".i", and TriINTERCAL source files by the
extension .3i". It's as émple as that. There is no way to mix INTERCAL and TriINTERCAL source in
the same program, and it is novays possible to determine which dialect a program is written in just by
looking at the source code.

6.4 DataTypes

The two TrINTERCAL data types are 10-trit unsigned integers and 20-trit unsignedeiste All
INTERCAL syntax for distinguishing data types is ported to thesetypes in the obvious ay. Small

words may contain numbers from #0 to #59048, larged® may contain numbers from #0$#0 to
#59048%$#59048. Errorare signaled for constants greater than #59048 and for attempts to WRITE IN
numbers too large for awgn variable or array element to hold.

Note that though MNTERCAL considers all numbers to be unsigned, nothinggmts the programmer
from implementing arithmetic operations that treat their operands as sighesks complement is one
obvious choice, but balanced ternary notation is also a possibilitys latter is a &ry pretty and
symmetrical system in which all 2 trits are treated as ¥f tiagl the value -1.

6.5 Opeators

The TriINTERCAL operators are designed to inherit thevesieproperties of the standard INTERCAL
operators, so that both can be considered as merédyedif aspects of the same Platonic ideal. (Not that
the word "ideal" is eer particularly rel&ant when used in connection with INTERCAL.)

-21 -

6.5.1 BinaryOperatos |

The binary operators carrywe from the original language with only minor changes. The MINGLE
operator ($) creates a 20-tribvd by alternating trits from its wv10-trit operands. The SELECT operator

() is a little more complicated, since the ternary tritmask may contain 0, 1, and X wtsobsere that

the SELECT operation on binary operands amounts to a bitwise AND and some rearrangement of bits, it
seems appropriate to base the SELECT for ternary operands on a tritwise AND in the anakigoos f

We therefore postpone the definition of SELECT until wevkmehat a tritwise AND looks like.

6.5.2 UnaryOperators

The unary operators in INTERCAL are all ded from the &miliar Boolean operations on single bifo
extend these operations to trits, we first ask ourselves what the important properties of these operations are
that we wish to be preserved, then design the tritwise operators so yHaetihe in a smilar fashion.

6.5.2.1 UnaryLogical Operators

Let's dart with AND and OR.To begn with, these can be considered "choice" or "preference" operators,

as thg aways return one of their operands. AND can be described as wanting to retutrr€ubing 1

if it is given no aher choice, i.e., if both operands areSimilarly, OR wants to return 1 but returns O if

that is its only choice. From this it is immediately apparent that each operator has an identity element that
"always loses", and a dominator element thatvégs wins".

AND and OR are commuta® and associatie, and each distributesver the other They are also
symmetric with each othgin the sense that AND looks 8kOR and OR looks lile AND when the roles of

0 and 1 are interchanged (De M@n's Laws). Thissymmetry property seems to be eyldement to the
idea that these are logical, rather than arithmetic, operafiora. three-valued logic we would similarly
expect a three- way symmetry among the thr@ees 0, 1 and 2 and the three operators AND, OR and (of
course) BUT.

The following tritwise operations kia dl the desired properties: OR returns the greater of wsofverands.
That is, it returns 2 if it can get it, else it tries to return 1, and it returns O only if both operandg\hi@ 0.
wants to return 0, will return 2 if it canget 0, and returns 1 only if forced®UT wants 1, will tale 0, and
tries to @oid 2. The equidents to De Mogan's Laws gply to rotations of the three elements, e.g., 0 -> 1,
1->2,2->0 Each operator distrilies wer exactly one other operatmo he property "X distributesver

Y" is not transitve. The question of which way this distutivity ring goes around is left as axeecise for

the student.

In THINTERCAL programs the whirlpool (@) symbol denotes the unary tritwld& Bperation. You can
think of the whirlpool as draing values preferentially veards the central value 1Alternatively, you can
think of it as drawing your soul and your sanity inexorably down...

On the other hand, maybesitiest younotthink of it that way.

A few comments about o these operators can be usedR acts lile a titwise maximum operation.
AND can be used with tritmask€)’s in a mask wipe out the corresponding elements in the other operand,
while 1's let the corresponding elements pass through uncharyeéh a nask consolidate the values of
nonzero elements, as botls Ehd 2's in the other operand yield 2in the output. BUT can be used to
create "partial tritmasks"0’s in a mask let BUT eliminate 2 from the other operand while leaving other
vaues unchangedOf course, the symmetry property guarantees that the operatotsrety behae
differently from each other in griundamental way; the apparent differences come from the vetwigw

that a O trit is "not set" while a 1 or 2 trit is "set".

6.5.2.2 BinaryOperatos Il

At this point we can define SELEC3nce we nav know what the tritwise AND looks lie. SELECTtakes

the binary tritwise AND of its te operands. Ishifts all the trits of the result corresponding te &' the
right operand wer to the right (low) end of the result, then follows them with all the output trits
corresponding to %'in the right operandTrits corresponding to €'in the right operand, which are all 0
anyway occupy the remaining space at the left end of the outpardw Both10-trit and 20-trit operands

-22 -

are accepted, and are padded with zeroes on the left if neceSsargutput type is determined the same
way as in $gandard INTERCAL.

6.5.2.3 UnanyArithmetic Operators

Now that weve got all that settled, what about XORPhis is easily the most-useful of the three unary
INTERCAL operators, because it combines in one package the operations ADD WITHOUTYCARR
SUBTRACT WITHOUT BORROW, BITWISE NOT-EQUAL, and BITWISE NQ. In TriINTERCAL we

cant haveall of these in the same operatence addition and subtraction are no longer the same thing.
The solution is to split the XOR concept intootwperators. TheéADD WITHOUT CARRY operation is
represented by the wesharkfin (°) symbol, while the old what (?) symbol represents SUBTRA
WITHOUT BORROW. The reason for this choice is so that what (?) will also represent the TRITWISE
NOT-EQUAL operation.

Note that what (?), unl&kthe other four unary operators, is not symmetri¢akhould be thought of as
rotating its operand one trit to the right (with wraparound) and then subtradtitige d@fits of the original
number These subtractions are done without borrowing, i.e., trit-by-trit modulo 3.

6.5.3 Examples

The TriINTERCAL operators really ardnédll that bad once you get used to thefret's look at a fev
examples to she how they can be used in practicén all of these examples the input value is contained in
the 10-trit variable .3.

In INTERCAL, single-bit values often tia b be @rnverted from {0,1} to {1,2} for use in RESUME
statements. Exampled how to do this appear in the original manual. In TrINTERCAL theression
".3$#1"#1 sends 0 -> 1 and 1 -> 2. If the 1-trit input value caa tekany of its three possible states,
however, we will also have © deal with the 2 case. The expression "V.3$#1"#1 sends {0,1} -> 1 and 2 ->
2. Totest if a trit is set, we can use "V"&.3$#2"#1'$#1""#1, sending 0 -> 1 and {1,2} -Po2evease the

test we use "?"&.3$#2"#1'$#1""#1, sending 0 -> 2 and {1,2} ->Nhte that we h& ot been taking full
adwantage of the mwe SELECT operatar These last t@ expressions can be simplified into
"VISTH2'$#1H#H1 and "?137#2'$#1"#1, which perfornxactly the same mapping$inally, if we need a
3-way test, we can use "@™"".3$#7""#4'$#2""#10, which obviously sends 0 ->1,1->2, and 2 -> 3.

For an wrelated example, the expression "".3$.3""#0$#29524Vartznall of the 1-trits of .3 into 8'and
all of the 2-trits into 1S. In balanced ternarywhere 2-trits represent -1 values, this is thgaten
operation.

6.6 Begond Ternary...

While we're at it, we might as wellxeend this multiple bases business a litdetfer The ick compiler
actually recognizes filename &xés of the form ".Ni’, where N is gnnumber from 2 to 7.2 of course

gives gandard INTERCAL, while 3 ges TriINTERCAL. We aut off before 8 because octal notation is the
smallest base used tacilitate human-to-machine communication, and this seems quite contrary to the
basic principles behind INTERCAL. The small data types hold 16 bits, 10 trits, 8 quarts, 6 quirts, 6 se
or 5 septs, and the large types aveagb twice this size.

As for operators, '?’ is alays SUBTRACT WITHOUT BORRW, and ™ is aways ADD WITHOUT
CARRY. V' is the OR operation andwaéys returns the max of its inputs. '&’ is the AND operation,
which chooses 0 if possible but otherwise returns the max of the irigités BUT, which prefers 1, then

0, then the max of the remaining possibilities. Rather than add more special symh@&s foremeric
modifier may be placed directly before the '@’ symbol to indicate the operation that prefers one of the
digits not already represented. Thus in files ending in ".5/’, the permitted unary operators are '?’, ™, &,
‘@', 2@’, '3@’, and 'V'. Use of such barbarisms as '0@’ to represent ‘& are not permitted, nor is the
use of '@’ or " in files with either of the extensions ".i" or ".2iWhy not? You just can't, thas why.

Don't ask so may questions.

As a closing rample, we note that in balanced quinary notation, where 3 means -2 and 4 means -1, the
negdion operation can be written as either

-23-

DO .1 <-"""".3%.3""#0$#3906"'$"".3$.3""#0$#3906"" " #0$#3906"
or as

DO .1 <-".3$.3""#0$#3906"
DO .1 <-".1$.1""#0$#3906"

These work because multiplication by -1 is the same as multiplication by 4, modulo 5.

Now go beat your head against the wall for a while.

=24 -

7. SUB®UTINE LIBRARY

INTERCAL provides seeral built-in subroutines to which control can be transferred to perfamous
operations. These operations include ynarseful functions which are not easily representable in
INTERCAL, such as addition, subtraction, etc.

7.1 Usae

In general, the operands are .1, .2, etc., or :1, :2, etc., and the result(s) are stored ouldhadvesbeen
the next operand(s). For instance, one routine adds .1 to .2 and store the sum in .3, with .4 being used to
indicate werflow. All variables not used for results are left unchanged.

7.2 Available Functions

At the time of this writing, only the most fundamental operations are offered in the libsagy nore
complete selection would require prohiptiime and coree to implement. These functions, along with
their corresponding entry points (entered via DO (entry) NEXT) are listedrbelo

(1000) .3 <- .1 plus .2, error exit on overflow
(1009) .3 <- .1 plus .2

.4 <- #1 if no overflow, else .4 <- #2
(1010) .3 <- .1 minus .2, no action on ove rflow
(1020) .1 <- .1 plus #1, no action on overflow
(1030) .3 <- .1 times .2, error exit on overflow
(1039) .3 <- .1 times .2

.4 <- #1 if no overflow, else .4 <- #2
(1040) .3 <- .1 divided by .2

.3 <- #0 if .2 is #0
(1050) .2 <- :1 divided by .1, error exit on overflow

.2 <- #0 if .1 is #0

(1060) .3 <- logical or of .1 and .2

(1070) .3 <- logical and of .1 and .2
(1080) .3 <- logical xor of .1 and .2
(1500) :3 <- :1 plus :2, error exit on overflow
(1509) :3 <- :1 plus :2

4 <- #1 if no overflow, else :4 <- #2
(1510) :3 <- :1 minus :2, no action on ove rflow
(1520) :1 <- .1 concatenatedwith .2

(1525) This subroutine is intended solely for internal
usewithin the subroutine library and is therefore
not desaibed hee. Its effect is to shift .3
logically 8 bits to the left.

(1530) :1 <- .1 times .2
(1540) :3 <- :1 times :2, error exit on overflow
(1549) :3 <- :1 times :2

4 <- #1 if no overflow, else :4 <- #2
(1550) :3 <- :1 divided by :2

13 <- #0 if :2 is #0
(1900) .1 <- uniform random no. from #0 to #65535
(1910) .2 <- normal random no. from #0 to .1, with

standard deviation .1 divided by #12
7.3 Automagical Inclusion Of The Subroutine Library

The C-INTERCAL compiler will automatically include the system library if a DO (1xxx) NEXT statement
is used, and if no (1xxx) labels are defined anywhere, where (1xxx) is a label in the 1000-1999 range,

-25-

inclusive. This was not an INTERCAL-72 feature.

-26 -

8. PFOGRAMMING HINTS

For the user looking to become more familiar with the INTERCAL language, we present in this section an
analysis of a compleprogram, as well as some suggested projects for the ambitious programmer.

Considering the effort irolved in writing an INTERCAL program, it & decided in putting together this
manual to use an already existing program for instrei@ialysis. Since there was only one such program
awailable, we hee proceeded to use it. It is known as the "INTERCAL System Library."

8.1 Description

The program listing begins on the second page following. It is in the same formauld$ye produced by
the Princeton INTERCAL compiler in FORNMAmMode with WIDTH=62 (see section 12). For a description
of the functions performed by the Librasge section 7.2.

8.2 Analysis

We dhall not attempt to discuss here the algorithms used, but rather we shall point out some of the general
techniques applicable to a wide range of problems.

Statements 10, 14, 15, and 26 malp a wtual "computed GO TO". When statement 10 xgceted,
control passesventually to statement 16 or 11, depending on whether .5 contains #1 or #2, vepecti
The value of .5 is determined in statement 9, which demonstrates another handy techmityue. an
expression, exp, with value #0 or #1, into #1 or #2 (for use in a "GQ, Tise "Vexp'¢#1""#3. To revase
the condition (i.e., corert #0 to #2 and leae #1 done) use "Vexp'¢#2""#3.

Certain conditions are easily chedk For example, to test for zero, select the value from itself and select
the bottom bit (see statement 54p test for all bits being &, select the value from itself and select the top
bit (see statement 261). The test for greater than, performed in statements 192 and 193 ocalW&&bit v
employs binary logical operations, which are performed as follows:

.1¢.27#0¢#65535’
for 16-bit values qrfor 32-bit values:

"V 1T#65535¢30™ ¢ 27 #65535¢#0™ T #0
¢#65535™¢"" V" 1"#0¢#65535™¢":27#0
¢#65535™" " #0¢#65535™

(The proofs are left as amegcise to the reader.)
Testing for greater-than with 16-bit values is somewhat simpler and is done with the pair of statements:

DO .C <- 'V.Ac.B™#0¢#65535’
DO .C<-'&".A".C™"V'V.C".C'¢#32768"
“'#0¢#65535""¢".CT.C"#1

This sets .C (a dummy variable) to #1 if .A > .B, and #0 otherwise. The expression may be expanded as
described abee © instead set .C to #1 or #2.

Note also in statement 220 the occurrence of ™#65535¢#65535". Although these operations select the
entire value, the are not extraneous, as thensure that the forthcomingsvnill be operating on 32-bit
values.

In several virtual computed GO Os the DO FORGET #1 (statement 15 in the earlier example) has been
omitted, since the next transfer of control would be a DO RESUME #1. By making this a DO RESUME #2
instead, the FORGET may be forgotten.

In statement 64, note that .2 is STASHed twice by a single statement. This is peectly le

Lastly, note in statements 243 and 214 respelsti expressions for shifting 16- and 32-bianables
logically one place to the left. Statement 231 demonstrates right-shifting for 32-bit variables.

8.3 Pioogram Listing

(1000)

(1009)

(1004)

(1005)
(1999)
(1002)
(1006)

(1003)

(1007)

(1001)
(1010)

(1020)

(1021)

(1023)
(1022)

(1030)

(1039)

-27-

PLEASE IGNORE .4

PLEASE ABSTAIN FROM (1005)

DO STASH .1 + .2 + .5 + .6

DO .4 <- #1

DO (1004) NEXT

PLEASE FORGET #1

DO .3 <- 'V.1¢.2"7" #0¢C#65535"

DO .6 <- '&.1¢.2"7" #0¢#65535"
PLEASE DO .5 <- "VI67#32768 ' ¢#1' " #3
DO (1002) NEXT

DO .4 <- #2

DO (1006) NEXT

DOUBLE OR SINGLE PRECISION OVERFLOW
DO (1001) NEXT

PLEASE FORGET #1

DO .5 <- 'V"I67.6""#1"¢#1 "#3
(1003) NEXT

1 <- .3

.2 <- 16CHO " #32767CH1’
(1004) NEXT

DO (1001) NEXT

DO REINSTATE (1005)

PLEASE RETRIEVE .1 + .2 + .5 + 6
DO REMEMBER .4

PLEASE RESWME #2

DO RESUME .5

DO STASH .1 + .2 + .4

DO .4 <- .1

DO .1 <- 'V.2¢#655357"'#0¢#65535"’
DO (1020) NEXT

PLEASE DO .2 <- .4

PLEASE DO (1009) NEXT

DO RETRIEVE .1 + .2 + 4

PLEASE RESWE #1

DO STASH .2 + .3

DO .2 <- #1

PLEASE DO (1021) NEXT

DO FORGET #1

DO .3 <- "VI17.2'¢C#1""#3

PLEASE DO .1 <- 'V.1¢.2"7" #0¢#65535"
DO (1022) NEXT

DO .2 <- 12¢#0'" " #32767C¢C#1’

DO (1021) NEXT

PLEASE RESUME .3

DO (1023) NEXT

PLEASE RETRIEVE .2 + .3

PLEASE RESWME #2

DO ABSTAIN FROM (1033)

PLEASE ABSTAIN FROM (1032)

DO STASH :1 + .5

DO (1530) NEXT

DO .3 <- :17#65535

PLEASE DO .5 <- :17'#65280¢#65280"

DO
DO
DO
DO

-28 -

54 DO .5 <- 'V"I5~ .5 "#1"¢C#1 ~#3
55 DO (1031) NEXT
56 (1032) DO (1033) NEXT
57 DO (1999) NEXT

58 (1031) DO (1001) NEXT
59 (1033) DO .4 <- .5

60 DO REINSTATE (1032)

61 PLEASE REINSTATE (1033)
62 DO RETRIEVE :1 + .5

63 PLEASE RESWE #2

64 (1040) PLEASE STASH .1 + .2 + .2 +:1 + :2 + :3
65 DO .2 <- #0

66 DO (1520) NEXT

67 DO STASH :1

68 PLEASE RETRIEVE .2

69 DO .1 <- .2

70 DO .2 <- #0

71 PLEASE DO (1520) NEXT

72 DO 2 <- :1

73 DO RETRIEVE .1 + .2 + :1

74 DO (1550) NEXT

75 PLEASE DO .3 <- :3

76 DO RETRIEVE :1 + :2 + :3

77 DO RESUME #1

78 (1050) PLEASE STASH :2 + :3 + .5
79 DO 2 <- .1

80 PLEASE DO (1550) NEXT

81 DO .5 <- :37'#65280¢#65280°
82 DO .5 <- '"V"I57 5""#1"¢C#1""#3
83 DO (1051) NEXT

84 DO (1999) NEXT

85 (1051) DO (1001) NEXT

86 DO .2 <- :3

87 PLEASE RETRIEVE :2 + :3 + .5
88 DO RESUME #2

89 (1500) PLEASE ABSTAIN FROM (1502)
90 PLEASE ABSTAIN FROM (1506)
91 (1509) PLEASE STASH :1 + .1 + .2 + .3 + .4 +
92 DO .1 <- :17#65535

93 PLEASE DO .2 <- :27#65535
94 DO (1009) NEXT

95 DO .5 <- .3

96 PLEASE DO .6 <- .4

97 DO .1 <- :17'#65280¢#65280°
98 DO .2 <- :27'#65280¢#65280°
99 DO (1009) NEXT

100 DO .1 <- .3

101 FLEASE DO (1503) NEXT

102 DO .6 <- .4

103 DO .2 <- #1

104 DO (1009) NEXT

105 DO .1 <- .3

106 DO (1501) NEXT

107 (1504) PLEASE RESUME .6

-29 -

108 (1503) DO (1504) NEXT
109 (1501) DO .2 <- .5

110 DD .5 <- 'V"' &.6C.4 " #1"C#2 "~ #3
111 DO (1505) NEXT

112 (1506) DO (1502) NEXT

113 FLEASE DO (1999) NEXT

114 (1505) DO (1001) NEXT
115 (1502) DO :4 <- .5

116 DO (1520) NEXT

117 DO :3 <- :1

118 A_.EASE RETRIEVE :1 + .1 + .2 + .3 + .4 + .5 +

119 DO REINSTATE (1502)

120 DO REINSTATE (1506)

121 A.EASE RESWE #3

122 (1510) DO STASH :1 + :2 + :4

123 DO 1 <- "'V":27""#65535¢#0"¢#65535"™ "#0¢#6553
5'"¢"'V":27"#0¢C#65535"¢#65535"7 " #0¢C#65535

124 DO 2 <- #1

125 DO (1509) NEXT

126 A.EASE RETRIEVE :1

127 D 2 <- :3

128 FLEASE DO (1509) NEXT

129 DO RETRIEVE :2 + :4

130 A.EASE RESWE #1

131 (1520) PLEASE STASH .3 + .4

132 DD .3 <- .17#43690

133 DO (1525) NEXT

134 AEASE DO .4 <- 'V.3¢".27#43690" "' #0¢#65535"’

135 DD .3 <- .17#21845

136 FLEASE DO (1525) NEXT

137 DO 1 <- .4¢"'V.3¢".27#21845" "' #0¢#65535 ™

138 A_LEASE RETRIEVE .3 + .4

139 DO RESUME #1

140 (1525) DO .3 <- ""'"'"1 3CHO0'WH#I2767CHL"CHO " #32767
CH#H1'"C#0' " " #16383¢#3"C#0' " " #4095¢#15"

141 A.EASE RESWE #1

142 (1530) DO STASH :2 + :3 + .3 + .5

143 DO :1 <- #0

144 DO 2 <- .2

145 DO .3 <- #1

146 DO (1535) NEXT

147 (1535) PLEASE FORGET #1

148 DO .5 <- "VI17.3"¢#1""#3

149 DO (1531) NEXT

150 DO (1500) NEXT

151 D 1 <- :3

152 FLEASE DO (1533) NEXT

153 (1531) PLEASE DO (1001) NEXT

154 (1533) DO FORGET #1

155 DD .3 <- !3C#0 ™ #32767C#1’

156 DO :2 <- ":27 #0C#65535"¢" " :27 ' #32767C¢#0"¢#
0' " '#32767¢#1™

157 FLEASE DO .5 <- "V13~ .3 ¢#1" " #3

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

(1532)

(1540)

(1549)

-30-

DO (1532) NEXT

DO (1535) NEXT

DO (1001) NEXT

A.EASE RETRIEVE :2 + :3 + .3 + 5
DO RESUME #2

PLEASE ABSTAIN FROM (1541)

0O ABSTAIN FRQM (1542)

PLEASE STASH :1 + :2 + :4 + :5 + .1 +
DD .1 <- :1°#65535

AEASE DO .2 <- :27'#65280¢#65280"
DO .5 <- :17'#65280¢#65280"

DO (1530) NEXT

DO :3 <- :1

DD .2 <- :27#65535

FLEASE DO (1530) NEXT

DO 5 <- :1

DO .1 <- .5

DO (1530) NEXT

DD 4 <- :1

ARLEASE DO :1 <- ":37'#65280¢#65280"¢":57"#652

80¢#65280™

(1541)
(1542)

(1543)
(1544)

(1550)

DD .5 <- ":17:1""#1

DD .2 <- :27'#65280¢#65280"
DO (1530) NEXT

ALEASE DO .5 <- ""':17:1""#1"¢.5 " #3
DD .1 <- :37#65535

DO .2 <- #0

DO (1520) NEXT

A.EASE DO :2 <- :1

ALEASE DO .1 <- :4"#65535
(1520) NEXT

(1509) NEXT

.5 <- I5¢":47#3"" "#15

1 <- :3

12 <- :5

(1509) NEXT

AEASE DO .5 <- I5¢":47#3""' "#63
DO .5 <- '"V"I57 . 5"7"#1"¢C#1""#3
A.EASE RETRIEVE :4

DO :4 <- .5

DO (1543) NEXT

DO (1544) NEXT

FLEASE DO (1999) NEXT

DO (1001) NEXT

DO REINSTATE (1541)

FLEASE REINSTATE (1542)

A.EASE RETRIEVE :1 + :2 + 5 + .1 + .2
DO RESUME #2

DO STASH :1 + :4 + :5 + .5

DD :3 <- #0

DO .5 <- '"V"':27:2""#1"¢#1' "#3
FLEASE DO (1551) NEXT

DO 4 <- #1

FLEASE DO (1553) NEXT

888888

211
212
213
214

215

216
217
218
219

220

221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

(1553)

(1552)
(1556)

(1554)
(1555)

(1551)

(1900)

(1901)

(1902)

(1910)

(1912)

-31-

DO FORGET #1
DO .5 <- 'V":2" '#32768C#0"C#2 “#3
DO (1552) NEXT

DO :2 <- ":27 ' #0C#65535"¢" " 127 #32767CH#0"C#
0’'"'#32767¢#1™
ALEASE DO :4 <- ":47'#0¢#65535"¢"'" 147" #32767

CHO'"CHO' '~ #32767¢H#1 ™"

DO (1553) NEXT

DO (1001) NEXT

PLEASE FORGET #1

DO 5 <- "'V":17"#65535¢#0™¢":27 "#65535¢#0 ™"’
“TTH#0C#65535"¢" V" 1T #0¢#65535"¢" 27 "#0¢
#65535™" 7 #0¢#65535 ™

DO .5 <- 'V"'&" 2757 YTV BT BT "#65535”7
#65535" 7 #65535¢#0"¢#32768 "7 '#0¢C#65535™
¢"'V": 575" "#65535¢#65535"7 " #0¢#65535 ™’
"¢ 5T BT THIY THI"CH2 T T#3

DO (1554) NEXT

DD :5 <- :3

DO (1510) NEXT

A.EASE DO :1 <- :3

DO :3 <- "'V":47'#65535¢#0™¢" .57 "#65535¢#0 ™’
TTH#0C#65535"¢" V" 47 #0C#65535™M¢" 57 #0¢C
#65535™" 7 #0¢#65535 ™

DO (1555) NEXT

PLEASE DO (1001) NEXT

DO FORGET #1

DO .5 <- "V':47#1 ¢#2""#3

DO (1551) NEXT

DO 2 <- ":27"#0¢#65534™"¢":27 "#65535¢#0™

DO 4 <- ":47"#0¢#65534"¢":47 "#65535¢#0™

FLEASE DO (1556) NEXT

DO (1001) NEXT

A.EASE RETRIEVE :1 + :4 + 5 + .5

A.EASE RESWE #2

DO STASH .2 + .3 + .5

DO .1 <- #0

DO .2 <- #1

FLEASE DO (1901) NEXT

DO FORGET #1

DO %0 .1 <- 'V.1¢.2'7" #0¢#65535"

DO .2 <- 12¢#0'""#32767¢#1’

ALEASE DO .5 <- "V!127.2'¢#1""#3

DO (1902) NEXT

DO (1901) NEXT

DO (1001) NEXT

DO RETRIEVE .2 + .3 + b

A.EASE RESWE #2

PLEASE STASH .1 + .3 + .5 +:1 + :2 + :3

DD .3 <- #65524

DD :1 <- #6

DO (1911) NEXT

PLEASE NOTE THAT YOU CAN'T GET THERE FROM HERE

DO (1001) NEXT

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

(1911)

(1060)

(1070)
(1080)

-32-

DO FORGET #1

FLEASE DO (1900) NEXT

D 2 <- .1

DO (1500) NEXT

A.EASE DO :1 <- :3

DO .1 <- .3

DO (1020) NEXT

A.EASE DO .3 <- .1

DO .5 <- '"V"I137.3""#1"¢C#2'"#3

DO (1912) NEXT

DO .1 <- #12

FLEASE DO (1050) NEXT

DO RETRIEVE .1

DO (1530) NEXT

DD :2 <- #32768

DO (1500) NEXT

AEASE DO .2 <- :37'#65280¢#65280"
A.EASE RETRIEVE .3 + .5 + 1 + :2 +
DO RESUME #1

DO .3<-'V".1¢.2"" "' #0¢#65535"

DO .3<-'&".1¢.2""7’ #0¢#65535"
DO .3<-'V".1¢.2"" " #0¢#65535"

-33-

8.4 Pogramming Sugestions

For the novice INTERCAL programmewe provide here a list of suggested INTERCAL programming
projects:

Write an integer exponentiation subroutine. :1 <- .1 raised to the .2 power.

Write a double-precision sorting subroutinevé&i 32-bit array ;1 of size :1, sort the contents into
numerically increasing orddeaving the results in ;1.

Generate a table of prime numbers.

Put together a floating-point libranysing 32-bit \ariables to represent floating-point numbers (let the upper
half be the mantissa and the lower half be the characteri$ti library should be capable of performing
floating-point addition, subtraction, multiplication, and division, as well as the natural logarithm function.

Program a Fast Fourier Transform (FFT). This projectiid probably entail the writing of the floating-
point library as well as sine and cosine functions.

Calculate, to :1 places, the value of pi.

(The first three and last one of the preceding suggested projects from the INTERCAL-72 manual are
included in the C-INTERCAL distriltion’s pt directory of sample code. The floating-point library and
FFT routine remain as wosttchallenges...)

-34-

9. ERFOR MESSAGES

Due to INTERCALs implementation of comment lines (see section 4.5), most error messages are produced
during execution instead of during compilatiorAll errors except those not causing immediate termination
of program gecution are treated as fatal.

9.1 Format
All error messages appear in the following form:

ICLnnnl (error message)
ON THE WAY TO STATEMENT nnnn
CORRECT SOURCE AND RESUBMIT

The message varies depending upon the erwmlvied. For undecodable statements the message is the
statement itself.The second line tells which statement woulgehbeen aecuted next had the error not
occurred. Notehat if the error is due to 80 attemptedels of NEXTing, the statement which wouldvea
been &ecuted next need not be anywhere near the statement causing the error.

9.2 Messges
Brief descriptions of the different error types are listedwelcording to message number.

000 Anundecodable statement has been encountered in the coussewdfom. Note that &ypunching
errors can be slightly disastrous, since if 'FORGET’ were misspelled F-O-R-G-E-R, the results
would probably not be those desired. Extreme misspellings mag han more surprising
consequences. For example, misspelling 'FORGET' R-E-S-U-M-E coukldnastic results.

017 Anexpression contains a syntax error.

079 Impropewuse has been made of statement identifiers.

099 Impropewuse has been made of statement identifiers.

123 Progranhas attempted 80uels of NEXTing.

129 Progranhas attempted to transfer to a non-existent line label.

139 AnABSTAIN or REINSTATE gatement references a non-existent line label.
182 Aline label has been multiply defined.

197 Aninvalid line label has been encountered.

200 Anexpression imolves an unidentified variable.

240 Anattempt has been made togm aray a dimension of zero.

241 Irvalid dimensioning information was supplied in defining or using an array.
275 A32-bit value has been assigned to a 16-bit variable.

436 Aretrieval has been attempted for an unSTASHed value.

533 AWRITE IN statement or interlea (¢) operation has produced a value requirimgr 82 hits to
represent.

562 Insuficient data.

579 Inputdata is inalid.

621 Theexpression of a RESUME statemenrtleated to #0.

632 Progranexecution was terminated via a RESUME statement instead of GIVE UP.

633 BEecution has passed beyond the last statement of the program.

774
778

-35-

Acompiler error has occurred (see section 12).

Anunexplainable compiler error has occurred.

The following error codes arewen C-INTERCAL:

111
127
222
333
444
555
666
777
888
999
998
997

You tried to use a C-INTERCAL extension with the ‘traditional’ flag on.
Cant find syslib.i file when i8 needed for magical inclusion.
Outof stash space.

Too malry variables.

ACOME FROM statement references a non-existent line label.
Morethan one COME FROM references the same label.

Too malty source lines.

Nosuch source file.

Cant open C output file

Cant open C skeleton file.

Sourcdile name with inalid extension (use .i or .[3-7]i).

lllegd possession of a controlled unary operator.

-36 -

10. TheC-INTERCAL Compiler
10.1 Chaacter Set

The C-INTERCAL compiler uses ASCII rather than EBCDICG: Mlow the Atari implementation by (a)
replacing the change sign (¢) with big mpri8) as the mingle operatand (b) replacing the bookwm
(V) symbol with what (?) as the exclustor operator.

10.2 Usage and Compilation Options

To compile an INTERCAL program ‘foo.i’ toxe@cutable code, just do
ick foo.i

Theres a -c gtion that leses the generated C code in place for inspection (suppressing compilation to
machine code), a -d option that enables verbose parse reporting from the yacc/bispa gaystéon that
requires strict INTERCAL-72 compliance (rejecting COME FROM and xitensions for bases other than
two), a -b option that disables the INTERCAL-72 random-bug feature (E774), and an -O option that
enables the (hah!) optimizeimvoking ick -? prints a usage message.

Another compilation switch affects C-INTERCALruntime beheior. The ‘-C’ option forces output in
"clockface" mode, for superstitious users who kelieriting "IV" upside-down offends IVPITER and
would rather see llII.

10.3 Runtiméptions

Every C-INTERCAL runtime also accepts certain options at runtime. These include [+/-]help,
[+/-]traditional, and [+/-lwimpmode. The help option (with either + or -) triggers a 'usage’ message. The
+traditional option is presently a no-op.

Steve explains: "The wimpmode option is the most interesting. | found mysetyal running my test
programs with filters on both ends to work around the ’nifty’ INTERCAL number representations.ahis w

so painful that | decided itould be LESS painful (and a lot less code) if | added a 'wimp’ optibith

the +wimpmode option, the user is subjected to a humiliating message about what a wimp he or she is to
use this mode, but after that is allowed to usevauional numerical notationWhile such a mode
doubtless violates to some extent the INTERCAL philogpgite fact that a 'unitcher’ command has

been posted clearly indicates the need for ityway... if you dont like it, dont use it... the default is
-wimpmode (i.e. NO wimp mode)."

10.4 PLEASHdlitesse Checking

A feature of INTERCAL-72 not documented in the original manws that it required a certairvé of
politesse from the programmetf fewer than 1/5th of the program statements included the PLEASE
qualifier, the program would be rejected as insufficiently polite. If more than 1/3rd of them included
PLEASE, the program would be rejected as exeeggpolite.

This check has been implemented in C-INTERCAIo assist programmers in coping with it, the
intercal.el mode included with the distribution randomi{gands "do " in entered source to "DO PLEASE"
or "PLEASE DO" 1/4th of the time.

-37-

11. TheAtari Implementation

The Atari implementation of INTERCAL differs from the original Princeton version primarily in the use of
ASCII rather than EBCDIC. Since there is no "change" sign (¢) in ASCII, we fdstituted the "big
mong" ($) as the mingle operatdie feel that this correctly represents the increasing cost of software in
relation to hardware. (Consider that in 1970 one could get RUNOFF for free, to run on a $20K machine,
whereas today a not quite as powerful formatter costs $99 and runs on a $75 matidsg feel that

there should be no defensible contention that INTERCAL hgssamse. Alsosince a@erpunches are
difficult to read on theva@rage VDT the eclusive-or operator may be written ?. This correctgpresses

the average persom reaction on first encounteringausive-or, especially on a PDP-11. Note that in both

of these cases, thevam-punched symbol may also be used if one is masochistic, or concerned with
portability to the Princeton compilefThe correct wer-punch for "change" is "c<backspace>/" and the
correct wer-punch for Vis "V<backspace>-". These codes will be properly printed if youe lrapoper
printer, and the corresponding EBCDIC code will be produced by the /IBM option on the LIST command.

-38 -

12. ThePrinceton Compiler

The Princeton compilemritten in SPITBOL (a variant of SNOBOL), performs the compilation io tw
stages. First the INTERCAL source is eemed into SPITBOL source, then the latter is compiled and
executed.

It should be noted that the Princeton compilgitsfto properly interpret certain multiply-subscripted
expressions, such as:

", 1SUB",2SUB#1"#2"

This is not a "bg". Being documented, it is merely a "restriction". Such cases may be resolved by
alternating sparks and ears in variougle of expression nesting:

", 1SUB’,2SUB#1'#2"
which is advisable in gncase, since INTERCAL expressions are unreadable enough as is.

Since there is currently no catalogued procedure foking the compilerthe user must include the in-line
procedure shown on the folling page in his job before the compilation step. Copies of this in-line
procedure may be obtained ay&eypunch if the properdys ae struck.

The compiler is thenxecuted in the usual manner:

/l EXEC INTERCAL[,PARM="parameters’]
//ICOMPILE.SYSIN DD *

{INTERCAL source deck}

/-k

I/EXECUTE.SYSWRITE DD *

{input data}

/-k

The various parameters are described fahg the in-line procedure. At most one parameter from each set
may apply to a gen compilation; if more than one are specified, the results are undefined, andamay v
depending upon the particular set of options. The default parameters are underlined.

I/INTERCAL PROC

//COMPILE EXEC PGM=INTERCAL

//STEPLIB DD DSN=U.INTERCAL.LIBRAR,DISP=SHR

1 DD DSN=SYS1.FORTLIB,DISP=SHR

//ISYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=992,LRECL=137,RECFM=VBA)
//ISYSPUNCH DD DUMMY

//ISCRATCH DD DSN=&COMPSET,UNIT=SYSDA,SCE=(CYL,(3,1)),DISP=(,PASS)
IIEXECUTE EXEC PGM=EXECUTE,COND=(4,LT)*

//ISOURCES DD DSN=U.INTERCAL.SOURCES,DISP=SHR

//STEPLIB DD DSN=U.INTERCAL.LIBRAR,DISP=SHR

1 DD DSN=SYS5.SPITLIB,DISP=SHR

1 DD DSN=SYS1.FORTLIB,DISP=SHR

//ISYSIN DD DSN=&COMPSET,DISP=(OLD,DELETE)

//ISYSOBJ DD SYSOUT=B,DCB=(BLKSIZE=80,LRECL=80,RECFM=F)
//ISYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=992,LRECL=137,RECFM=VBA)
//ISYSPUNCH DD DUMMY

/ PEND

Figure 3. Inline procedure for using INTERCAL.
OPT

-39 -

NOOPT
In the default mode, the compiler will print a list of all options in effect, including the defaults for
unspecified parameter groups and thieatize qotion for those sets where one was specified. If
NOOPT is requested, it causes the default mode to be assumed.

OPTSUB

NOOPTSUB

NOSUB
Unless 'NOOPTSUB’ is requested, the System Library is optimized, resulting in much more rapid
NOSUB processing of function calls. Specifying NOOPTSUB causes the non-optimized INTERCAL
code shown in section 6.3 to be used, whereas NOSUB requests that the System Library be omitted
altogether.

IAMBIC

PROSE
The IAMBIC parameter permits the programmer to use poetic license and thus write in verse. If the
reader does not belie it possible to write verse in INTERCAL, he should send the authors a
stamped, self-addressedvelope, along with ayp INTERCAL program, and tlyewill provide one
which is verse.

FORMAT

NOFORMAT
In FORMAT mode, each statement printed is put on a separate line (or lines). In NOFORO&,
the free-format source is printed exactly as inpatthis latter case, statement numbers argigeal
only for the first statement on a card, andyth@y be only approximate. Also, unrecognizable
statements are not flagged.

SEQ

NOSEQ
If the source deck has sequence numbers in columns 73 through 80, specifying 'SEQ’ will cause
them to be ignored.

SOURCE
NOSOURCE
If NOSOURCE is selected, all source listing is suppressed.

LIST

NOLIST
If LIST is specified, the compiler will pvide a list of statement numbers catalogued according to
type of statement. The compiler uses this table to perform abstentions by gerund.

WIDTH=nn
This sets the width (in number of characters) of the output line for FORM@de output. The
default is132.

3. Pending acquisition of SPITBOL release 3.0, the SOURCES DD card must be replaced bycnésiv

/INOOPTPFX DD DSN=U.INTERCAL.SOURCES(NOOPTPFX),DISP=SHR
/INOOPTSUB DD DSN=U.INTERCAL.SOURCES(NOOPTSUB),DISP=SHR
/IOPTPFX DD DSN=U.INTERCAL.SOURCES(OPTPFX),DISP=SHR
//IOPTSUB DD DSN=U.INTERCAL.SOURCES(OPTSUB),DISP=SHR
//IPRELIM DD DSN=U.INTERCAL.SOURCES(PRELIM),DISP=SHR

-40 -

CODE

NOCODE
Include 'CODE’ in the parameter list to obtain a listing of the SPITBOL code produced for each
INTERCAL statement.

LINES=nn
This determines the number of lines per page, during both compilationxendien. The default is
60.

DECK

NODECK
Selecting 'DECK’ will cause the compiler to punch out a SPITBOL object deck which may then be
run without reiroking the INTERCAL (or SPITBOL) compiler.

KIDDING

NOKIDDING
Select NOKIDDING to eliminate the snide remarks which ordinarily accopnfdRERCAL error
messages.

GO

NOGO
Specifying 'NOGO’ will cause the program to be compiledut bnot eecuted.
EXECUTE/NOEXECUTE may be substituted for GO/NOGO, but this will result in an, endGO
will be assumed.

BUG

NOBUG
Under the default, there is a fixed probability o&taf compiler bug beingavked at random into the
program being compiled. Encountering this bug durixeg@tion results in error message 774 (see
section 7.2). This probability is reduced to zero under 'NOBUG'. This does not affect the probability
(presumably negligible) of error message 778.

12.1 OthediNTERCAL Compilers
There are no other INTERCAL compilefs.

4. This assertion in the INTERCAL-72 manuahsvblatantly contradicted by some notes on an Atari implementation included at
the end of the manual. So, you expect compiler manuals to be consistent?

-41 -

TONSIL A

The Official INTERCAL Character Set

Tabulated on page 42 are all the characters used in INTERCAL, excepting letters and digits, along with
their names and interpretations. Also included averakcharacters not used in INTERCAL, which are
presented for completeness and tovafior future expansion.

4. Since all other reference manualsé@ppendices, it was decided that the INTERCAL manual should contain some other type
of remavable ogan.

4. ® This footnote intentionally unreferenced.

=42 -

Character Name Use (if any)

AT = S

spot identify 16-bit variable
two-spot identify32-bit variable
tail identify 16-bit array
hybrid identify 32-bit array
mesh identifyconstant
half-mesh
spark grouper
backspark
wow egquivalent to spark-spot

? what unary exlusive OR (ASCII)

rabbit-ears grouper

! rabbit equwalent to ears-spot

Pike

% double-oh-seen percentage qualifier

worm usedvith angles

< angle usedvith worms
> right angle
(wax precedebne label
) wane follaws line label
[Uturn
] U turn back
{ embrace
} bracelet
* gplat flagsinvalid statements
& ampersand unary logical AND
V V (or book) unary logical OR
V bookworm (or uniersal qualifier) unary excluge OR
$ bigmoney binary mingle (ASCII)
¢ change binaryningle
~ ggiggle binary select
_ flat worm
~ oveline indicates'times 1000"
+ intersection separatést items
[dlat
\ backslat
@ whirlpool
- hookworm
" shark (or simply sharkfin)
blotch
Table 2 (top view). INTERCAL character set.
7. Got ay better ideas?

