
CS415 Anderson – Spring 2005 Page 1 of 9

CS 415 Midterm Exam – Spring 2005 -
SOLUTION

Name ___

Email Address _________________ Student ID # ___________________

Pledge:

This exam is closed note, closed book. Questions will be graded on quality of answer.
Please supply the best answer you can to each question. Good Luck!

 Score
Fortran & Algol 60
Compilation
Names, Bindings, Scope
Functional Programming
Total /94

CS415 Anderson – Spring 2005 Page 2 of 9

Fortran and Algol 60 (28 points)

1. [2 points] Early Fortran had recursion. TRUE or FALSE (circle one)

2. [4 points] What effect did your answer to question #1 have on the implementation of
Fortran?

No recursion meant that there would only be one instance of a subroutine/function
active at a time. So local variables could be stored in a fixed location – did not need
to use the stack to allocate local variables.

3. [4 points]

a) Describe the scoping rules in Fortran.

global scope and for variables local to a subroutine, local scope.

b) Fortran had: static scoping or dynamic scoping (circle one)

4. [8 points]
a) Describe how call by name worked.

foo(int x) {
 print x
 i = i +1
 print x
}

int i = 0;
call foo (A[i])

Every time the formal parameter x is accessed inside of foo, the actual
parameter, in this case A[i], is re-evaluated. In this example first A[0] will be
printed, then A[1]. One way of thinking of this is as if the body of the subroutine
foo was pasted into the call site with all the occurrences of x replaced by A[i].

b) Give the name of AND describe the technique used to implement call by name.

Call by name was not implemented with the cut and paste method described
above, instead a thunk – an anonymous procedure, was used. When the
parameter was needed inside of a procedure, the thunk was called to get the
correct address.

CS415 Anderson – Spring 2005 Page 3 of 9

5. [4 points]
a) Describe the scoping rules in Algol 60.

Algol 60 allowed nested scopes. You could nest procedures or blocks. You
resolved a reference by looking for the closest nested scope. Nested scopes in
Algol 60 were also an example of an open scope, variables did not have to be
explicitly imported in from other scopes.

b) Algol had: static scoping or dynamic scoping (circle one)

6. [6 points] In Algol 60, when did binding of names to memory locations occur?

on entrance to a procedure/block

What effect does this have on memory management?

Arrays were allowed to have varying size, and thus their storage needs could not
be known at compile time. Arrays (and other local variables) were allocated on
entrance to a procedure. A stack was used to allocate local variables, which
allowed efficient re-use of memory. (As opposed to the error-prone methods of
re-use in Fortran – equivalence, and re-use of memory in common blocks for
multiple purposes.)

CS415 Anderson – Spring 2005 Page 4 of 9

Compilation [24 points]
1. [6 points] Describe what happens during the scanning phase of a compiler. (what is

the input, what is the output, what happens inside).

The scanning phase (lexical analysis) is the first phase of compilation. A stream
of characters is provided as input, and a stream of tokens is produced as output,
often a token at a time as the parser requests a token. The scanner attempts to
recognize the characters passed in according to the regular expressions used to
specify the tokens in the language. Other tasks performed during scanning
include the removal of whitespace or comments and the recognition of keywords.

2. [2 points] What is the principle of longest match? Give an example?

When scanning, recognize the longest sequence of characters that can be
recognized as a token. For example, when seeing != in the code, the scanner
should recognize this as a NOTEQUAL token as opposed to a NOT token
followed by an EQUAL token.

3. [6 points] Why are compilers often separated into a front end and a back end?

The front end is generally thought of as machine-independent. The back end is
thought of as containing features that apply to a particular hardware platform.
Thus by separating a compiler into a front end and a back end, you can retarget
your compiler to a new platform by merely re-writing the back end. Similarly
you could write a front end for a new language and have it use an already
existing back end for a particular platform.

In general what is the purpose of the front end?

Take a stream of tokens and convert it to an intermediate format (IR). The
front end does analysis, attempting to understand the structure and meaning of
the program. Generally scanning, parsing, and semantic analysis/IR
generation/machine independent optimization are considered part of the front
end.

In general what is the purpose of the back end?

Take a program in intermediate format and convert it into the target language
(often this is the assembly language of a particular machine). Machine specific
optimization and code generation are considered part of the back end.

4. [2 points] A pushdown automata is to a _context free grammar_ as a finite automata
is to a regular expression.

CS415 Anderson – Spring 2005 Page 5 of 9

5. [4 points] Write a regular expression for an identifier in the cs415 language.
Identifiers must start with cs415, followed by one or more upper or lowercase letters.
The c and the s in cs415 can be either upper or lowercase. Examples of valid
identifiers include: “CS415rocks” and “cS415isEARLY”.

[Cc][Ss]415[A-Za-z]+

6. [4 points] Draw a finite automaton for the regular expression you gave in the previous
question above. Be sure to properly denote the accepting states.

CS415 Anderson – Spring 2005 Page 6 of 9

Names, Scopes, and Bindings (18 points)
1. [6 points] What does the function test print if the language uses static scoping?

What does it print with dynamic scoping? (otherwise assume C++ syntax and
semantics, e.g. call by value).

int n = 1; // global

print_plus_n(int x) {
 cout << x + n;
}
increment_n() {
 n = n + 2;
 print_plus_n(n);
}

test() {
 int n;

n = 200;
 print_plus_n(7);

 n = 50;
 increment_n();
 cout << n;

}

With Static Scoping:

 8 6 50

With Dynamic Scoping:

 207 104 52

CS415 Anderson – Spring 2005 Page 7 of 9

2. [2 poinst] Define: referencing environment

The set of bindings in effect at a given point in a program.

3. [2 points] Define: scope

The textual region of the program where a binding is active.

4. [4 points] What is the static link? What is it used for?

The static link is a pointer to the stack frame of the lexically enclosing scope. It
is used for static scoping to allow the compiler to generate code that can find a
variable declared in a lexically enclosing scope.

5. [4 points] In some languages, the user manages the heap. Why is this potentially
dangerous?

For example in C++ the user manages the heap by explicitly requesting memory
from the heap via new and releasing it by delete. Two common problems that
occur are:

dangling pointers: the user releases memory back to the heap “too early” or
rather while there are still references to that memory in their program that may
be accessed in the future.

memory leaks: when the user neglects to return memory to the heap when it is
no longer needed, may cause you to eventually run out of memory on the heap.

CS415 Anderson – Spring 2005 Page 8 of 9

Functional programming (24 points)
1. [4 points]

a) What is a first class citizen in a programming language?

Something that can be passed to or returned from a function and also have a
value assigned into it.

b) Give an example of a first class citizen in scheme.

int, and real are first class citizens in Scheme and many other programming
languages. Functions are also first class citizens in Scheme.

2. [4 points] What is programming in a “purely functional style”?

Programming without side effect, using only the composition of functions to
accomplish things.

3. [2 points] What is the result of the following in Scheme:

 (map (lambda (x) (+ x 50)) ‘(1 2 3 4))

(51 52 53 54)

4. [4 points] Assuming that the following definitions are executed in this order:

(define x ‘(3 28 400))
(define y (cons (cdr x) ‘(6 15 77)))

What is the result of typing the following into the Scheme interpreter:

y => ??? ((28 400) 6 15 77)

(cons ‘x (cdr (cdr x))) => ??? (x 400)

CS415 Anderson – Spring 2005 Page 9 of 9

5. [10 points] Write a recursive Scheme function, merge_sorted that takes two
sorted lists as parameters and returns a single list that contains all of the elements of
both lists in sorted order. You can assume that the two lists: both contain only integer
values > 0, and are sorted from smallest to largest. The two lists may not be of the
same length.

Example:
 (merge_sorted ‘(4 8 26) ‘(6 200)) => (4 6 8 26 200)

(define (merge_sorted x y)
 (cond ((null? x) y)
 ((null? y) x)
 ((< (car x) (car y))
 (cons (car x) (merge_sorted (cdr x) y)))
 (else (cons (car y) (merge_sorted (cdr y) x)))))

