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ABSTRACT 
Traditionally, pollution measurements are performed using 
expensive equipment at fixed locations or dedicated mobile 
equipment laboratories. This is a coarse-grained and expensive 
approach where the pollution measurements are few and far in-
between. In this paper, we present a vehicular-based mobile 
approach for measuring fine-grained air quality in real-time. We 
propose two cost effective data farming models – one that can be 
deployed on public transportation and the second a personal 
sensing device. We present preliminary prototypes and discuss 
implementation challenges and early experiments.  

Categories and Subject Descriptors 
C.5.3 [Computer System Implementation]: Microcomputers – 
portable devices, microprocessors.  

General Terms 
Measurement, Design, Experimentation, Human Factors. 

Keywords 
Air Quality, Pollution, Urban Sensing, Mobile Sensing, Social 
Networks, Participatory Sensing.  

1. INTRODUCTION 
As urbanization causes the growth of suburban communities, the 
existing transportation infrastructure dependent on fossil fuels 
must expand. Increase in vehicle use gives rise to an increase in 
traffic related pollutant emissions. According to census data, 
about 79% of the US population lives in urban areas [1]. As per 
2010 Highway Statistics there are 242 million vehicles in the US 
alone [2]. To track the effect of this large fleet of urban vehicles 
on the environment and on the health of individuals, it is 
imperative to track pollutant levels in the urban and suburban 
settings. According to the US EPA [3], the six common air 
pollutants are particulate matter, ground-level ozone, carbon 
monoxide, sulfur oxides, nitrogen oxides, and lead. These are 
called the criteria pollutants and thus are required to be measured 
to tell us how healthy the air is to breathe [4, 5]. Among these, 

vehicular emissions contribute carbon monoxide, carbon dioxide 
and nitrogen oxides to the air pollution [6].  

The current pollution measurement methodology uses expensive 
equipment at fixed locations or dedicated mobile equipment. The 
raw data obtained in this manner is used to further extrapolate the 
extent and concentration of pollution through dispersion models. 
This is a coarse-grained system where the pollution measurements 
are few and far in-between. Widespread deployment of this 
measurement paradigm is constrained by its prohibitive cost. In 
addition, it is desirable to have access to real-time measurements 
to be able to quickly analyze and identify alarming levels of 
pollutants. Currently, access to such data is limited [7] if not 
absent. It is available to and discernable by only a few who are 
well informed on the subject of pollution. 

As opposed to a coarse-grained sensing system, a fine-grained 
approach would provide more frequent and spatially dense 
pollutant measurements. A scalable sensing platform could 
effectively disseminate pollution information to users in need. 
Today, the scarcity of fine-grained air quality information is 
hindering public awareness of health issues arising from pollution. 
Studies suggest that the health effects among asthmatics from 
short-term changes in air pollution levels are an important public 
health problem [8]. We anticipate that, with the help of fine-
grained air quality measurements, people could be advised to take 
actions based on real time pollution levels to accommodate 
individual health needs. 

The availability of real-time air quality data could make drivers 
better educated about driving patterns and how it impacts the 
environment and increases pollution. Better driving habits will 
lead to reduced pollution.  Also, more health conscious citizens 
may choose alternate “healthy” routes based on the pollution 
information. It will benefit them as well as others by reducing 
pollution concentration in peak roadways so everybody breathes 
cleaner air.  

At the same time, the emergence of cheap commodity air 
pollution sensors and the increase of cellular bandwidth have 
made mobile sensing platforms capable of real-time air quality 
data collection increasingly feasible. Several manufacturers such 
as Aeroqual or Variable Technologies have recently introduced 
handheld pollution measurement devices. These devices are small 
enough to be carried by walking people for personal use and 
measure all the criteria pollutants contributed by vehicle 
emissions [9,10,11,12]. But none of these off-the-shelf devices 
has been evaluated with respect to their real-time sensing 
performance when installed on mobile platforms such as vehicles. 
To the best of our knowledge, we have not come across any work 
that study the long-term stability, reliability and impact of real-
time pollution monitoring systems using commodity sensors and 
the problems associated in deploying such systems.  
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In this paper, we present a vehicular-based approach of measuring 
fine-grained air quality in real-time. We propose two cost 
effective data farming models – one that can be deployed on 
public transportation and the second a personal sensing model. 
We present preliminary prototypes and discuss implementation 
challenges and experiments. In particular, we found that a 
personal sensing device conveniently mounted inside a vehicle in 
front of the vent can measure carbon monoxide levels that 
correlate well with outdoor values.  

We start out with the mobile sensing schema, in which we talk 
about multiple mobile sensing models as well as their data 
processing in cloud. Then implementation is described in Section 
3. Section 4 discusses the preliminary results and some challenges 
we identified based on our work. Section 5 gives related work. 
Finally, we close the paper with our conclusion in Section 6. 

2. MOBILE SENSING SCHEMA 
In our proposed mobile pollution-sensing schema (shown in 
Figure 1), a variety of mobile sensing models can be used to 
collect data from different scenarios. The sensing models measure 
the concentration of pollutants, tag the pollution data with relevant 
information, such as time, speed and GPS location1, and send the 
data over a cellular data link to the cloud server. Raw pollution 
data is then processed and aggregated by the server to make it 
available as a pollution map. Various devices should be supported 
to access the map through browsers and mobile apps. Users would 
be able to view illustration of real time pollution data overlaid on 
map. This would enable users to get fine-grained street level air 
quality report.  

We discuss the mobile sensing models, and data management in 
cloud in this section. 

2.1 Mobile Sensing Models 
The first sensing model is designed for deployment on Public 
Transportation Infrastructure such as buses, which have fixed 
and reliable routes along high volume corridors. For this model, 
we propose a custom-made Mobile Sensing Box (MSB) that 
includes a microcontroller board with add-on sensors, a peripheral 
GPS receiver and a cellular modem. Connecting to the bus battery 
would provide the power supply needed to operate this model. 
Since sensor bulk is not a primary design constraint in this case, it 
allows us to pack enough sensors per unit to measure all criteria 
pollutants. In our current prototype (see Section 3.1), we used two 
pollution sensors to measure carbon monoxide and particulate 
matter concentrations. However, in this paper we only focus on 
carbon monoxide.  

The second sensing model relies on air quality-aware drivers who 
install a Personal Sensing Device (PSD) in their cars, connected 
over Bluetooth to their smart phone. Drivers can use this setting to 
measure the air quality for themselves, or they can register to 
participate in a social community-based sensing. The pollution 
data is geo tagged and posted to the central server over cellular 
network. In this paper, we focus on carbon monoxide sensor but 
the interchangeable sensors on wireless device can measure 
various other pollutants. 

                                                                    
1 Bluetooth enabled OBD-II Scan Tool can provide additional 

vehicle state information. 

 

 
 

2.2 DATA MANAGEMENT 
The cloud service must be capable of collecting data from 
different types of sensors, which may sample different pollutants. 
In Section 2.2.1, we design the data collection so that the cloud 
can handle different data formats from various participating 
sensors. As this cloud service also provides community feeds to 
subscribing consumers, it must be capable of providing spatially 
or temporally aggregated feeds based on consumer-defined 
granularity. Besides, the service must be extensible and must be 
capable of supporting additional data dissemination patterns. We 
will discuss the data dissemination design in Section 2.2.2.  

2.2.1 Data Collection 
The server must provide a unified interface for sensors to 
communicate with. Different sensors produce different data 
formats, and this variation falls into two categories. (1) Variation 
in measured content - sensors have different pollution 
measurement capabilities. As a result, they produce different 
pollutant measurements with different levels of accuracy and 
variation. (2) Variations in data representation - location, for 
instance, can be represented in various formats.  

We designed a protocol to handle such variations. The idea is to 
group different fields according to their role with respect to 
server’s post processing step. Sensors are enabled to design their 
own data formats without adversely affecting the server 
processing. Any new data format is required to be registered with 
server a priori.  

2.2.2 Data Dissemination 
We provide a web portal where users can view real time pollution 
data. This is implemented as a new map layer, which we call Air 
Quality Index layer (AQI). There are two types of AQI layers 
available for different use cases – Marker map and Heat map. 
Marker map consists of data markers – when the user clicks on 
them will display all the information associated with each data 
point like – the time the data point was generated, GPS location, 
all the pollutant concentrations sent by the sensor, etc. Heat map 
shows all available measurements in a heat map style gradient 
color display where higher pollution is represented by higher 
ranked color in the color spectrum. 
To provide efficient visualization, we adopt the visualization 
support from cloud storage services. We store common requests 
and their associated results as tables in server’s domain. When we 
detect a match between a request and a table, we can return it 

Figure 1 System Overview 



 

 

immediately. This new design outperforms traditional massive 
data visualization tools in the sense that data filtering, sorting, 
aggregation and visualization are either pre-computed, or 
processed in the cloud.  

The Heat map and the Marker map serve as basic visualization 
tools. Unfortunately, color gradients and markers do not help in 
data analysis and cannot be meaningfully consumed by 
downstream consumer applications. We accommodate these needs 
by extending our storage model to store temporarily generated 
tables and share them with consumer applications. 

3. IMPLEMENTATION 
In the following three subsections, we discuss the implementation 
details of two air quality-sensing models and of the server.  

 

 

3.1 Mobile Sensing Box 
We assembled a Mobile Sensing Box (called MSB for short) as 
shown in Figure 2. It consists of a microcontroller, dust & carbon 
monoxide sensors, GPS and a cellular modem. The assembled 
unit can be mounted on any vehicle and can be powered by the 
vehicle’s battery. 

3.1.1 Details 
We chose the Arduino Mega128 microcontroller for our prototype 
implementation [13]. The Arduino platform, with its large 
developer community and its reusable open-source libraries, 
provides a versatile microcontroller platform for rapid 
prototyping. We used the SIM5218 3G/GPRS cellular shield with 
AT command support for data transmission over HTTP [14]. The 
large number of I/O pins on the microcontroller facilitates the 
inclusion of many add-on sensors and peripherals to collect a wide 
variety of data. For the prototype implementation, we chose to 
measure position, velocity, carbon monoxide concentration and 
particulate matter concentration. The PMB 648 GPS receiver 
allows reading of position and velocity with high accuracy and 
can easily interface with the Arduino platform [15]. A Sharp Dust 
Sensor is used for dust concentration measurements. Carbon 
monoxide concentrations are measured using the MQ-7 carbon 
monoxide sensor from Hanwei Electronics [16].  

3.1.2 Cost 
The cost of assembling one unit came to about $700. In addition, 
we signed up for a $25 per month prepaid data plan with 1.5 GB 
data cap per month. The MSB generates 1600 bytes/minute of 

data when sampling every 5 seconds. With an average driving 
time of 2 hours per day for 30 days, the MSB produces about 5.5 
MB of data per month, which is a small fraction of a typical low-
end data plan.  

3.1.3 Software 
Our software on the Arduino uses a ‘software serial’ library to 
control and communicate with the carbon monoxide sensor, dust 
sensor, GPS chip and the cellular modem. Pollutant measurements 
are read from the analog to digital converter output.  The MQ-7 
sensor has a 30 second sensor heating cycle and a 60 second 
sampling cycle. GPS, carbon monoxide and dust readings are 
sampled periodically and transmitted to our cloud server. In order 
to prevent data loss on loss of data connectivity, a store & forward 
mechanism is included in our implementation. 

3.2 Personal Sensing Device 
The main components of the personal sensing device (called PSD 
for short) include a mobile air quality sensor and a smart phone to 
act as an interface with the central repository hosted on a cloud 
server. Our system uses a NODE Wireless Sensor platform 
available for smart devices from Variable Technologies [17]. The 
device is shown in Figure 3. 

 
 

 

3.2.1 Details 
The NODE sensor platform is customizable with add-on sensor 
modules. Each device can accommodate two sensors on either end 
of the device. We selected OXA and CLIMA modules to measure 
carbon monoxide, humidity, temperature, ambient light and 
barometric pressure. Only carbon monoxide sensor was available 
when we started using this device for our experiments. The 
mobile sensor for our social model is intended for use anytime, 
anywhere irrespective of the mode of transport.  

NODE uses Bluetooth connectivity to interface with users’ 
smartphones to transmit the pollution levels in the environment.  

3.2.2 Cost 
The NODE device along with the OXA and CLIMA sensor 
modules costs about $400. In addition, user’s existing iPhone 
device and data plan will be used to transmit data periodically to 
server. The personal sensing device generates 1536 bytes/minute 
of data when sampling every 5 seconds. With an average driving 
time of 2 hours per day for 30 days the MSB produces about 5.27 
MB of data per month. 

3.2.3 Smart Phone Application 
An iPhone application uses the NODE iOS Framework to scan, 
connect and communicate with the NODE OXA and CLIMA 
sensor modules. We developed a custom iOS application using the 

Figure 2 Mobile Sensing Box 

Figure 3 Personal Sensing Device [17] 



 

 

NODE Open API to read sensor data, tag the data with location 
information and send the data to the central server. The 
application allows the user to pair the smartphone with a sensor 
device of their choice over Bluetooth.  

3.3 Cloud Server 
Our cloud server is deployed on Amazon EC2 with classic LAMP 
settings. It solves most of the problems mentioned in Section 2.2, 
yet does not support some advanced features such as smart 
aggregation and automatic device registration. First, we describe 
some essential technical features, and then, we describe a typical 
workflow in order to show the data processing procedure. 

3.3.1 Google Fusion Tables 
Among the popular cloud storage services, Google Fusion Tables 
(GFT) has proven to be the best fit. It is designed as a new file 
type within Google Drive, with all the capabilities associated with 
a compact database. It supports a special data type for location 
storage, and supports various visualization tools for large data 
sets. This provides a convenient data storage in the cloud with 
Google’s cloud visualization support.  

The share feature proposed in Section 2.2 is implemented using 
Google Drive API. This API provides the ability to add, modify, 
or delete permissions for a file that resides in Google Drive. To 
perform these actions, the user simply needs to authorize requests 
using OAuth 2.0 and provide the email address of subscribers. In 
our case, server can create tables for users when necessary and 
then transfer ownership to the users. In this way, data producers 
retain full control of their raw data, by taking the role of the 
owner. 
As mentioned above, we also adopt Google Fusion Tables API to 
utilize its visualization tools. The results are shown in Section 4. 

3.3.2 GFT Repository 
GFT Repository is a MySQL database, which we use to keep 
track of the Google Fusion Tables.  

Besides normal aggregation tables, this repository also manages 
all the temporary aggregation tables. For example, “Busch” can be 
the name of the region containing all the route segments within 
the Busch Campus of Rutgers University. All queries with 
locations belonging to this area will be mapped to this region. As 
a result, a table storing the campus pollution data is created for 
smoother data retrieval. 
Figure 4 shows a typical GFT item in the repository. Aggregation 
Table in Figure 4.a keeps track of the aggregations performed, 
owner who initiated the aggregation, the period for which data 
aggregation was performed, whether spatial and temporal 
aggregations are performed.  In the table above, Start and End 
indicate the time span of data used for aggregation. A value of 1 
int SpatialAgg indicates that a spatial aggregation has been 
performed and a value of 1 in TimeAgg indicates that a one-
minute temporal aggregation has been performed. The Region 
Table in Figure 4.b indicates the region for which the aggregation 
was performed. In the example above, Rutgers campus was the 
region chosen. 

Table in Figure 4.c – the region to road segment mapping table -  
consists of the road segments pertaining to a given region. So, the 
aggregation performed for the Rutgers campus is also applicable 
to the road segments that belong to the campus region. 

 
 

3.3.3 Data Process Pipeline 
In this section, we present the data process pipeline through which 
we convert raw data from our two types of sensors into 
aggregated data stored in GFT Repository. We first give two 
sample measurements and then explain all the processing that 
takes place. 

 
 

Figure 5 gives the two sample data points, which are of different 
sizes and contain different fields. Data point ‘a’ is from the MSB 
and data point ‘b’ is sent by the NODE sensor. The first step is the 
removal of the device identifiers, which are id, device_ID and 
device_Name in these two cases. Then, initial geographical 
aggregation is applied, causing the translation of the location field 
to road segments and then to the merging of the measurements as 
two data points for a road segment; shown in Figure 5 as ‘c’. 
Finally, temporal aggregation is applied. Since these two records 
are assigned the same road segment and they are in the same time 
frame, they will be joined as shown in Figure 5 as ‘d’. During this 
step other post-processing can take place such as the computation 
of the mean of the measurements or the Air Quality Index value. 
For example, the mean is calculated in the example shown in 
Figure 5. 

4. EXPERIMENTS 
In this section, we describe preliminary experiments we 
performed with the two platforms on highways in New Jersey and 
New York. In the first experiment, both sensing devices are 
placed outside the car. In the second experiment, NODE is 
mounted inside the car while MSB is still placed outside.    

Figure 4 GFT Repository Example 

Figure 5 Aggregation Example 



 

 

4.1 MSB Outside vs. PSD Outside 
We deployed the Personal Sensing Device (NODE) inside Mobile 
Sensing Box (MSB) so that both the devices can measure the 
pollution simultaneously and under the same conditions. 
Mounting MSB outside the vehicle would be the typical 
deployment scenario on public transportation infrastructure. 
Figure 6 shows the MSB mounted outside the car. The inset 
picture shows the layout inside the MSB.  

 
 
 
 

 
 
 
Figure 7 shows the correlation between the two platforms in a 
typical experiment. Each vertical represents one sample. Data in 
red is from the NODE and data in blue is from the MSB. In MSB, 
there is a 30 second heating cycle between two sampling cycles, 
so we can observe gaps in the data from the MSB.    

We observed similar variations between the data from the two 
platforms. For linear regression, we calculated the average of each 
cluster of MSB readings and the average of the corresponding 
cluster from the NODE values. Using these pairs of values, we 
performed the linear regression analysis.   From this analysis 
(shown in Figure 8), we found there is a significant positive linear 
relationship between the two measurements (p<0.001). In 
addition, the spearman correlation coefficient between these two 
was 0.85, suggesting that the corresponding pollution data from 
both platforms is highly correlated. This is an experiment 
conducted on the highway and in suburban areas, which have 
relatively steady pollution distribution. Whether this correlation 
applies to an urban environment needs to be studied. 

Figure 9, shows the pollution level from this experiment. The 
Heat map shows that the highly polluted areas are located 2 miles 
north of exit 8 of NJ Turnpike due to congestion and the 
intersection of Route 18 and Main Street due to merging traffic. In 

addition, the Turnpike entrance and exit areas have slightly high 
pollution levels compared to other local roads because of the 
relatively high traffic going to and from the Turnpike. This is 
consistent with the hypothesis that high traffic density is 
correlated to high levels of pollution. 
 

 
 
 
 

 
 

 

4.2 MSB Outside vs. PSD Inside 
In this section, we describe the experiment and the results when 
Personal Sensing Device (NODE) is deployed inside the car, 
which would be typical in personal sensing scenario. Figure 10 
shows the PSD (NODE) mounted inside the car near the vent, 
while the MSB is fixed outside the car (as shown in Figure 6). 
During the experiment we kept the fans open to maintain the 
airflow from outside. 

As shown in Figure 11, the test started from Route 440, Exit 4 and 
went through Staten Island Express Way (I-278), some local roads 
and finally returned to the starting point. Due to the influence of 
road constructions, the carbon monoxide concentrations on Staten 
Island Express Way are higher than other places in this 
experiment. 

Using the same format as shown in Figure 7, we show data from 
this experiment in Figure 12. We can see that the variations of 
pollution levels from the two platforms are similar. We performed 
regression analysis as described in Section 4.1 (shown in Figure 
13), which supports the positive linear relationship between the 

Figure 6 MSB Mounted on Car 
 

Figure 7 Pollution Data from NODE and MSB 
on NJ Turnpike 

 

Figure 8 Linear Regression in Pollution 
Measurements on NJ Turnpike 

 

Figure 9 Heat map of Carbon Monoxide 
Concentrations on NJ Turnpike 

 



 

 

two platforms. However, spearman correlation coefficient is 
0.5931, which is lower than the result from Section 4.1. More 
work is required to identify the reasons behind this. 

 
 

 

 
 
 
 

 
 
 

 

4.3 Challenges 
Our work revealed several challenges, which we plan to address 
in our future work. 

Sensor Location. We observed that the orientation of the sensor 
relative to the vehicle movement influences the measurements. 
The inline deployment allows air to flow into the sensor body. 
Intuitively, this should provide true ground level measurements as 
opposed to the transversal deployment of the sensor. However, in 
cases where sensors use a sensor preheat cycle before sampling, 
this will affect the measurements. 

 
 

  
 

In MSB design, sensors are mounted in a box and a small fan 
draws air into the box for sampling. We plan to evaluate the 
measurements using the multiple orientations described above to 
understand how orientation influences the measurements. In 
addition, we have conducted tests with the personal sensing 
device placed inside and outside the car. Our preliminary studies 
indicate that pollution readings inside vehicles correlated with 
those taken outside vehicle on freeways and suburban roads. 

Sampling Strategy.  The frequency at which measurements are 
done should relate to the vehicle speed and to the spatial gradient 
of pollution. For instance, at highway speeds, a frequency of one 
sample per minute means the measurements are one mile apart 
(assuming a vehicle speed of 60 MPH). Is this measurement 
frequency really necessary given the rate at which pollution level 
changes relative to distance? If not, what factors should the client-
sensing app consider to decide the best sampling time for 
accuracy? Geography of the road, speed, and changes in traffic are 
the obvious candidates. 

The sampling strategy also needs to define the minimal subset of 
criteria pollutants that must be measured on a mobile platform to 
reflect the air quality. This is essential to arrive at a cost-effective 
mobile platform.   

Server Aggregation. The server needs to implement a smart data 
aggregation strategy on data provided by multiple cars so that the 
air quality reports correlate with the ground truth pollution.  

Temporary pollution surge is an additional phenomenon we 
observe in our measurements. A passing truck that produces high 
pollution around itself usually causes this; but this effect is 
temporary and does not reflect the ground truth. Algorithms to 
find and eliminate these outliers need to be designed. 

We also found that pollution on the road is highly sensitive to 
weather. Sensors are also susceptible to produce varying readings 
during abnormal weather conditions. Currently, we segregate 
pollution measurements under different weather conditions and 
plan to further investigate the correlation between weather and the 
ground-truth pollution measurements.  
Incentives and Applications. Given these inevitable sources of 
inaccuracy, we must rely on developing a large pollution sensing 
community and more advanced pollution sensor technology. How 
to incentivize users to produce more measurements is yet another 
challenge. We plan to provide value added services derived from 
our system to volunteers as a complimentary reward for their 
participation.  

Furthermore, it will be interesting to study how general drivers 
behave when they are presented with fine-grained pollution data 
collected by our two models. For example, given the information 

Figure 10. Usage of NODE inside car 

Figure 11 Heat map of Carbon Monoxide 
Concentrations on Staten Island 

 

Figure 12 Pollution Data from NODE and MSB 
on Staten Island 

Figure 13 Linear Regression in Pollution 
Measurement on Staten Island 



 

 

on highly polluted routes, how many drivers will choose to take 
cleaner route at the cost of longer driving times? 

5. RELATED WORK 
Due to the huge gaps in ground-based networks of air pollution 
monitors, there is a necessity to obtain fine-grained air quality 
data. Various attempts have been made to employ mobile sensors 
in order to achieve this goal. The School Bus Monitoring Study 
[31] conducted at University of California along with NRDC 
(National Resources Defense Council) highlights the health 
hazards posed to school children by their exposure to diesel 
pollutants. It also emphasizes the urgent need for mobile 
monitoring of air quality because diesel exhaust is a known 
carcinogen and a cause of respiratory illnesses. An interesting 
study was conducted by EPA [24] to measure air pollutant 
concentrations inside and outside of a truck cabs. The study 
however used measurement techniques that involved collecting air 
samples in the truck and later analyzing them in a lab to derive 
actual air quality values. Wireless sensor networks for monitoring 
personal pollutant exposure [25], indoor air quality [23] and 
hazardous sites [30] have also been proposed. 

In order to bridge the gap between the sampling phase and the 
analysis phase, researchers introduced monitoring approaches 
using commodity sensors, which can provide real time pollution 
data. N-smarts [26] and CommonSense research conducted jointly 
by UC Berkeley and Intel focused on collecting air quality data by 
attaching sensors to GPS enabled cell phones. It also highlights 
various challenges with the quality of sensor data from networked 
mobile sensing units such as interference of user behavior, 
location coverage, calibration accuracy and social aspects of 
mobile sensing and impact on citizen behavior.  

Work has also been done to evaluate the design issues of sensor 
boards for air quality monitoring [22]. The challenges in 
preserving privacy of participants of personal sensing have been 
studied [28, 29]. A software framework for data gathering using 
smart phones has been presented in [27].  Air Quality Egg [33], a 
project hosted on Xively (formerly Pachube/COSM) has 
introduced a personal pollution-sensing platform.  

OpenSense [18], a project run by EPFL and ETH Zurich, 
Switzerland, aims to study the feasibility of installing sensors on 
the roofs of buses and trams, taking advantage of existing public 
transportation vehicles to form an extensive network of mobile air 
quality data collection sites. Similar pollution sensing network has 
been tested on the buses in the city of Sharjah, UAE [20]. The Air 
Project [19] is a public, social experiment in which people are 
invited to use portable air monitoring devices to explore their 
neighborhoods and urban environments for pollution and fossil 
fuel burning hotspots. Teco Envboard [21] focused on design of 
sensing platform with commercial off the shelf sensors for carbon 
monoxide, carbon dioxide, ozone and nitrous oxide for 
urban/participatory sensing projects. Another interesting approach 
discussed in [32], wherein; the historical and real-time air quality 
measurements are used to infer the fine-grained air quality in a 
city.  

6. CONCLUSION 
This paper presents two mobile platforms for fine-grained real-
time pollution measurement, mobile sensing box, deployable on 
public transportation infrastructure and a personal sensing device 
(NODE) that can be used to create a social pollution sensing. We 
conclude that both approaches are feasible. We also show that a 
personal sensing device can be conveniently used inside the car, 

yet still producing meaningful pollution measurements. However, 
more work is needed to arrive at a model that reflects the ground 
truth pollution values. 

The two models presented in this paper, though built with the 
common goal of air quality monitoring, present varied advantages 
and challenges. Since the public infrastructure model uses buses 
travelling on fixed routes at scheduled times, it ensures a constant 
reliable stream of pollution measurements. The social community-
sensing model, on the other hand, relies entirely on the 
participants to generate data. Hence, the number of individuals 
actively participating will determine the breadth of pollution 
information obtained. But, unlike the bus scenario, where data 
will always be pertaining to certain fixed routes everyday, the 
social scenario would collect air quality measurements for 
multitude of routes across the country and enable wider coverage 
and provide redundancy. 

The air quality data obtained using such sensing models could 
serve various applications. Patients with respiratory or 
cardiovascular diseases would find our results valuable to 
determine less polluted routes. Health aware individuals could 
also take advantage of this form of cleaner route navigation. 
Individuals using our system will become more knowledgeable 
about the extent of pollution and be motivated to follow better 
driving patterns, such as not allowing their vehicle to idle for long 
periods or to drive more environmentally friendly cars. Apart 
from these applications at an individual level, this data could be 
used as an additional input to large-scale policy making. For 
example, public health officials and policymakers could use our 
results to predict potential health impacts based on air quality 
across various regions to make decisions such as possible 
locations for a future school or residential community.  
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