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ABSTRACT

Commercial buildings contribute to 19% of the primary energy
consumption in the US, with HVAC systems accounting for 39.6%
of this usage. To reduce HVAC energy use, prior studies have pro-
posed using wireless occupancy sensors or even cameras for oc-
cupancy based actuation showing energy savings of up to 42%.
However, most of these solutions require these sensors and the as-
sociated network to be designed, deployed, tested and maintained
within existing buildings which is significantly costly.

We present Sentinel, a system that leverages existing WiFi in-
frastructure in commercial buildings along with smartphones with
WiFi connectivity carried by building occupants to provide fine-
grained occupancy based HVAC actuation. We have implemented
Sentinel on top of RESTful web services, and demonstrate that it
is scalable and compatible with legacy building management. We
show that Sentinel accurately determines the occupancy in office
spaces 86% of the time, with 6.2% false negative errors. We high-
light the reasons for the inaccuracies, mostly attributed to aggres-
sive power management by smartphones. Finally, we actuate 23%
of the HVAC zones within a commercial building using Sentinel for
one day and measure HVAC electrical energy savings of 17.8%.

Categories and Subject Descriptors

[Computer systems organization]: Special purpose systems, sen-
sors and actuators, real-time system architecture

General Terms

Sensing, Measurement, Control
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1. INTRODUCTION

Commercial buildings contribute to 19% of the primary energy
consumption within US, with Heating, Ventilation and Air Condi-
tioning systems (HVAC) accounting for 39.6% of this usage [48].
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As a result, improving the energy-efficiency of building HVAC
systems is key from both a cost saving and sustainability stand-
point. Prior research has shown that most modern buildings use
static schedules to run HVAC systems, thereby wasting consider-
able energy in conditioning unoccupied spaces [8, 25, 28, 29]. Fur-
thermore, while modern building HVAC systems use Variable Air
Volume(VAV) control, which allows independent control of ther-
mal zones [34], it is not leveraged effectively by facility managers
in practice due to the absence of accurate occupancy information
within physical spaces.

Using occupancy information for HVAC control has in fact been
studied extensively [8, 27, 28, 29, 30, 31]. While CO2 sensors are
used to detect occupant density in large spaces [2, 5], the detection
times for changes in concentration of CO2 with occupancy were
found to be too slow for use within commercial buildings [31].
Motion sensors used for lighting control in modern buildings are
inadequate for HVAC control as they fail to detect relatively sta-
tionary occupants [9]. Recent works from Erickson et al. [28, 29]
and Agarwal et al. [8] have therefore focused on deploying more
accurate occupancy sensors within commercial environments, as
well as actuating the HVAC system based on the near real-time oc-
cupancy information collected. They estimate that the energy use
of HVAC systems can be reduced by 30% to 42% effectively in
enterprise-scale buildings.

While these occupancy based HVAC actuation systems are in-
deed effective in terms of reducing HVAC energy usage, they re-
quire deployment of additional occupancy sensors and the design,
setup and maintenance of the associated data collection network.
To examine the upfront installation cost, Erickson et al. [28] report
an expense of $147k for just the hardware for a three floor building,
and even simple wireless motion sensors would cost over $120k for
our five floor building testbed. Most importantly, the deployment
and maintenance hurdles are particularly daunting in case of ex-
isting buildings with occupants already inhabiting them. Although
wireless sensors help reduce the deployment costs to some extent,
recent research has shown that it can be very difficult to deploy and
maintain a large-scale wireless sensor network in reality [26, 1].

There is a tradeoff between accuracy of detection, cost of deploy-
ment and energy savings. This paper presents one such design point
whose effectiveness we have quantified. Specifically, we present
the design and implementation of Sentinel, a system that utilizes a
building’s existing WiFi network along with WiFi enabled smart-
phones carried by occupants of that building to infer occupancy
and use that information to actuate the HVAC system. We show
that even coarse grained information readily available from enter-
prise WiFi systems such as the Authentication, Authorization and
Accounting (AAA) logs of WiFi clients is sufficient in most cases
to determine occupancy of office spaces. In contrast to recent in-



frastructure based occupancy solutions [32, 39], Sentinel augments
the information collected from the AAA WiFi logs with metadata
information such as occupant identity, WiFi MAC address and AP
location within the building to improve the accuracy of occupancy
detection further.

We have implemented Sentinel on top of BuildingDepot [11],
a RESTful webservice that interfaces with legacy building man-
agement systems, and show that it is scalable and can actuate the
HVAC system in our building effectively. We have deployed Sen-
tinel in the Computer Science and Engineering(CSE) building, a
145,000 sqft enterprise-scale building at UC San Diego(UCSD).
We show that Sentinel can effectively determine occupancy in of-
fice spaces, covering ~40% of floor space in the CSE building.
We demonstrate the feasibility of using WiFi as a sensing solution
by observing the usage pattern of smartphones in CSE and study-
ing the WiFi implementation in modern smartphone operating sys-
tems. We find that the requirement for continuous WiFi connectiv-
ity contradicts the aggressive WiFi sleep algorithms implemented
in smartphones, and provide provisional solutions to maintain WiFi
connectivity without significant affect on battery life. Based on
ground truth occupancy collected for over 10 days we show that
Sentinel accurately infers occupancy 86% of the time, with only
6.2% false negative occupancy detections in personal spaces (Ac-
tual=Occupied, Inferred=Unoccupied). We highlight the reasons
for the inaccuracy, mostly attributed to aggressive power manage-
ment by smartphones. Finally, we control 23% of the HVAC zones
of our test building using Sentinel in a single day experiment, and
measure savings of 17.8% in the HVAC electrical energy consump-
tion.

2. BACKGROUND

Sentinel utilizes several key infrastructures prevalent in mod-
ern buildings for occupancy based HVAC control. Our building
testbed, the CSE building at UCSD, was built in 2004 and consists
of 466 rooms with 145,000 sqft of floor space. The HVAC sys-
tem in CSE uses a Variable Air Volume(VAV) system to partition
our building into independently controllable thermal zones, and a
Building Management System(BMS) provides centralized control
over the HVAC system. UCSD also employs a modern enterprise-
class WiFi system to support the 48,000 strong community. We
describe the relevant details of each of these subsystems to explain
the framework leveraged by Sentinel. It is important to note that
while we do describe these subsystems within the context of the
CSE building, they are nevertheless common across modern build-
ings. For example, VAV based HVAC systems are commonplace
as are BMS’s, although there can be vendor and instance specific
differences. Similarly, managed WiFi infrastructures are common
within buildings as is some form of AAA system, although partic-
ular implementations may differ.

2.1 HVAC Systems

The HVAC system within our building uses a combination of hot
and cold water pipes in conjunction with air-handler units(AHU) to
maintain the appropriate thermal environment within the building.
Given the size of our university, we employ a central utility plant for
producing the hot (~ 325 °F) and cold (~ 45 °F) water distributed
campus wide using separate loops as shown in Figure 1. The AHU
in our building consists of variable speed drives which supply cold
air (converted from the supplied cold water) using ducts to VAV
boxes distributed throughout the building. The hot water loop is
also connected to these VAV boxes using separate pipes. Each VAV
box controls the amount of cold air to be let into an HVAC zone
using dampers. A reheat coil, which uses supplied hot water, is
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Figure 1: Overview of the HVAC System in commercial build-
ing on our campus. Hot water and cold air is pumped to differ-
ent VAV boxes by AHU. VAV boxes provide independent control
in each HVAC zone.

used to heat the cooled air to meet the appropriate HVAC settings
for each zone.

Our building is divided into 237 thermal zones, each with its
own VAV box to supply conditioned air to that zone. Each zone
comprises of two or three small offices and in some cases multiple
zones cover bigger rooms such as lecture halls and student labs.
The supply air flow and temperature setpoint for each zone is pre-
determined by the building manager according to the size and max-
imum occupancy of the zone. Each zone has a thermostat, which
allows limited control by allowing the occupant to change the zone
temperature setpoint by up to +1 °F.

2.2 Building Management System

A central BMS, managed by Johnson Controls, has supervisory
control over the HVAC system and the various HVAC components
are connected to the BMS via BACnet - a standard protocol for
Building Automation and Control networks [19]. Each VAV box
has sensors for measurement (zone temperature, air flow, damper
position), virtual sensors for monitoring (occupancy status, heat-
ing and cooling temperature set points) and control (change set
point, change minimum air flow, change occupancy status). Figure
2 gives an overview of BACnet connecting different HVAC subsys-
tems. Sentinel gets access to the BMS by connecting to the net-
work as a BACnet Foreign Device interface. Our facility manager
has provided read access to all the sensors in CSE building via this
interface.

The primary mode of control of each zone is done using the “Oc-
cupancy Command” BACnet point which supports three modes -
Unoccupied, Standby and Occupied. In the Occupied mode, the
temperature of the zone is maintained within a 4 °F range with
adequate airflow, in the Standby mode, the temperature range is in-
creased to 8 °F with minimal airflow, and in the Unoccupied mode,
the range is further increased to 12 °F. During weekdays, all the
zones are set as follows: Occupied from 6am - 6.30pm, Standby
from 6.30pm - 10pm, and Unoccupied for the rest of the night. On
weekends, zones are Unoccupied by default, with the occupant re-
quired to press a button on their thermostat to mark the zone as
Occupied for the next two hours.

For occupancy based control, we set the zone to Occupied mode
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Figure 2: Overview of control system of HVAC using BACnet.
Sentinel connects to the BACnet as a Foreign Device and sends
commands using BACnet Read Property and Write Property
for control of HVAC system.

when we detect a zone to be occupied, and set it to Standby mode
otherwise. We chose a shallow setback temperature for our control
to reduce any discomfort to the occupants due to misdetection by
Sentinel. Prior research has shown that increased energy savings
can be achieved by deeper setback temperature and modulation of
ventilation rate based on the number of people in a zone [29, 33,
45]. Thus, the energy savings we demonstrate is a conservative es-
timate of the savings that could be obtained using advanced control
methods. In the rest of the paper, we refer to an HVAC zone being
turned On and Off, which is equivalent to the HVAC zone being set
to Occupied and Standby modes respectively.

We have instrumented our building to measure both the electri-
cal and thermal energy consumption of the HVAC system [12], and
and our data shows that the HVAC system in our building consumes
25% - 40% of the total building electricity consumption. We utilize
this underlying instrumentation to quantify the effect of our occu-
pancy based actuation.

2.3  WiFi Infrastructure

The enterprise WiFi network in UCSD consists of three SSIDs,
one open network - UCSD-GUEST, and two secured networks -
eduroamand UCSD-PROTECTED. The two secured networks are
mostly identical, and henceforth, we refer to them as the protected
network. The protected network employs WPA2-E/802.1x for en-
cryption, and authorized users login using their Active Directory
username and password. It is common in our building, as we will
show in Section 5.1, for occupants to connect to the protected net-
work for regular usage. UCSD-GUEST, on the other hand, is gen-
erally used by visitors of the campus and is insecure with limited
access. We describe the specific details of the WiFi logs collected
and used by Sentinel in Section 3.2.

3. SENTINEL: SYSTEM DESIGN

Our initial goal was to determine the occupancy of each zone in
our building using existing infrastructure without requiring addi-
tional sensors or installing any software on our occupants phones.
Although we do not achieve this goal completely, we show that it is
indeed possible to infer occupancy information for approximately
half the zones in our building using WiFi network logs with mini-
mal functionality on client devices.
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Figure 3: Example of occupancy inference using WiFi connec-
tivity. The occupant is assumed to be in her personal space
whenever she is within the associated AP’s zone of detection, as
denoted by ‘“Assumed Location”.

3.1 Occupancy Inference Algorithm

The idea of localization using wireless radios is well known [16].
Turner et al. [47] studied the performance of established self cali-
brating WiFi localization algorithms within the CSE building and
found that the median and the 95th-percentile error distance of the
algorithms to be worse than simple nearest access point location
algorithm. The errors were attributed to signal reflection and RSSI
variations with time. The accuracy of indoor localization could
be improved with fingerprinting algorithms at the cost of signif-
icant manual effort [50] or with use of compute intensive algo-
rithms [21]. For our application, we need to localize up to a thou-
sand people in our building for real-time actuation of HVAC zones.
Furthermore, we want to develop an occupancy detection solution
that relies on minimal information from the network infrastructure.
Therefore, for simplicity and scalability, we concentrate on easily
obtainable coarse-grained location of client devices, without em-
ploying complex localization techniques that may be more accu-
rate. Thus, when a client sends a packet to an access point(AP), we
assume that the client is located in a zone within the range of the
AP. We show, with the occupancy model described below, that it
is possible to make inferences about the occupancy of users in the
building even with such coarse-grained information.

3.1.1 Personal and Shared Spaces

We classify physical spaces into two categories: personal spaces
and shared spaces. We define a personal space as an area with a
designated owner such as individual offices assigned to faculty, or
desks assigned to students in a lab. There is no restriction on the
size or type of a personal space, so it includes single person of-
fices, cubicle spaces and rooms shared by multiple people. Shared
spaces on the other hand includes the rest of the building, which es-
sentially have no designated occupant or owner such as restrooms,
conference rooms, cafeteria, etc.

Consider an occupant with a WiFi enabled device located within
the building as depicted in Figure 3. As the device is associated
with one of the access points(APs) in the building, it can be lo-
cated anywhere in the range of the AP. The occupant could be in
her office, or visiting a colleague’s office, or in a shared space. We
assume that the occupant does not visit a colleague’s office unless
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Figure 4: Example of an AP with its associated personal spaces.
The network coverage of APs are marked conservatively to re-
duce false negative errors.

the colleague herself is present in the office. Thus, a personal space
cannot be occupied unless the owner is present in the space. If
we can detect the presence of owners in their respective personal
spaces, then we can effectively monitor the occupancy of all per-
sonal spaces in the building.

Shared spaces, on the other hand, can be visited by anyone in
the building without restriction. Thus, for inferring occupancy of
shared spaces correctly, we would need to detect the entry and exit
of each person in the shared space accurately. Since we do not
employ fine-grained localization information, we do not aim to de-
tect occupancy in shared spaces and assume that they are always
occupied.

Note that one person can be allocated to more than one per-
sonal space, and any number of personal spaces can exist within
an HVAC zone. Thus, the personal and shared space division can
be applied to a wide variety of buildings and occupancy patterns.

3.1.2 Zone of Detection

We refer to the physical area covered by a WiFi Access Point
(AP) as its zone of detection. An AP is affiliated with a personal
space, if the personal space falls within an AP’s zone of detection.
There can be multiple APs affiliated to a personal space. If the
owner of the personal space is connected to an affiliated AP, then
she is considered to be present in the personal space.

Smaller zones of detection will naturally lead to more precise oc-
cupancy inferences, while larger zones of detection causes loss in
accuracy. In our building, we found that the zone of detection of an
AP typically covers up to 10 HVAC zones. This lack of precision
means that we sacrifice potential energy savings when an occupant
is just outside their personal space but inside the zone of detec-
tion. Note that even WiFi localization methods will not help as the
95th-percentile error distance from AP was found to be worse than
the nearest AP algorithm [47]. Figure 3 gives an example of occu-
pancy inference of an occupant who is within the zone of detection
of an AP. In this case, the occupant is assumed to be in her office
irrespective of their actual location within that zone. This assump-
tion resolves the discrepancy between the area covered by zone of
detection of APs and HVAC zones.

We conservatively mark the boundaries of zone of detection of
each AP as well beyond the points at which a typical client handoff
takes place. We also assume there is no cross floor interference be-
tween the AP coverage as it was never observed in practice. For our
building, each personal space was associated with at the most four
APs. Figure 4 shows an example of the personal spaces associated
with one of the APs in the building.

3.1.3 Identity

When the WiFi logs indicate that a client device is connected to a
particular AP, we infer that the client is within the AP’s zone of de-
tection. In order to make a relation with the personal spaces within
the zone of detection of the AP, the client needs to be mapped to
the owner of her personal space. Therefore, an accurate mapping
of owners to personal space, i.e. occupant to office number, has to
be maintained by our system. Further, information of all wireless
capable devices used by a building occupant also has to be main-
tained. As we are using the AAA logs from the WiFi network for
inferring occupancy, the wireless device to actual building occupant
mapping is available to us.

3.2 Capturing WiFi Data

We use AAA logs from the WiFi network to collect relevant in-
formation from the occupant devices. AAA logs only collect the
connection, disconnection and periodic live packets from the client
devices, which provides us with enough information for occupancy
inference. An alternative is to collect data at the AP level and pro-
cess each packet sent by the device. However, the additional infor-
mation does not help to improve the accuracy of detection as we
show in Section 3.4, but increases the burden of data processing by
several orders of magnitude and also intrudes on the privacy of the
occupants.

We use the requests received by the RADIUS server as part of
the WPA2/802.1x protocol for acquiring information on the WiFi
devices in CSE. A WiFi device sends an authentication request to
the AP when it first tries to make a connection. The AP forwards
the request to the RADIUS server, which has information on the
client MAC address, the AP MAC address, the SSID to which con-
nection was requested for, as well as the client username and pass-
word. After successful authentication, the AP sends an accounting
packet indicating the “Start” of the connection to the server.

Similar authentication and accounting packets are sent to the
RADIUS server when a client migrates from one AP to another
in the same network, and when the client disconnects from the net-
work. In addition, the AP sends “Alive” accounting packets to in-
dicate the client is still connected to the network. If the AP does
not hear from the client for a fixed period of time (1000 seconds in
our network), it terminates the connection with the client and sends
a “Stop” accounting packet to the RADIUS server.

When the RADIUS packets indicate that the client has connected
to one of the APs near the personal space of the occupant, then
Sentinel marks that personal space as occupied. When the client
migrates to APs in other areas of the building, or gets disconnected
from the network, Sentinel marks that personal space as unoccu-
pied.

3.3 Phone Detection Algorithm

There are many WiFi enabled devices popular today - laptops,
smartphones, tablets, and it is possible that a building occupant
owns more than one WiFi device. When the occupant is moving
in and out of her personal space, she may not carry all her WiFi de-
vices. For accurate inference of occupancy, it is important that the
system knows the MAC address of the device which is represen-
tative of the current location of the occupant. For most occupants
in our building, this WiFi device was their smartphone, and hence-
forth, we refer to the phone as the location representative device.

The RADIUS server gets a packet when a client migrates from
one AP to another. When an occupant is moving inside the build-
ing, the phone gets handed-off between many APs. Over a period
of time, the phone would send more number of requests of authen-
tication to the RADIUS server than other devices. Thus, we mark



the device with the highest number of requests to be the occupant’s
phone.

The algorithm fails when an occupant buys a new phone. As the
new phone starts off with zero requests, it would be ignored even if
it best represents the location of the user. Such an event cannot be
ignored at the scale of a thousand occupants, as there could always
be a few occupants who have a new device.If we do not see any
access request from the device with highest number of requests for
48 hours, we reset the number of requests of all device owned by
the occupant. The 48 hour resets also increased the robustness of
the system to the changing usage patterns of the occupant.

We verified the accuracy of the algorithm by identifying the MAC
addresses used by Sentinel for changing the occupancy status of a
personal space. 44 occupants were chosen at random for manual
verification, and for 40 of them, the phones were identified cor-
rectly. The algorithm worked well for all types of devices despite
the aggressive WiFi sleep policies employed (Section 3.4).

We found that Mac OS X devices connected and disconnected
from the WiFi network despite being put to sleep mode. Thus,
when a Mac OS X computer is left in sleep mode over a weekend,
the number of access requests of the computer exceeds those of the
occupant’s phone, and our system detects the room as occupied.
We observed this on four occasions during our experiments, and it
can be avoided by incorporating the unique number of access points
connected to by a device into the algorithm.

3.4 Perpetual WiFi Connectivity

Sentinel assumes that the phone is continuously connected to the
protected network when the occupant is in the building. However,
this may not happen in practice because of various reasons - the
occupant may not own a smartphone, the occupant may have for-
gotten her phone at home, the phone may run out of battery, WiFi
network coverage may be poor within the office, or there may be
a network outage. These problems are associated with any system
which seeks to use WiFi clients as a sensor, and we do not handle
them as part of this work. If the entire building is affected, Sen-
tinel falls back to the default schedule. If an individual occupant is
affected, alternate means of informing the occupancy of an HVAC
zone can be provided. In Sentinel, the occupants indicate their pres-
ence by pressing a button on the thermostat. We also provide a web
interface for indicating user occupancy and preference, similar to
the personalized building control system developed by Krioukov et
al. [36].

With smart devices permeating every part of our lives, we hope
that WiFi connectivity will become part of the essential infrastruc-
ture provided in commercial buildings, and the connectivity issues
would become a rare event in a few years. Further, as offices typ-
ically have abundant power supply, we assume that the occupant
would connect the phone to a charger once it indicates low battery.
However, battery powered smartphones employ a number of power
saving strategies, and the specifics of WiFi sleep algorithm depend
on the type of operating system and the model of the device.

We consider three popular variants of smartphones - Android,
i0S and Windows Phone. Both Android and Windows Phone pro-
vide options for WiFi power management when the device is in
sleep mode, and the user can opt to keep the WiFi radio awake even
when the device is not in active use. i0S, on the other hand, em-
ploys aggressive sleep algorithm as soon as the screen is locked. On
studying the network traces of a WiFi-only iPad2 using iOS v6.1.2,
we observed that when the device screen is locked, it only keeps
the TCP port to Apple Push Notification Service open, and does
not respond to other network packets. When the device does not
get a push notification for a period of time, the WiFi radio is turned
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Figure 5: Partitioning of one wing of a floor based on shared
and personal spaces. Personal spaces which have a common
zone with shared spaces are marked as shared.

off and woken up at 30 minute intervals. In order to avoid errors
in occupancy detection, we request the occupants of the building to
change their settings to fetch mail every 15 minutes, thereby ensur-
ing that we get some information coming from them over WiFi.

3.5 Partitioning the Building

As we explained in Section 3.1.1, we need to divide the building
into personal and shared spaces. As Sentinel can only infer occu-
pancy of personal spaces, the energy savings obtained are lower
than when actuating entire building HVAC based on occupancy.

In our building, personal space consists of single room offices
and multi-person shared offices. The shared space consists of com-
puter labs, cafeteria, conference rooms, etc. In addition, there are
storage rooms that are rarely visited, and we mark them as unoccu-
pied for actuation. The HVAC zones in the building, however, do
not follow the personal and shared space partitioning. For example,
there are several zones which condition a personal space as well as
the hallway connected to it. As Sentinel needs to run shared spaces
in static schedule, the personal spaces which share its HVAC zone
with a hallway or lobby are marked as shared spaces as well. Fig-
ure 5 shows an example of shared and personal zone mapping for a
section of our building.

Table 1 shows the area covered by each kind of space in our
building. Some of the shared spaces like staircases and small hall-
ways are not covered by HVAC zones. Hence, the HVAC power
consumption of personal and shared spaces is not proportional to
the area covered. To measure the contribution of each type of space
to the total HVAC power consumption, we operated the HVAC sys-
tem with all the zones turned on for one hour, then turned off all the
personal spaces for two hours, then switched the personal spaces
back on, and finally, turned off all the shared spaces for two hours.
We conducted this experiment overnight, as the outdoor tempera-
ture is stable at San Diego. On the night of the experiment - March
20, 2013, the outdoor temperature was at 61+1.7°F.

Table 1 shows the electrical and thermal energy savings obtained
turning off shared and personal spaces. The personal and shared
spaces contributed 63.9% and 66.9% to the electrical power con-
sumption respectively. Thus, the personal spaces contribute to roughly
half of the total HVAC electricity consumption. As the shared
spaces remain conditioned in our system, the electrical power sav-
ings we can obtain by occupancy based conditioning of personal
spaces is ~33% for our building. The heating and cooling thermal
power consumption do not follow similar trends, and we examine
them in detail in Section 5.6.



Area | Electrical | Cooling | Heating
Personal | 37.5% 63.9% 96.0% 108.0%
Shared | 58.3% 66.9% 96.4% 90.0%

Storage | 4.2% - - -

Table 1: Contribution of personal and shared building spaces
by area and by HVAC power consumption. Actuating only per-
sonal spaces can lead to at most ~33% electricity savings.
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Figure 6: System Architecture of Sentinel

4. IMPLEMENTATION

Sentinel’s system architecture follows the principles proposed
for management of sensors in commercial buildings in recent lit-
erature [13, 24, 25, 44]. Figure 6 provides an overview of Sen-
tinel. BuildingDepot(BD) [11] acts as a central authority for col-
lection of sensory data of the building and provides access control
to users and applications for analyzing sensor data and controlling
the building actuators. The BACnet Connector acts as a gateway
between the sensors which use the BACnet protocol and BD. The
Occupancy Inference Server receives a copy of the packets received
at the RADIUS server, and processes the packets to infer occupancy
for the various HVAC zones in the building. The HVAC Actua-
tion Server processes this occupancy information, and actuates the
HVAC system.

4.1 BuildingDepot

BuildingDepot(BD) is the central repository which collects and
stores data from different sensors across the building [11]. A con-
nector for each type of sensor protocol translates vendor specific
information to a uniform format, and a RESTful API provides ac-
cess to sensor data and metadata. The sensor data is stored in a
Cassandra timeseries database, and sensor metadata, access control
lists and user/application specific information is stored in a MySQL
database. Each sensor can be queried using contextual information
such as location, type and sensor ID.

Each application has to register with BD to gain access to the
system. Depending on the permissions provided by the administra-
tor, an application can create/delete sensors, read/write to specific
sensors or sensor groups and subscribe to sensor changes. For Sen-
tinel there are three different applications - the BACnet Connector,
the Occupancy Inference Server and the HVAC Actuation Server.
BD has been designed for enterprise level management of build-
ings, and can be implemented in a distributed manner. For the CSE
building, we have implemented BD in a virtual machine running on
top of the Xen VMM. The HTTP server is implemented using Ng-

inx as the web server, and uWSGI is used as the interface between
the web server and python application, which is implemented with
the Flask framework.

4.2 BACnet Connector

The BACnet Connector(BC) creates a virtual sensor in BD for
each BACnet datapoint in the building. The metadata for the sen-
sors are gathered from BACnet object properties, which include
sensor type, location, and BACnet specific ID. The connector polls
the sensors which are relevant for HVAC zone control, and posts
the value to the BD.

For actuation, the BACnet protocol provides a priority array to
resolve contention between applications which send actuation com-
mands to BACnet objects. Our BC is assigned a higher priority over
the default BMS schedule for actuation of HVAC zones, and any
commands sent by the BC will override the default schedule being
used by BMS. BACnet also provides a way to relinquish control,
so the system switches back to the default schedule when BC does
not control the HVAC system.

We have implemented our BC on a desktop machine, which is
registered to the BACnet network as a Foreign Device. The BC
server is added to the VLAN dedicated to BMS for controlled ac-
cess to the BACnet/IP network. The connector has been imple-
mented in C, on top of the open source BACnet Stack [3].

4.3 Occupancy Inference Server

The Occupancy Inference Server(OIS) receives a copy of each
RADIUS packet sent by the APs in CSE building. OIS processes
the incoming packets to infer personal space occupancy as described
in Section 3.1.

For inferring occupancy, the OIS maintains several metadata in-
formation - a mapping between occupant to their phone MAC ad-
dress, between the occupants and their office numbers, between
offices and the APs in the building, and finally, a mapping between
HVAC zones and offices. OIS creates a virtual sensor in BD for
indicating occupancy of each HVAC zone in the building, and key
information from each incoming packet is stored in a local MySQL
database for debugging and future analysis. The usernames are
anonymized in the database for preserving the privacy of the occu-
pants.

Several levels of checks need to be made before deciding that an
HVAC zone is occupied or not. The incoming packets are filtered
for the registered occupants of the building, and then checked if the
packets are coming from a “phone”(Section 3.3). If the phone is
connected to an AP near the office of the owner, the corresponding
personal space is marked as occupied, and otherwise, its marked
as unoccupied. If all the other personal spaces in the same HVAC
zone is unoccupied, the occupancy status of the zone is updated to
occupied and the information is sent to BD.

We have implemented the OIS on top of an open source RADIUS
client - pyrad [7].

4.4 HVAC Actuation Server

The HVAC Actuation Server(HAS) acts as a layer of abstraction
between the occupancy information supplied by OIS and the HVAC
control using BACnet. During normal operation, HAS converts
the occupancy changes from the OIS to the appropriate commands
for HVAC control. HAS was also used for experiments on HVAC
control which we describe in Section 5.6.

Currently, we control the HVAC system in a reactive manner, i.e.,
we control the ventilation of a zone when its occupancy changes.
Literature has shown that predictive control with deep setpoints can
lead to higher energy savings in HVAC systems [14, 29, 33, 40].
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Figure 7: Distribution of smartphones and their WiFi usage
patterns by the occupants in our building.

However, the setback temperature setpoints allowed in our building
are conservative, and the temperature of unoccupied zones is kept
within the range of 70°F to 78°F. Goyal et al. [33] find that the
energy savings obtained by both predictive and reactive systems
are similar when the setback temperature setpoints are set as per
the ASHRAE standard. They also show that reactive systems have
negligible effect on the comfort of the occupants as the setback
temperature setpoints are conservative. Sentinel is not restricted to
reactive control, and we will explore model predictive control as
part of our future work.

S. EVALUATION

Sentinel has been operational for three weeks at the time of writ-
ing this paper, in the five floor, 145,000 sqft CSE building at UCSD.
To show the feasibility of a building-wide deployment of Sentinel,
we show the distribution of smartphone usage in the building. We
evaluate the accuracy of occupancy detection using Sentinel over
a period of 10 days. We then show the occupancy patterns of 38
smartphone users in our building across a week, and identify peri-
ods of inoccupancy which could save HVAC energy. We have run
over 35 experiments on the HVAC system in our building testbed,
and present the HVAC power consumption versus occupancy trends
to demonstrate the potential energy savings using an occupancy
based HVAC actuation system. Finally, we present the energy sav-
ings obtained by controlling 55 of the 237 HVAC zones in the build-
ing for one day.

5.1 User Study

We surveyed 187 of the 415 registered occupants in our build-
ing. The surveys were short, intended to garner interest in WiFi
based control technology. We asked the occupants if they would
be interested in using such a technology, the kind of smartphone
they use, whether they connected their smartphone to the protected
WiFi network in the building on a regular basis, and if they would
participate in WiFi based actuation of HVAC system in their office
space.

Majority of the occupants surveyed showed interest in control-
ling the HVAC system based on WiFi connectivity. Over 64% of
the occupants owned a smartphone, and only 10% of the occupants
did not connect to the internet using WiFi. Figure 7 shows the usage
trend of the WiFi devices in the building. Despite the prevalence
of WiFi devices and network coverage across the building, many
people reported that they did not connect to WiFi due to various
reasons - poor WiFi coverage in their offices, adequate data capac-
ity available from cellular network, connectivity problems with the
WPA2/802.1x protocol and battery problems.

It should be noted that there is little incentive for occupants of

the building to stay connected to WiFi using smartphones in an IT
building. Most of the occupants have a desktop computer with eth-
ernet, and many occupants use their laptop for internet connectivity.
Several occupants indicated that they would connect to WiFi using
their phone if it provided automated control of HVAC system with-
out significant effect on battery life. Problems with network cover-
age can be solved by careful placement of APs within the building,
and device connectivity issues would get solved over time by soft-
ware/hardware updates to the smartphones. There would always
be a few occupants who do not, or cannot connect to the protected
network for various reasons. In our experiments, occupants need to
indicate their presence by manual press of a button on the thermo-
stat as on weekends. We later added a web based control of access
to HVAC system similar to that proposed by Krioukov et al. [36] as
a failsafe option.

5.2 Occupancy Accuracy

Accuracy of detecting occupancy using WiFi connectivity has
been shown to be noisy and inaccurate in prior work [32, 39, 46].
However, by restricting the occupancy detection of Sentinel to per-
sonal spaces, and by using additional metadata information like
occupant identity and AP location, Sentinel improves the overall
accuracy of occupancy detection significantly. We demonstrate the
accuracy of Sentinel based on data collected for 116 of the 415
building occupants over a 10 day period.

57% of the smartphones used by the building occupants are iPhones,

and as explained in Section 3.4, iOS devices turn off the WiFi
radio when it is not in active use. To participate in WiFi based
HVAC control experiments, we requested occupants to keep their
i0S device connected to WiFi and to change device settings to fetch
emails every 15 minutes. We requested the Android and Windows
Phone users to enable WiFi and to change the settings to disable the
WiFi aggressive sleep option. The change in device settings were
enforced for two days, and the occupants were given the option to
change back to their default settings if needed.

We define an event as a change in occupancy of a personal space,
either as detected by Sentinel, or as seen in ground truth measure-
ments. We use the number of events correctly identified by Sentinel
as a measure of the occupancy accuracy. If Sentinel incorrectly
marks a personal space as occupied, we classify the error as a false
positive, and if the system incorrectly marks a personal space to
be unoccupied, we classify it as a false negative. On a false posi-
tive error, we incur a penalty in the energy savings obtained as the
HVAC system would ventilate the personal space unnecessarily. A
false negative, on the other hand, would lead to discomfort to the
occupants as the HVAC system would be put to “Standby” mode.
For ground truth comparison, we note the occupancy in each office
across the building, and compare Sentinel logs for occupancy sta-
tus at the corresponding timestamp. We also inspect the latest logs
from Sentinel, and examine the occupancy status of the respective
zones. In case of discrepancy, we try our best to identify the un-
derlying cause. We ignore the errors that occur when the occupant
leaves her personal space for less than five minutes, and since the
timeout period in RADIUS protocol is ~ 17 minutes, we accept a
delay of up to 20 minutes in detection when the occupant is leaving
her personal space.

We measured 436 events during the 10 test days, of which 330
events were recorded in the first two days, and Sentinel accurately
identified personal space occupancy 83% of the time. The false
positives and the false negatives were 9.4% and 7.5% respectively.
After the first two days, the ground truth was collected only for oc-
cupants known to be still using the modified phone settings. Figure
8 gives a breakdown of the causes of the errors in detection.



Majority of the false positive errors by Sentinel were caused due
to an error in identifying the appropriate device by the phone detec-
tion algorithm. As many of the occupants were enabling their WiFi
devices for our experiments, we reset the access count request of
all the recorded occupant devices. As this was done early in the
morning, all the WiFi enabled devices in the building were iden-
tified as phones by Sentinel, and the errors in detection increased.
The phone detection algorithm corrected itself as occupants came
in, and the incorrect device errors died down by midday.

System errors constitute the errors caused due to mistakes in
metadata information stored in Sentinel. Some of the errors in-
cluded incorrect mapping of the occupant to their personal space,
incorrect authentication username, and incorrect mapping of APs
to personal spaces. We corrected the errors after the first day of
ground truth data collection. If we remove the temporary errors
caused due to incorrect device detection and system configuration
errors, the accuracy of Sentinel improves to 86%, and the false neg-
ative errors reduce to 6.2%.

The aggressive WiFi sleep mechanism used in iOS devices led
to intermittent WiFi connectivity, and was the cause of majority of
the false negative errors. Although, we used various mechanisms to
keep the WiFi radio active, there were still circumstances in which
the connectivity was not persistent. “iOS Start” errors indicate that
the occupant has entered her personal space, but Sentinel could not
detect the occupant as the iOS device did not switch from the cellu-
lar data network to the WiFi network. We noticed a maximum delay
of 23 minutes in iOS Start errors. “iOS Stop” errors occur when the
i0S device turned off the WiFi radio when the occupant was in her
personal space. This behavior was observed among phones which
were not in use for a long period of time, and as much as 3 hour
periods of disconnection were observed. However, on most cases,
the iOS devices woke up within 10 minutes of timeout. The device
errors were mainly caused due to late detection of arrival of occu-
pants in to their personal spaces. The late detection was observed
among the Android devices, as it sometimes took longer than usual
to detect WiFi networks in its vicinity. The inaccuracies due to de-
vice connectivity constitute 5% of the error and can be improved
by the use of an app on the phones. We provide the details of an
i0S app which addresses this issue in Section 6.

When the occupant has left her personal space, but is still within
the zone of detection of the nearby AP, Sentinel incorrectly marks
the space as occupied. We call such false positives as “zone of
detection error”’. A similar false positive is incurred when occupant
leaves her personal space but does not carry her phone with her. We
classify such error under “people error”. Occupants also sometimes
forgot to enable WiFi on their phones, or connected it to the guest
network, which leads to false negatives. We classify such errors
as people error as well. Both zone of detection and people errors
account for 6.9% error in occupancy detection, and are inherent to
the occupancy inference algorithm used by Sentinel. People errors
can only be reduced using wearable devices, and zone of detection
errors can be reduced using accurate localization methods.

5.3 Occupancy Trends

We have collected the occupancy information inferred from the
RADIUS logs for all the occupants for three weeks at the time of
writing this paper. Figure 9 shows the occupancy of the 38 users
who are always connected to the protected network, and have dis-
abled WiFi sleep by default. The occupancy trend is shown for the
week of March 18 to March 24, 2013 - one of the busier weeks
in our building due to exams. Note that occupancy here refers to
occupancy of personal spaces, rather than the whole building.

The most interesting part of Figure 9 is that the peak of the graph
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Figure 8: Distribution of occupancy detection errors as ob-
served over 436 events and 10 days. The occupancy detection
was accurate 83% of the time.
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Figure 9: Occupancy trends of 38 occupants in our building
who keep their smartphones always connected to WiFi as mea-
sured by Sentinel for the week of March 18-24, 2013

is at 23 people, only 57% of the maximum 38. Another point of
interest is that the general occupancy decreases as the week pro-
gresses, indicating peak of productivity on Monday, and a maxi-
mum of just 15 people on Friday.

On most days, there is a fall in the occupancy during the middle
of the day, indicating people leaving their offices for lunch, meet-
ings and discussions. The graph clearly demonstrates the oppor-
tunity of energy savings that could be obtained by controlling the
HVAC system based on occupancy.

On nights and weekends, the occupancy is understandably low,
however it is not zero, as assumed by the static schedules used for
HVAC control. The occupants are left to manually indicate their
presence if they are in the building during off hours. WiFi based
occupancy detection can easily detect the presence within an HVAC
zone, and provide automated thermal comfort to the occupants.

5.4 Impact on Device Battery Life

Battery life of a device is dependent on the WiFi radio chip, the
network coverage, the applications using WiFi, the usage pattern
and potentially other factors. Prior works on WiFi and cellular
radio power measurements [17, 20, 51] indicate that WiFi sleep
power is about 2x the sleep power of cellular technologies such
as 3G, the data transmission in WiFi is about an order of magni-
tude more efficient than cellular, the energy spent by WiFi radio
to scan and associate to an AP is 5x the energy spent for SOKB
data transfer, and the energy consumption of cellular radio varies
significantly with signal strength. To reduce the impact of higher
WiFi sleep power, Rahmati et al. [43] and Agarwal et al. [10] sug-
gest waking up WiFi only when data transfer is required, and iOS
follows a similar model based on our observations (Section 3.4).
However, this strategy may not lead to power savings if the phone
keeps switching between WiFi and cellular radios frequently or if
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Figure 10: Distribution of smartphone battery consumption of
20 participants over 3 days with WiFi “always on”, with WiFi
aggressive sleep enabled and with WiFi off.

the apps installed on the phone require frequent data transfer. Thus,
the impact on battery life would actually depend on the usage pat-
tern of the phone.

Instead of measuring battery consumption in a controlled envi-
ronment, we measure battery drain as seen by phone owners dur-
ing their regular usage. We choose 20 participants, not necessarily
building occupants, and measure their smartphone battery perfor-
mance over three days. There were 10 iPhones, 9 Androids and
1 Windows Phone in the collection. On the first day, the smart-
phones were put to WiFi “always on” mode, by disabling the sleep
mode in non-iOS phones, and fetching email every 15 minutes in
iOS phones. On the second day, WiFi was enabled, with aggres-
sive sleep mode enabled. On the third day, WiFi was switched off
completely. The participants were requested to try and keep simi-
lar usage pattern across these three days and report any significant
differences in usage. We normalize the battery drain during three
days by the battery drain observed with WiFi “always on” option,
and the combined result is shown in Figure 10.

As can be observed from Figure 10, there are no clear trends
across the three WiFi modes for these devices. However, we do
make several observations. First, in many cases (particularly for
iOS devices) WiFi aggressive sleep leads to lower battery lifetime
than keeping WiFi on probably due to the constant mode switches.
Second, turning the WiFi off completely to use only 3G does not
lead to significantly better battery life as compared to keeping WiFi
on, or the 15-min Keep Alives mode for iOS. The Android device
for which this is not the case (Device 6) were verified to be an
anomaly since the user reported that they don’t use the 3G data
radio. Therefore, based on our current data, we have not seen
conclusive evidence whether using the aggressive sleep modes for
WiFi actually provides significant battery life improvements than
the less aggressive WiFi on settings. However, given the variations
we observed in battery consumption more extensive data collection
would provide better insight into the effect on battery life due to
continuous WiFi connectivity.

5.5 Actuation Latency

Unlike prior occupancy based control systems [8, 28], we have
implemented Sentinel on top of RESTful web services as recom-
mended in recent literature [25, 13] using our BuildingDepot(BD)
system [11]. BD is designed to support different types of build-
ing applications, is compatible with existing building management
solutions and scales well with number of users, applications and
sensors. Similar RESTful frameworks are also being adopted by
industry and academia for building automation applications such
as plug level energy meter [4, 35] and wireless lighting system [6].
Sentinel is one of the first RESTful systems to be deployed at the

Operation | Latency (in ms)
OIS — BD | 194.26 + 50.6
BD — HAS | 67.18 £ 13.6
HAS — BD | 158.25 £ 61.3
BD + BC 18535 £ 1134
BD — HAS | 126.35 4+ 30.6
Total 731.57 £ 1254

Table 2: Breakdown of latency of Sentinel from the time of
reception of RADIUS packet from WiFi device to the time of
sending actuation commands to HVAC.

scale of an enterprise-scale commercial building, and actuaion la-
tencies for such systems have not been measured in the literature
so far.

Table 2 provides a detailed breakdown of latency to send an ac-
tuation command to the HVAC zones, from the time of detection of
occupancy to the time to get the acknowledgment of the command
completion. We have an actuation latency of ~750ms, which is fast
enough for actuating HVAC systems. However, when the access
controls extend to plug loads and lighting systems, the actuation
latency would need to be reduced further so that the occupants do
not notice the delay.

5.6 Potential Energy Savings

Prior work has focused on estimating the energy savings ob-
tained by occupancy based actuation of HVAC system using sim-
ulations on calibrated EnergyPlus building models [23], and it has
been shown that significant savings can be obtained across different
seasons and geographical locations [28, 29, 33]. Goyal et al. [33]
show that the amount of energy savings obtained remain almost the
same for both reactive and predictive strategies for different out-
door conditions if the set back temperatures are conservative as per
ASHRAE standards.

Instead of simulations, we measure the actual energy savings ob-
tained at different levels of occupancy by conducting experiments
directly on our building. We perform our experiments during night
time, as there are only a few people present in the building, and the
night temperature at San Diego was relatively stable at the time of
our experiments. All the experiments were conducted during the
month of March, 2013, when the night temperature was recorded
between 55 °F and 60 °F. Note that compared to the day, the load
on the HVAC system during night is lower due to reduced outdoor
temperature and lesser number of people and machines in opera-
tion. The energy savings measured represent a constant load HVAC
system, and is a conservative estimate of actual energy savings pos-
sible.

To determine the energy savings obtained with change in occu-
pancy in the building, we randomly choose a fixed percentage of
HVAC zones, and turn them off for a period of two hours. To al-
low for variations with respect to outdoor conditions, we choose
the same set of zones, and repeat the experiment. Figure 11 shows
the electricity consumption of the HVAC system when we actuated
25% of the zones in the building. The experiment was started at
~10pm, and all the zones in the building were gradually turned on
with an interval of 10 seconds between each actuation command.
The zones were allowed to stabilize for an hour, and then 25% of
the zones were gradually turned off for a period of two hours. We
turn back on the switched off zones after two hours, and repeat the
process once more. We repeat the experiment for at least two nights
for each level of occupancy.

Figure 12 shows the changes in electrical power consumption
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Figure 11: Measurement of HVAC electrical power consump-
tion with 25% of the HVAC zones randomly chosen to be alter-
natively turned on and off on the night of March 16, 2013.
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Figure 12: HVAC electrical power consumption with change in
occupancy levels in the building.

of the HVAC system with increase in occupancy of the building.
There is a clear increase in the electrical power consumption as the
occupancy of the building increases. Although its not prominent in
the figure shown, the drop in electrical energy is not directly pro-
portional to the fall in occupancy within the building. The electri-
cal power consumption is dominated by the fans in the Air Handler
Unit(AHU) of the building, and power consumption of the fans are
proportional to the cube of the fan rotation speed. Thus, as the oc-
cupancy of the building increases, the fan rotates at a higher speed,
leading to disproportional increase in power. Thus, the energy sav-
ings are maximum when the occupancy of the building drops from
100%, and follows the pattern of diminishing returns as the occu-
pancy further reduces.

Figure 13 shows the thermal power consumption of the HVAC
system with increase in occupancy. Both cooling and heating ther-
mal power decrease gradually with decrease in occupancy of the
building. The trends in heating thermal power is not as clear as
cooling thermal power or electrical power because the supplied hot
water is not in continuous use by the HVAC system. The cold wa-
ter is converted to cold air, and is used for ventilation by the VAV
boxes. The amount of cold air is regulated by the VAV box us-
ing a damper, but a minimum amount of ventilation is maintained
by the VAV even when the zone is unoccupied. Hot water, on the
other hand, is used intermittently by the VAV box to reheat the cold
air when needed. The intermittent usage of hot water translates to
different heating thermal power consumption from day to day, and
thus, we do not see any clear trends with change in occupancy.

Even when the building is completely unoccupied, electrical power
consumption is ~35% of the power consumption at full occupancy,
and heating and thermal power is at ~70%. As the building is put
in to “Standby” mode when it is unoccupied, the HVAC system
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Figure 13: HVAC thermal power consumption with change in
occupancy levels in the building
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Figure 14: Temperature profile of an HVAC zone during day-
time when it was turned on and off every two hours. Heating
and cooling setpoints are 71 °F and 75 °F respectively.

still tries to maintain minimum thermal comfort within the build-
ing. For our building, the temperature guardband is increased by
2 °F on both cooling and heating setpoints with respect to the set-
points in “Occupied” mode.

The thermal power consumption is still high compared to elec-
trical power when the building is fully unoccupied. This is because
the cold water is used for cooling the server room in CSE, and
the hot water is used for domestic water heating. Also, recall that
our building receives its hot and cold water from a central utility
plant(Section 2.1), and thus, the reduction in thermal energy ob-
served is due to the decrease in the demand for hot and cold water.
However, as the hot water and cold air still circulate through the
building, there is still a drop in temperature in the returned hot and
cold water. The thermal power consumption is measured as the en-
ergy spent due to the loss in the temperature difference between the
supply and return water. Hence, even at zero percent occupancy,
significant amount of energy is spent for thermal needs.

5.7 Thermal Comfort

Prior work suggests that reactive control of HVAC system does
not lead to occupant discomfort when the setback temperature is
conservative [8, 33]. To test this in our building, we performed
a controlled experiment on a subset of HVAC zones. We chose 12
HVAC zones, each of them having different characteristics in terms
of size, location, and number of rooms. Each of the zones were
alternated between “Occupied” and “Standby” modes for two hour
periods over a total period of 8 hours during the day on a weekend.

One of the HVAC zones had a faulty sensor, and we do not con-
sider its temperature data. Figure 14 shows the variation in tem-
perature of the HVAC zone which showed the maximum thermal
discomfort among the remaining 11 zones in the experiment. The
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Figure 15: Occupancy trends of 116 volunteers on March 26,
2013, the Experiment Day.

heating and cooling temperature set points of the “Occupied” mode
for this zone was at 71 °F and 75 °F respectively, and the corre-
sponding set points of the “Standby” mode was 69 °F and 77 °F
respectively. Unfortunately, the outside temperature at the time of
the year is temperate, and does not change the temperature of the
zone significantly, even when it is in the Standby mode. It is clear
from Figure 14 that the temperature of the HVAC zone never ex-
ceeds 77 °F, and quickly drops to 75°F as soon as the zone is
switched to “Occupied” mode. Thus, we confirm that the finding
by Goyal et al. [33] by real temperature measurements that the ther-
mal comfort is minimally effected when the setback temperature
setpoints are conservative.

5.8 Energy Savings with Sentinel

We controlled the HVAC system of our building testbed using
Sentinel for the 116 volunteers from 9am to 6pm on March 26,
2013. Of a total of 237 HVAC zones, we controlled 55 zones dis-
tributed across three of the five floors in the building.

As HVAC zones are often shared between rooms, the actuation
policy of the occupants located within an HVAC zone needs to be
the same. As a result of this sharing, some of the personal spaces
needed to be converted to shared spaces, as explained in Section
3.5. Similarly, the occupants who could not participate in the ex-
periment, share their HVAC control policy with our volunteer oc-
cupants. Therefore, a single non-eligible participant in an HVAC
zone forces us to treat the entire zone as a shared space. Despite
this limitation, we control 55 out of 237 HVAC zones in the build-
ing for our actuation experiment. As we are requesting the occu-
pants of the building to shift from their regular usage patterns, we
had to limit our control experiment to just one day. Of the 55 zones
covered by the experiment, 12 zones were known to be unoccupied
apriori on the day of the experiment, and we turned them off for the
duration of the experiment.

We compare the energy consumption on the day of our experi-
ment (March 26, 2013) with the energy consumption on March 22,
2013, as the temperature profiles of the two days were similar. We
refer to the day we controlled the HVAC system using Sentinel as
“Experiment Day”, and refer to the day of comparison as the “Typ-
ical Day”. Other close days were cloudy, and we could not use
them. Figure 16 show the electrical power consumption from 9am
to 6pm on the Experiment and Typical days, Figure 17 shows the
thermal power consumption of HVAC in the same time frame, and
finally, Figure 15 shows the occupancy of the 116 volunteers on the
Experiment Day as measured by Sentinel.

We saved 17.8% of electrical energy on the Experiment Day, as
compared to the Typical Day. Occupancy trends from Figure 15
shows that the building occupancy gradually increases from 9am to
11am, and remains roughly constant till 6pm. However, the occu-
pancy peaks at 40 people, indicating most of the volunteer occu-
pants were not present in the building during the period of experi-
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Figure 16: Comparison of outdoor temperature and HVAC
electrical power consumption of the Typical Day and Experi-
ment Day. Total savings of 17.8% in electrical energy was ob-
tained for the duration of the experiment.
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Figure 17: Comparison of HVAC heating and cooling thermal
power comparison of the Typical Day and Experiment Day. No
clear trends can be observed, and only 0.8% energy was saved
for the duration of the experiment.

mentation. The relative inoccupancy was expected, as the Experi-
ment Day was the second day of the spring break at our university.

The occupancy trend is clearly reflected in the electrical power
consumption of the HVAC system, as it initially starts off lower
than the typical day at 9am due to the reduced number of occupants
in the building. As the occupancy within the building increases,
the power consumption also increases gradually until 11am. From
11am to 6pm, the electrical power consumption of both the days
follow the same pattern, in accordance with the changing outdoor
weather conditions. The energy savings from 11am to 6pm is mainly
obtained because of the occupants who did not come in to their per-
sonal spaces on the Experiment Day. The 17.8% electrical energy
savings obtained is in accordance with electrical power consump-
tion trends shown in Figure 12, where the corresponding building
occupancy is ~90%.

As our Experiment Day falls on university spring break, but our
Typical Day is during exam week, it is possible that part of energy
savings occur due to reduced activity in the building. We com-
pared the HVAC electrical power consumption on Experiment Day
with two other spring break days (March 27 and 28, 2013) with
cloudy weather conditions when the HVAC was under static sched-
ule based control, and still measured electrical energy savings of
7.5% and 11.8% respectively.

The trends in thermal power consumption on the Experiment
Day were not as clear. Cooling thermal energy consumption de-
creased by 2.2%, but the heating thermal energy actually increased
by 1.5%. Figure 13 indicates that the thermal energy consumption
is also consistent with our night time trending experiments, and the



heating thermal power consumption sometimes increased despite a
reduction in building occupancy.

The experiment provides an example of the energy savings that
could be obtained across one particular day by controlling 23% of
the HVAC zones in CSE. However, the long term energy savings
will be different due to varying weather conditions or occupancy
patterns. As long term occupancy patterns are not available, we
do not attempt to project the energy savings obtained by simple
extrapolation of trends we see for one day.

6. DISCUSSION

The occupancy inference algorithm proposed in this paper uses
the metadata information available and typical occupancy patterns
within offices to mitigate the inaccuracies associated with locating
a WiFi enabled device with respect to its AP. The algorithm can be
adapted to a wide range of office spaces independent of its build-
ing topology, or usage patterns. To infer occupancy using WiFi we
use key metadata relating authorized occupants with their personal
office space, their WiFi device MAC address, network logs to de-
termine the current status of network connectivity with occupant
devices and the location of APs within the building.

For adoption of our solution in a commercial building, a depend-
able and easily accessible fallback solution needs to be provided
to the building occupants. Occupants should be able to inform the
BMS of their presence easily in case they forget their phones at
home, or need to lend their office to a visitor. The personalized
building control proposed by Krioukov et al. [36] provides a good
platform for user feedback, and we have implemented a similar web
based interface for CSE. Automated tools for keeping track of oc-
cupants in personal spaces, mapping of APs to personal spaces and
HVAC zones to office spaces would also help in quick deployment.

Reliable WiFi connectivity from the users phones is the only re-
quirement from the occupants of the building for the proposed al-
gorithm. However, as we saw in Sections 3.4 and 5.4, it is difficult
to maintain perpetual connectivity in iOS devices, and there may be
an effect on battery life of devices when they are always connected
to WiFi. IEEE 802.11ah standard [15] is being designed specif-
ically for low power, low data rate applications, and would en-
able applications like Sentinel without affecting battery life. In the
meantime, we plan to develop mobile apps which would maintain
WiFi connectivity and still have minimal effect on battery life. The
apps would break the non-intrusive model of deployment, but can
be integrated with the personalized building control system [36].
Alternatively, prediction mechanisms can be used to eclipse the in-
termittent connectivity of WiFi devices.

As most of the false negative occupancy detection errors in Sen-
tinel is caused by i0S devices, we have already developed an i0S
app. The app creates a geofence on the building, and wakes up the
device when it enters the geofenced area. The app keeps the device
awake until it connects to WiFi, and then allows the device to go to
sleep. Periodic push notifications from the app wake up the WiFi
radio, and the notifications are turned off when the device leaves
the geofenced area. However, we have not yet evaluated the app
extensively to present its performance results here.

Sentinel only targets personal spaces in office buildings. To im-
prove HVAC energy efficiency further, shared spaces should also be
regulated according to occupancy. One option is to install wireless
sensor network solutions [8, 28] just for the shared spaces. Use of
calendars has been proposed as a proxy for occupancy [25], how-
ever it is not applicable to several kinds of shared spaces like lobby,
cafeteria, etc. Indoor localization has the potential to reduce the
zone of detection enough for occupancy inference in shared spaces.
We plan to explore infrastructure based localization techniques as

part of future work.

The HVAC zones in modern buildings are not designed for occu-
pancy based actuation. Although VAV systems have become com-
monplace since the late 1990s [34], the zones normally map several
individual rooms. If only one of the rooms within a zone is occu-
pied, the remaining rooms within the zone are unnecessarily ven-
tilated. Further, sharing of HVAC zones between shared and per-
sonal spaces, requires conditioning of personal spaces whenever
the shared space is occupied. Smaller and more insulated HVAC
zones would lead to more savings based on occupancy control in
lieu of higher installation cost. If the architects of the HVAC sys-
tem incorporate occupancy based control into their design for next
generation buildings, there could be a significant reduction in the
running cost of the system.

7. RELATED WORK

Occupancy based HVAC control has been studied extensively for
improving building energy efficiency [8, 18, 27, 30, 29, 28]. Exten-
sive simulation studies and practical deployments in commercial
buildings have shown that 15% - 42% energy savings can be ob-
tained using occupancy based control, depending on weather con-
ditions, building type and occupancy variation.

Several occupancy detection mechanisms have been developed
over the years for HVAC control. CO3 sensors are used for oc-
cupancy based control of high capacity spaces such as auditori-
ums and conference rooms [2, 5], but have been found to be too
slow to respond to change in occupancy for smaller rooms found in
commercial buildings [31]. Passive infrared(PIR) motion sensors
have been used in modern buildings for actuation of lighting sys-
tems. PIR sensors often fail to detect occupants when they are rela-
tively motionless, such as while reading or typing. Further, they are
vulnerable to calibration errors, external triggers by sunlight or air
draft and only provide binary occupancy information. These limi-
tations make it challenging to use PIR sensors for HVAC control.
Our own work improved upon these limitations with the addition
of door sensors to obtain occupancy accuracy of 96% and demon-
strated up to 15% savings in HVAC electrical energy for one floor
deployment in CSE [8]. However, the occupancy detection mech-
anism is only accurate for single person offices, and depend on the
occupants to close the door while exiting the office.

The POEM system [28] uses a combination of ceiling mounted
camera and motion sensors to obtain 94% accuracy in occupancy
detection. Erickson et al. use the near real-time occupancy infor-
mation from the sensors for predictive control of 30% of the HVAC
zones in an office building and demonstrate up to 26% energy sav-
ings. The cameras used in POEM exploit the hallway topology
for occupancy detection. If the office spaces are located around a
circular hallway, or use open cubicle spaces, the image processing
algorithms would have to be modified and re-calibrated. Further,
use of battery powered wireless sensor nodes in POEM involves
changing batteries every 45 days.

In contrast, Sentinel provides a solution for actuation of HVAC
system using near real-time occupancy derived from existing WiFi
infrastructure. Sentinel neither makes any assumption regarding
the topology of the building, nor requires careful calibration of
sensors. Leveraging existing infrastructure allows Sentinel to be
quickly deployed and easily maintained. The monetary and ease of
use benefits of Sentinel comes at the cost of assumptions on usage
patterns of WiFi devices by building occupants, and works only for
personal spaces. Additional sensors or localization techniques still
need to used for occupancy detection in shared spaces.

Numerous methods for occupancy detection have been devel-
oped that leverage existing infrastructure such as powerline [42],



speakers [37], WiFi [16, 50, 21], geo-magnetism [22], HVAC duct-
work [41], or a combination of these [49]. However, many of these
solutions do not work well for HVAC control in commercial build-
ings due to issues of scale [42, 21], use of specialized sensors [41,
37], extensive war driving [50, 22] or complex functionality in
client devices [49].

Existing WiFi infrastructure potentially provides the scalabil-
ity needed for commercial buildings, does not rely on client de-
vice functionality and eases deployment and maintenance. Ghai
et al. [32] use a combination of WiFi signals, calendar schedules,
personal computer activity and instant-messaging client status to
infer the occupancy within cubicles with an accuracy of up to 91%.
The algorithms have been evaluated for just 5 volunteers, and do
not evaluate scalability. In contrast, we only use WiFi information,
and show the efficacy of our algorithm over 116 occupants of our
building. Melfi et al. [39] use DHCP leases within a real building
for occupancy inference and found the accuracy to be low - 31%
to 84%. The inaccuracies of their system were attributed to unpre-
dictable coverage provided by APs and intermittent connectivity of
the WiFi devices. We overcome the limitations of WiFi sensing
by using additional known information such as occupant identity,
occupant office location and focus on personal spaces. Martani
et al. [38] use WiFi logs to determine the live WiFi connections
within a building, and provide a breakdown of the WiFi connec-
tions on a floor and room basis. They show that WiFi connections
correspond well with the HVAC energy consumption of a building
at MIT. However, they make no attempt to correlate WiFi connec-
tions with the ground truth occupancy.
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9. CONCLUSION

We have presented the design and implementation of Sentinel-
an occupancy based HVAC actuation system that leverages existing
WiFi infrastructure and occupants with WiFi enabled smartphones
within commercial buildings to reduce HVAC energy usage. In
contrast to prior occupancy sensing solutions which required in-
stallation of additional sensors and associated wireless sensor net-
works, utilizing existing infrastructure for occupancy sensing re-
duces the costs and effort of deployment and maintenance signif-
icantly. We reduce the inaccuracies in occupancy sensing using
noisy WiFi signals by using metadata information about the occu-
pants, access points and the HVAC zones in the building. We have
deployed Sentinel in a 145000 sqft commercial building, and show
the accuracy of occupancy detection within office spaces to be 86%,
with only 6.2% false negative errors. Furthermore, we provided a
detailed analysis of the reasons for these inaccuracies, largely due
to aggressive power management by smartphones. Based on our
battery lifetime measurements across a number of devices we show
that using less aggressive WiFi power modes, which improve ac-

curacy of Sentinel, do not necessarily lead to significantly reduced
battery life. We also discuss potential solutions, such as an App on
users phones, that can increase the accuracy of WiFi based occu-
pancy detection even further. Finally, we demonstrate occupancy
based control of 23% of the HVAC zones of our building testbed
using Sentinel and measure electrical energy savings of 17.8% in
the HVAC system compared to the static scheduling based control
used across the buildings on our campus.
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