
Tragedy of the Coulombs: Federating Energy Storage for
Tiny, Intermittently-Powered Sensors

Josiah Hester, Lanny Sitanayah, Jacob Sorber
School of Computing
Clemson University

{jhester, lsitana, jsorber}@clemson.edu

ABSTRACT
Untethered sensing devices have, for decades, powered all system
components (processors, sensors, actuators, etc) from a single shared
energy store (battery or capacitor). When designing batteryless sen-
sors that are powered by harvested energy, this traditional approach
results in devices that charge slowly and that are more error prone,
inflexible, and inefficient than they could be.

This paper presents a novel federated approach to energy storage,
called UFoP, that partitions and prioritizes harvested energy auto-
matically into multiple isolated smaller energy stores (capacitors).
UFoP simplifies task scheduling, enables efficient use of compo-
nents with differing voltage requirements, and produces devices
that charge more quickly under identical harvesting conditions than
a traditional centralized approach. We have implemented a UFoP
reference design and conducted extensive experimental evaluation,
including a short deployment. Our experimental results using an
MSP430-based prototype show that UFoP provides as much as 10%
more computational availability, and as much as four times more
radio availability than the centralized approach. For all applications
and energy environments evaluated, UFoP harvested 0.7-10.2%
more energy than the centralized equivalent; meaning UFoP adds
zero energy overhead.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Micro-
processor/microcomputer applications

General Terms
Reliability, Measurement, Performance

Keywords
Energy Harvesting; Federated Energy; Task Coupling; Capacitor;
Embedded System

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’15, November 1–4, 2015, Seoul, South Korea..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3631-4/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2809695.2809707.

1. INTRODUCTION
Energy is the greatest single limiting factor in the design and ef-

fective operation of mobile sensors and other untethered computing
devices. Reductions in power consumption and advances in energy
harvesting are making long-term device deployments increasingly
possible; however, harvested energy is often variable, scarce, and
difficult to predict. Batteries are large and expensive. Batteries wear
out, charge slowly, require special protection and charging circuitry,
pose environmental risks, and fundamentally limit the lifetime and
deployability of today’s mobile computing devices.

These challenges have inspired a range of capacitor-based sensor
devices [8, 9, 18, 20–22] that harvest energy, charge quickly, and
can store only enough energy for short bursts of operation (a few
seconds or even a few hundred milliseconds long). This new gen-
eration of tiny batteryless sensing devices will be cheaper, more
durable, and more environmentally friendly than their battery pow-
ered predecessors. They will also have much tighter energy budgets
and much more frequent power failures, two conditions that are
poorly-supported by today’s mobile hardware platforms, especially
when it comes to storing and managing energy.

Traditional mobile devices store energy in a single common en-
ergy store (battery or capacitor) that is used to power all system
components (e.g., processors, sensors, radios and other peripherals)
an approach that is simple to design and works well for devices
with large batteries; however, when energy budgets are tight and
failures frequent, each component’s energy usage can significantly
impact the availability of other components. For example, reading
from a sensor may impact the device’s ability to do computation.
Power hungry operations, like transmitting a radio message, may
cause the device to lose power entirely, becoming unavailable until
the device can be recharged. Reasoning correctly about periph-
erals, consequent power consumption, and application priorities
requires computational resources (for modeling and prediction) that
transiently-powered devices cannot afford.

In this paper, we propose a new federated approach to storing
harvested energy that relaxes the coupling between a tiny, intermit-
tently powered device’s individual components (or subsystems). Our
approach, called UFoP (United Federation of Peripherals), uses indi-
vidual per-peripheral energy stores and low-power control circuitry
to isolate and prioritize individual peripherals. Federating energy
storage allows power-hungry operations to proceed without sacrific-
ing the device’s immediate ability to use other peripherals, gather
new data, process incoming data, and respond to incoming stimuli.
This approach also simplifies the task of programming energy-aware
logic—effectively replacing complex modeling of analog circuit be-
haviors with simple binary decisions based on whether or not a
peripheral is available.

Listing 1: A conservative example program

when timer fires do { // Once every 1ms
if can_sense_store_and_send? {

while (! sample_buffer_full ?) {
collect_sample ()
sleep(1ms)

}
compute_and_store_mean ()
transmit_recent_means ()

}
sleep()

}

Listing 2: A more optimistic program

when timer fires do { // Once every 1ms
if can_sense? {

collect_sample ()
}
if sample_buffer_full? {

compute_and_store_mean ()
}
if can_send? && has_stored_means? {

transmit_recent_means ()
}
sleep()

}

Our initial implementation of the UFoP approach uses ultra-low-
power comparators to control and prioritize the charging of individ-
ual energy stores, where the microcontroller gets the first priority.
The main capacitor charges until it reaches 2.7 V, then the microcon-
troller turns on. When the input voltage reaches 3.1 V, the peripheral
capacitors charge. In our experiments, we found that programs
that use UFoP as the energy backbone had as much as 10% more
computational availability, and as much as four times more radio
availability than the centralized approach. Using UFoP, programs
become more resilient, reducing low voltage events dramatically.
Additionally, programs that use UFoP harvested more energy for all
energy environments evaluated than programs using the traditional
centralized energy storage approach.

While distributed energy storage has been employed in large-scale
power systems [3], and hybrid storage systems have been used to
improve the efficiency of battery charging [12, 15, 16], UFoP is, to
the best of our knowledge, the first embedded system to employ
federated energy storage, in a general way, to simplify management
of individual system components.

2. CENTRALIZED ENERGY STORAGE
For half of a century, computing devices have used a central-

ized approach to power system components (processors, sensors,
radios and other peripherals)—an approach that has reduced both
device size and cost, and that, until now, has had no significant
drawbacks. Whether power is supplied by a dedicated connection
to wired infrastructure or by a battery that is regularly recharged,
processors, memories, and peripherals all use a shared power supply
and the nearly-universal assumption that power is unlimited and
stable. System designers have, at times, made efforts to reduce
power consumption and extend battery life, but they rarely consider
whether the program’s next action may impair the device’s ability to
perform additional functions.

However, when designing applications for batteryless and other
transiently-powered mobile devices, supplying power to all com-
ponents using a single centralized capacitor or battery reduces the
system’s flexibility and complicates programmer decision-making.
The following challenges must be carefully considered by a system
designer before developing an application using centralized energy
storage:

Capacitor tuning: Capacitor size is a critical factor that defines
how an energy-harvesting batteryless device will operate. Smaller
capacitors charge quickly, but may not be able to store enough en-
ergy for more power-hungry tasks. Larger capacitors can store more
energy, supporting longer bursts of computation and more power-
intensive operations. Larger capacitors also charge more slowly,
incur longer power outages, and waste more energy (leakage). A
system designer can maximize device availability and up-time by
selecting a capacitor that is just large enough to support the oper-
ations that the application needs to perform. When an application
performs both energy-efficient tasks (i.e., sampling lightweight sen-
sors or performing simple data processing) and energy-intensive
tasks (i.e., wireless data transmissions), a centralized energy store
must be large enough to support all operations—both heavy- and
light-weight operations.

Task coupling: A common storage capacitor also produces a tight
coupling between program tasks and system peripherals. Sampling
a sensor, for example, will consume energy and may either leave
insufficient energy for subsequent tasks or may cause the supply
voltage to drop low enough that the device loses power altogether,
and subsequent tasks must wait until more energy becomes available.

In order to illustrate these challenges, let’s consider two simple
programs described in Listings 1 and 2. Both programs gather sensor
readings until a buffer is full, compute the mean of the readings, and
wirelessly transmit a fixed number of recently computed means1.
The first program (Listing 1) conservatively sleeps until it has har-
vested enough energy to an entire application cycle (collect, process,
and transmit samples). The second (Listing 2) waits only until it
has enough energy to complete the next task and then proceeds
optimistically, assuming that enough energy will be harvested in the
future to complete subsequent tasks.

Power failures are a constant concern for batteryless devices.
When power failures do occur, computational state can be saved effi-
ciently to nonvolatile memory (like FRAM) in case a power failure
occurs between tasks or before a task completes. These checkpoints
can be included explicitly by application developers or inserted au-
tomatically, using a system like Mementos [17]. Checkpoints allow
some tasks to be resumed after a power failure; however, other tasks,
like sampling a sensor or transmitting a radio packet, cannot be
easily resumed due to timing and hardware constraints.

Consequently, the batteryless device that implements these ex-
ample programs will need to determine, at runtime, when enough
energy is stored on its capacitor to perform each desired task safely.
A capacitor’s stored energy can be estimated by measuring its volt-
age, and tasks can be safely run when that voltage exceeds a pre-
determined threshold (Vsafe), which can be determined empirically
or analytically based on the capacitance used, the time the task re-
quires to complete (ttask), and the power needed while the task is
executing. Figure 1 illustrates how this threshold is determined. If
Vsafe is chosen correctly, starting the task when the capacitor’s volt-
age is higher than Vsafe ensures that the task will always complete
before the capacitor discharges to Vfail—the point at which essential

1A small number of previous means are transmitted to provide some
redundancy in case a packet is lost.

Vo
lt

s

Time

Vfail

Vsafe

ttask

Figure 1: During task execution, capacitor discharge is sufficiently
predictable to determine the voltage at which it is safe to begin
executing it, in order to ensure that it will complete before a power
failure.

hardware components—MCU, memory, sensors, radios, or other
peripherals—turn off or become unusable.

Some tasks within a single application may take longer or con-
sume more power than others, so a separate threshold, Vsafe, will be
needed for each individual task. System designers may optimisti-
cally try to execute a task before the safe threshold is reached, in the
hope that future harvested energy will be sufficient to finish the task
successfully. When energy is abundant, this gamble may allow the
device to produce results more quickly. When harvested energy is
insufficient, sub-threshold task execution will result in wasted effort
and may result in avoidable power failures.

Software federation of the energy supply as described above can
lead to close coupling of components. The top plot in Figure 2
shows the capacitor and microcontroller voltages over time for a
solar-powered batteryless sensor node that gathers sensor data and
transmits it wirelessly to a base station (see Listing 1). In this
scenario, a control circuit waits to turn on the microcontroller until
the capacitor charges to a voltage (i.e., around 2.7 V) sufficient
to initialize the processor and accomplish some computation, the
control circuit then turns off the microcontroller when the voltage
drops below 2 V2 (when processing becomes unreliable for most
microcontrollers). The chosen capacitor is large enough (195 µF)
to power both data collection and radio transmission on a single
charge, and the application waits until the voltage charges up high
enough to ensure that the transmission completes most of the time.

In this scenario, each radio transmission causes the MCU voltage
to drop dangerously close to (and occasionally cross) the 2 V point
where the MCU becomes unstable. The larger capacitor also charges
slowly, and leaks, meaning that time and energy is lost.

3. FEDERATING ENERGY
In light of the shortcomings of centralized energy storage, this

paper argues for a different approach which stores harvested energy
in multiple independent small capacitors, one for core processing
functionality, and another for each peripheral. We call this federated
approach UFoP (United Federation of Peripherals).

2The control circuit’s hysteresis is adjustable. The thresholds used
are those we have empirically found to work well, in practice.

Reset threshold

MCU available
0

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25
Time (s)

Vo
lta

ge

Harvester
MCU/Radio

Centralized Energy Storage

Reset threshold

MCU available
0

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25
Time (s)

Vo
lta

ge

Harvester
MCU
Radio

Federated Energy Storage

Figure 2: This figure shows a “sense-and-send” application using
traditional centralized and our proposed federated energy storage ap-
proaches. Energy federation allows lightweight functionality (sens-
ing and data processing in this example) to be available sooner.

By allowing the microcontroller, sensors, and radio to function
independently, UFoP provides the following key benefits:

Useful work starts sooner: While some approaches have tried to
mask volatility of the energy supply in software [2], the reality of
capacitor based devices is that a smaller capacitor charges to an
arbitrary voltage, faster than a larger one. A centralized approach
may use software to mask volatility of the energy supply in order
to simplify task management, but the energy store will still be
unusable until it meets the necessary voltage for components to
be turned on. By federating the energy storage, smaller capacitors
charge more quickly, allowing lightweight tasks (some sensors and
microcontroller operations) to be available while larger capacitors
for radios and other power-hungry peripherals charge up. This can
be seen in Figure 2 where the MCU becomes available hundreds of
milliseconds before the centralized version.

Fewer power failures: Isolating each per-component capacitor
prevents a power-hungry component from jeopardizing the whole
system. For example, when the radio drains its dedicated capacitor’s
power to transmit messages, the device retains the ability (at least in
the short term) to gather and process new data. UFoP prioritizes the
charging of individual energy stores. In our current implementation,
the microcontroller gets the first priority, while the priorities of
sensors, radios, and other peripherals can be configured to suit
individual applications. For example, the tight coupling present
in the centralized approach shown in Figure 2 causes the supply

voltage to dip below the reset threshold, endangering the device duty
cycle. With UFoP, this problem occurs much less frequently.

Simpler application decisions: Each peripheral is available for use
as soon as its capacitor is charged, and can be used independently of
the charge state of other peripherals. When a peripheral is used and
depletes its own energy, it becomes unavailable until it is recharged.
This allows UFoP to “save up” energy for power-hungry tasks, like
short bursts of radio communication, while allowing data collection
and processing to continue. When using centralized storage, appli-
cation decisions can be complicated—requiring designers to reason
about the aggregate impact of multiple peripherals and tasks on a
single capacitor. In contrast, a UFoP device can determine whether
it can afford to use two peripherals (e.g., a sensor and a radio), by
simply checking their individual voltages.

Increased flexibility: UFoP devices provide more flexibility when
combining peripherals with different energy requirements. For
example, consider a sensor node that combines an MSP430 MCU as
its computing core, a low-power sensor, and a more power-hungry
radio. A larger capacitor will be needed in order to support the
radio, which will charge much more slowly than a smaller capacitor
that might be sufficient to support the other components for short
bursts of operation. In a centralized energy architecture, radio
transmissions would deplete the large common capacitor and may
render the entire node unavailable while it recharges. In a UFoP
device, the small capacitors dedicated to the core and sensor would
charge more quickly, allowing the application to continue gathering
and processing data, while waiting for the larger radio capacitor
to charge. In both cases, data would be sent at roughly the same
rate, but using UFoP the application would have more flexibility in
deciding what to send.

Lower energy consumption: Not all system components require
the same voltages to operate. UFoP allows individual component
capacitors to be charged to the voltage required by that component,
which often results in lower operating voltages and reduced per-
component energy consumption.

Harvest more energy: When using UFoP, the energy harvester’s
voltage rises quickly (as the small microcontroller capacitor charges),
but increases in harvester voltage is slow as power is diverted to
charge peripherals. When UFoP’s thresholds are set appropriately,
the device spends more time in its most efficient voltage range and
harvests more energy than the centralized equivalent.

3.1 UFoP Reference Design
Figure 3 shows a UFoP system that is integrated with two com-

monly used peripherals in sensing applications (i.e., a sensor and
a radio). The system consists of four main components: an energy
harvester, charging controller, peripheral controller, and peripherals.
The energy harvesting device harvests ambient energy and stores
it in the first-stage capacitor. The charge controller is responsible
for turning on and off the microcontroller and charging an array of
peripheral capacitors. The peripheral controller turns on and off
peripherals (sensor and radio), which are only available when their
capacitors are charged.

Energy Harvesting: The UFoP system is powered by ambient
sources. The energy harvester converts free energy from the environ-
ment (e.g., solar, thermal, radio frequency (RF), and kinetic energy)
into electrical energy (DC), which the harvester supplies to the rest
of the system. From the harvester, the current flows to charge the
first-stage capacitor that powers the microcontroller.

Energy
Harvesting

Peripheral
Control

Charging
Control

Peripherals

DC Power

MCU (MSP430)

RadioSensor

1st stage
Capacitor

Solar Thermal RF Kinetic

UFoP Controller
(Custom PCB)

or or or

Cap Cap

Current Flow
Control Signals

Figure 3: Overview of UFoP when integrated with a set of com-
monly used peripherals; a sensor, and a radio. A UFoP system is
made up of four components: an energy harvester, charging con-
troller, peripheral controller, and peripherals. The charge controller
manages the charging of an array of capacitors (drawing from the
first-stage capacitor) as well as turning on and off the MCU. The
peripheral controller (an MSP430FR5739 in the current prototype)
gates power to the peripherals, allowing peripherals to be com-
pletely off when not in use. Peripherals and the MCU communicate
independently of the charging controller.

Charging Control: UFoP uses low-power control circuitry as
charge controller to control and prioritize the charging of an ar-
ray of capacitors as well as turning on and off the microcontroller.
UFoP is designed with the microcontroller as a non-negotiable first
power priority. A sensor without a microcontroller could not process
data, and a radio without a microcontroller would have no signal to
transmit. From an implementation perspective, this is ideal since the
microcontroller can then be used to control the power flow to the
peripherals. As sensors and radios can provide functionality regard-
less of the operation of other peripherals, subsequent priority values
can be assigned based on system requirements. In our reference
design, the first-stage capacitor charges until it reaches 2.7 V, then
the microcontroller turns on. When the input voltage reaches 3.1 V,
the current starts to flow into the peripheral capacitors.

Peripheral Control: The peripheral controller in the UFoP sys-
tem can be any ultra-low-power microcontroller, like the FRAM
based MSP430 processors. In our reference design, we use the
MSP430FR5739 as peripheral controller; which only draws 81.4
µA/MHz in active mode. When the first-stage capacitor capacitor
charges up to 2.7 V, the microcontroller turns on. The microcon-
troller gates power to the peripherals, allowing peripherals to be
completely off when not in use. This control communication is
independent from the charging control scheme. The switches in
the peripheral controller are designed to open (disconnect) when
the microcontroller loses its power and turns off, i.e., when the
main capacitor’s voltage falls below 1.8 V. This design satisfies the
MSP430FR5739 supply voltage requirements, i.e., 1.8 V to 3.6 V.
We built a thin software layer to manage the ADC polling, timers,
and interrupt wake ups, for the MSP430 line of microcontrollers.
This layer can easily be ported to other platforms, as the components
and software practices are common among embedded systems.

Peripherals: Two of the most commonly used peripherals in sens-
ing applications are sensor and radio. The type of the peripherals
and the tasks they perform determine the size of the capacitors used.
When an application uses a lightweight sensor and a radio, the size
of the capacitor for the sensor should be a lot smaller than that for
the radio. If the application requires intensive data transmission,
the radio’s capacitor size must be large enough to support the tasks.
In the UFoP system, the peripherals are only available when their
dedicated capacitors are charged.

3.2 Application Development Simplification
Federating energy storage changes how sensing applications are

built. From the hardware point of view, sizing several capacitors ap-
propriately to peripherals is much easier than sizing one capacitor to
multiple peripherals and a microcontroller that could have different
supply voltage requirements. For example, the MSP430 microcon-
troller works within the 1.8 – 3.6 V range, the CC2500 radio (a very
common 2.4 GHz radio) works from 2.0 V to 3.9 V, and a humidity
sensor used in our greenhouse monitoring application works from
3 V to 5 V. This combination makes it difficult for application de-
velopers to size a single capacitor and determine duty cycle. In this
example, the radio and microcontroller could potentially never come
online while waiting for the voltage to be sufficient for the humidity
sensor to function. UFoP allows application developers to simplify
this by sizing and dedicating each capacitor at a specific voltage to
each peripheral.

From the software development point of view, UFoP allows a
duty cycle when energy is scarce, and when it is abundant. That
means UFoP lets the duty cycle scale up or down without hurting the
average duty cycle performance. For example, in a classic “sense-
and-send” application, the device can use a more powerful sensor
when there is an abundance of energy, but performs only computa-
tions if there is very little energy. With UFoP, programmers have
a more deterministic view of energy and task scheduling, allowing
them to make better informed decisions during application devel-
opment. In addition, UFoP simplifies applications by eliminating
the need for complicated algorithms to predict when the peripherals
become available.

4. IMPLEMENTATION
We have implemented a UFoP reference design on a custom

printed circuit board. The prototype employs a variety of differ-
ent hardware components. Two nano-power comparators are used
per peripheral, that control the charging, and discharging of the
peripheral capacitor. The current prototype supports two peripher-
als. An ICL7665 or MIC841 voltage monitor is used to monitor
the first-stage capacitor, this monitor has a built in reference, and
resistor defined hysteresis. The settable hysteresis allows a broad
operating range for the microcontroller. Each of the comparators
has a resistor divider defined trip point; the trip points and hysteresis
are set in such a way that the microcontroller will always be on if
the peripherals are charging.

Because UFoP is a hardware addition, some note must be taken
of its size and cost. The current UFoP prototype measures 37.0 mm
by 15.2 mm, with a low profile. The total cost of the prototype bill
of materials, including all components, and PCB from a batch PCB
supplier like OSH Park, amounts to less than $20 per device, further
development could easily lower this cost. If the current prototype
was produced at scales of a 1000, the price drops to less than $2
per device. Most of this cost would disappear in a custom silicon
solution, which would also reduce the size and component count for
a deployed sensor.

In addition to building the UFoP prototype, multiple systems were
built or used in the evaluation. We used the energy environment
emulator Ekho [10] to record and replay solar energy harvesting
environments, as well as RF energy environments. Solar environ-
ments were generated by a programmatically controlled headlight
focused on a solar panel. RF environments were generated from
the harvester of a UMich Moo [24], which harvested RFID energy
from the UHF band created by an Impinj Speedway RFID Reader.
IV-surfaces were created by moving the reader back and forth across
the front of the Umich Moo. The recorded IV-surfaces were later
replayed in the lab using Ekho; which provided a realistic energy
harvesting environment to test UFoP with. We plan to make all
IV-surfaces we recorded freely available online at publication time.
We also used an NI USB-6356 [11] and Measurement Computing
USB-201 [4] data acquisition device (DAQ) for voltage and current
measurements, as well as event counting. For all applications, we
used MSP430FR5739 Launchpads as the main processing device.

We translated the programs described in Listings 1 and 2 into
embedded C, running on the MSP430FR5739. Each program has
two variants, one that is meant to run with UFoP functioning as
the energy backbone, and one that runs with the traditional central-
ized energy approach. The federated and centralized variants are
intentionally similar for both programs; the federated versions differ
in that they dedicate an ADC per peripheral to monitor the energy
storage levels of the radio and accelerometer supply voltages, in
addition to the MCU energy storage levels. Both of these programs
attempt to federate energy storage, one using UFoP, and one in
software. We used these programs to evaluate the effectiveness of
the federated energy approach in terms of availability, resiliency,
and energy harvesting efficiency. We also developed federated and
centralized versions of a greenhouse monitoring application, which
is described in Section 6. These are similar in function to the above,
but use a different set of peripherals. A basestation program was also
created to listen for and log sensor readings during the greenhouse
monitoring deployment.

All hardware designs, I–V surfaces, and software will be made
freely available online at publication time.

5. EVALUATION
In this section, we evaluate the performance of sensing applica-

tions that use our UFoP reference design as an energy backbone.
Specifically, we examine how federated and centralized variants
of sense-and-send behave in solar and RF energy environments.
We compare these two approaches and measure them in terms of
availability, resiliency, and energy harvesting performance.

In our experiments, we found that programs that use UFoP as the
energy backbone had as much as 10% more MCU availability, and
as much as four times more radio availability than the centralized
competitor. Using UFoP, programs become more resilient, reducing
failures by 4.5x in some cases. Additionally, programs that use
UFoP harvested 0.7-10.2% more energy, for all energy environ-
ments evaluated, than programs using a centralized energy storage
approach; meaning UFoP adds zero energy overhead.

5.1 Methodology
To evaluate UFoP, we consider multiple programs, in a variety of

energy environments, with the same hardware and peripherals, but
interchanging the centralized and federated approach to energy stor-
age. We use the following experimental setup to evaluate how UFoP
contributes to the performance, in terms of availability, resilience,
and energy efficiency of a tiny, capacitor-powered sensing system.

Availability

UFoP Centralized
Program I–V Surface MCU (%) Radio (%) Accel (%) MCU (%) Radio (%) Accel (%)

Optimistic Solar 57.08 7.61 18.22 46.97 6.36 17.67
RF High Energy 81.85 4.55 10.45 76.89 1.18 25.29
RF Low Energy 86.58 1.23 9.43 75.69 0.64 20.93

Conservative Solar 54.75 8.14 13.67 46.64 8.10 13.40
RF High Energy 68.11 7.99 9.59 80.69 3.77 12.00
RF Low Energy 74.23 4.67 5.70 74.97 2.66 8.09

Table 1: This table shows the percentage of time over the entire I–V surface that the peripherals and MCU were available, for both UFoP and
centralized. For these results, the program described in Listing 2 (optimistic) and the program described in Listing 1 (conservative) were used,
with the Vsafe thresholds (as in, no radio transmission or power failures). For all three surfaces, using UFoP increases the availability of both
the MCU (for computation) and the radio (for communication and data sending). UFoP does especially well on RF surfaces, where energy is
scarce, since it does not have to wait to charge a much larger capacitor before it begins computation.

Vo
lts

Time

Vfail

Vsafe

tasksafe

Voptimistic

taskoptimistic

Figure 4: For our evaluation, two sets of thresholds were deter-
mined for each program variant. The first threshold, Vsafe (the blue
discharge curve), is set such that if no new energy is harvested, tasks
started at this threshold are guaranteed to complete. The second
threshold, Voptimistic (represented by the red discharge curve), opti-
mistically assumes new energy will be harvested to replenish the
task capacitor during task execution.

Programs: We use the sense-and-send program variants described
in Section 2 to provide points of comparison between UFoP and
the centralized approach. The program described in Listing 2 we
refer to as “optimistic” sense-and-send, the program described in
Listing 1 we refer to as “conservative” sense-and-send. The program
using UFoP monitors capacitor voltages, and gates energy flow to
peripherals as needed. The centralized program attempts to federate
energy storage in software, allocating from its single energy store
when it becomes available at the required voltage.

Thresholds: Each program has certain voltage thresholds (Vsafe)
where the radio, sensor, and MCU turns on, as described previously
in Figure 1. This threshold is the voltage on the capacitor that
signifies there is enough energy to complete a task or set of tasks,
such as sending a data packet over the radio. These thresholds
are set in software for the radio and sensor, and hardware for the
MCU. Thresholds are set differently for centralized, since the single
capacitor must store enough energy to accomplish all tasks. We

have two sets of voltage thresholds for each program, as shown in
Figure 4. The first threshold, termed Vsafe is the level that guarantees
task completion. Setting the threshold above Vsafe means a program
will not get as many tasks done (but will never fail), while setting
the threshold below Vsafe will mean tasks are not guaranteed to
complete. The second set of voltage thresholds is termed Voptimistic;
the assumption is that new energy will be harvested to replace
energy being used during the task, therefore these thresholds are set
lower. Using the Voptimistic set of thresholds does not guarantee task
completion or zero power failures. These thresholds were gathered
by manually executing programs with high and low thresholds over
a solar I–V surface, effectively binary searching through all possible
thresholds. Vsafe and Voptimistic thresholds were only gathered for
the “optimistic” sense-and-send program. Voptimistic thresholds were
gathered for the “conservative” sense-and-send program.

Test Devices: Each of the applications were run on Texas Instru-
ments MSP430FR5739 processors. These devices have low sleep
currents (i.e., 5.9 µA), multiple ADCs, and FRAM memory for
checkpointing and data storage.

Peripherals: Each test device manages its own set of peripherals.
Peripherals used are an MMA7361 triple-axis accelerometer, and a
315 MHz RF Transmitter (CDT-88). These peripheral types were
chosen because they are ubiquitous in sensing applications.

Voltage Monitor Reference Designs: To compare the federated
and centralized approach, we designed a supply voltage monitor,
based on the ICL7665 and MIC841 (also used by our UFoP refer-
ence design) to act as the energy storage backbone for all centralized
program executions. The ICL7665 or MIC841 charges a large ca-
pacitor bank, and turns on and off the MCU with hysteresis. The
centralized supply voltage monitor and the UFoP reference design
have the same amount of capacitance (energy storage) and many of
the same components, however, the UFoP reference design feder-
ates its energy storage in hardware, while the centralized reference
design federates energy sotrage in software. In the evaluation, we
refer to the centralized voltage monitor device as the “centralized
reference design.”

I–V surfaces: To control the energy environment, we use an Ekho
[10] device to record and emulate I–V surfaces. Ekho provides a
repeatable energy environment which replaces the energy harvester
as input to the energy storage approach. Without Ekho, it is very
difficult to control for the energy environment in experiments. We
recorded three eight-second I–V surfaces for our evaluation. The
first surface was recorded from a solar panel harvesting energy from

1.5

2.0

2.5

3.0
vo

lts
Centralized

mcu
radio
sensor

1.5

2.0

2.5

3.0

vo
lts

UFoP

mcu
radio

0 1 2 3 4 5 6

time(s)

sensor

First Stage Capacitor Radio Capacitor Sensor Capacitor

Figure 5: This figure compares the availability of the MCU, sensor, and radio when an MSP430FR5739 running the program described
in Listing 2 executes across the I–V surface recorded from the RFID reader. The program was run multiple times using either the UFoP
reference design or the centralized reference design, and the Vsafe thresholds. Applications that use UFoP have significantly more MCU
on-time, allowing more valuable computation, as well as significantly more sends over the radio. Because the radio can work with a lower
supply voltage than the MCU, UFoP allows for more transmissions since the energy store is decoupled from the MCU. Sensor readings, while
not as frequent as with centralized, are dispersed more evenly in time.

a car headlamp that turns on and off four times, creating a sinusoidal
solar surface. This means the device under test goes through the
entire life cycle; charge, deplete, recharge. The second and third I–V
surfaces were recorded from the RF energy harvester on the Umich
Moo, while it harvested from an Impinj Speedway RFID reader.
The reader antenna was waved across the Moo at two distances to
produce two surfaces, referred to as “RF High Energy” and “RF
Low Energy” in the rest of the evaluation.

Taking these programs, thresholds, test devices, peripherals, sup-
ply voltage monitors, and I–V surfaces, we can assemble an experi-
mental setup that will allow us to make fair comparisons between
federated and centralized energy storage. By running each program
variant (federated or centralized) in each recorded energy environ-
ment, we can attempt to answer these questions about UFoP:

• Does federating energy storage provide more sensing and
computational availability? (5.2)

• Does federating energy storage make applications more re-
silient? (5.3)

• What is the effect of federating energy on energy harvesting
efficiency as compared to the centralized approach? (5.4)

• What is the overhead of the federated energy approach? (5.5)

5.2 Availability
The percentage of availability of the MCU for computation, and

peripherals for sensing or sending over an entire duty cycle, is a
critical metric of evaluating performance of tiny energy harvesting
systems. In this section, we evaluate the availability of both our
test programs, when running on our UFoP reference design and

the centralized reference design. We execute each of these pro-
grams, with both energy storage reference designs, ten times each,
on all three of our recorded I–V surfaces. All of the optimistic
sense-and-send programs use the Vsafe thresholds, while the conser-
vative sense-and-send programs use slightly “optimistic” thresholds.
Using the Measurement Computing USB-201 [4] data acquisition
device (DAQ), we recorded the voltage levels of all capacitors, the
supply voltage of the MSP430FR5739 (the MCU), and the on and
off times of the radio and accelerometer peripherals.

One set of program executions is shown in Figure 5. This figure
shows the optimistic sense-and-send program executing across a
surface generated by an RFID reader swiping over a Umich Moo.
The three activity bars below each plot show when the MCU, the
radio, and the accelerometer were in use. For this RF surface,
UFoP provides more MCU on-time, and more radio transmissions.
Because UFoP allows the application to use peripherals that do not
have to exist at the MCU supply voltage, the UFoP program makes
use of the lower voltage threshold of the radio to get extra work
done in a low energy environment. Additionally, UFoP charges its
capacitors faster, meaning that the MCU turns on sooner than the
centralized version, this is shown in the bottom portion of Figure 5.

The results of all availability experiments are shown in Table 1.
The percentage of time each component was being used is listed
for both the centralized and federated approaches. For all cases,
using UFoP shows improvement in availability. The most dramatic
increase comes when using UFoP with low energy environments
and peripherals that don’t match the MCU supply voltage.

5.3 Resiliency
In this section, we evaluate the resiliency of our programs when

using the UFoP reference design and the centralized reference de-

Resiliency

UFoP Centralized
Program -Threshold Low Voltage Tx Fails -Threshold Low Voltage Tx Fails

Optimistic -151 mV 6.2 3.5% -130 mV 28.0 9.8%
Conservative -93 mV 5.1 5.2% -115 mV 34.6 16.3%

Table 2: This table shows the effect of over-estimating the harvestable energy. In the table, -Threshold is the voltage below the the Vsafe
threshold that was set when running programs for resiliency experiments. This threshold is used to determine when to turn on peripherals
for the respective program listed on the left. These results are from execution over the solar I–V surface. The number of times the voltage
on the microcontroller went below the minimum supply voltage and the percentage of radio transmission failures (because of MCU reset or
peripheral reset) are shown. Poorly choosing voltage thresholds does not have as severe an effect when using UFoP, as with the traditional
centralized approach.

sign. Resiliency is the measure of how tolerant an application is
to voltage threshold miscalculation, task incompletion, and power
failures (of the MCU or peripherals). While most application pro-
grammers try to get the equivalent of the Vsafe threshold described in
Section 5.1 to ensure no failures, it is very easy to miscalculate the
required energy budget for a specific task, especially when it comes
from a single supply. Being overly optimistic about potential energy
to be harvested can result in failed radio transmission, corrupted
memory, and low voltage events. A low voltage event, where the
MCU voltage drops below the minimum supply voltage, does not
necessarily mean the microcontroller is reset, but once it happens,
the MCU begins to draw more current, memory usually becomes
unwritable, and at worst the Supply Voltage Supervisor will trigger
a brown out. Therefore it is a state best to avoid if possible.

To evaluate resiliency we executed both of our programs, using
either of our energy storage reference designs, ten times each, on
our recorded solar I–V surface. We lowered the turn-on voltage
of the radio from the Vsafe threshold by a percentage, to see what
effect this optimism over energy harvesting would have. Since we
did not have Vsafe thresholds for the conservative sense-and-send
program, we chose thresholds that ensured zero radio transmission
failures or resets over the solar surface. Since these thresholds were
not matched like the Vsafe thresholds, the conservative results are
illustrative of the effect of over estimating your energy harvesting.
Using the DAQ, we recorded the voltage levels of all capacitors, the
supply voltage of the MSP430FR5739 (the MCU), and the on and
off times of the radio, and accelerometer peripherals. Using this
data, we gathered for each execution, the number of times a low
voltage event occurred and the percentage of radio transmission that
failed.

Table 2 shows the results of this experiment. For the optimistic
sense-and-send program, the lowered thresholds result in a dramatic
increase in low voltage events, as well as a nearly 10% increase
in transmission failures for centralized programs. The optimistic
sense-and-send program that ran on the UFoP reference design
had a much smaller failure rate. Power failures and low voltage
events are inevitable for capacitor based sensing. UFoP reduces the
number of low voltage events and failures by prioritizing the MCU
and separating the peripherals energy storage. Using UFoP, the
consequences of miscalculation of the energy harvesting potential of
a future deployment environment becomes much less catastrophic.

5.4 Energy Harvesting Efficiency
Energy harvesters such as solar panels, piezoelectric ceramics,

and thermal generators, do not supply a stable voltage to a sensor.
The voltage on the harvester changes in response to the current draw
of the sensor or vice-versa. This relationship between harvesting
current and supply voltage can be described by an I–V curve. Energy

harvesting over time can be described by a sequence of I–V curves;
an I–V surface. Every I–V curve has a maximum power point (MPP)
where the most energy can be harvested. Many systems attempt
to track this point to increase energy harvesting efficiency. UFoP
does not try to track the MPP, but because UFoP charges faster
and keeps a more stable supply voltage, for some I–V surfaces,
UFoP may harvest more energy by being closer to the MPP. This set
of experiments seeks to compare the energy harvesting efficiency
of the centralized and federated approach to energy storage, by
observing the path that each approach traces across the same I–V
surface. By keeping the same sensor combination, energy harvesting
environment (I–V surface), and program, we can see the effect of
the energy storage technique on efficiency.

The results of this experiment are shown in Table 3. For the en-
ergy harvesters used, the programs using the UFoP reference design
generally harvested more energy than the centralized equivalent.
UFoP will not always cause more energy to be harvested, however,
if the voltage at the MPP of the particular I–V surface is close to
the hardware set threshold voltage of UFoP, the stability of UFoP
should provide more energy.

5.5 Overhead
Switching to a federated energy storage approach does come with

overhead. This overhead comes from three places: 1) the addition of
voltage monitoring hardware, which slightly increases the size, cost,
and energy requirements, 2) the energy cost from polling voltage
levels with the built-in ADC, and 3) software rewriting. We have
not attempted to quantify the cost of software rewriting.

The biggest potential cost is the energy overhead; as UFoP is
meant for energy harvesting systems, any energy spent on moni-
toring must be kept low. The active components that make up our
reference design have a typical quiescent current draw of 2.7 µA. As
a comparison, the centralized reference design has a quiescent draw
of 1.5 µA. Despite the increase in overhead, the energy harvesting
gains shown in Table 3 should offset the losses, and often give a
net surplus of energy. Additionally, the larger capacitor used for
the centralized approach has a larger leakage than the collection of
smaller capacitors used in UFoP, causing some of the energy gains
seen from using UFoP.

Most traditional centralized applications have some form of sup-
ply voltage monitoring through a dedicated ADC, interrupts on an
input pin, or special hardware. UFoP has this same overhead, but
multiplied by the number of peripheral capacitor voltages it has to
monitor. The centralized reference design, over a one second period,
expends 13.6 µJ polling, while the UFoP reference design expends
23.3 µJ over the same period. This extra energy cost can be reduced
by polling fewer times, or using a low power or faster ADC. To
reduce the polling overhead completely, an interrupt driven method

Energy Harvesting Comparison

UFoP Centralized
I–V surface mean (mJ) stddev (mJ) mean (mJ) stddev (mJ)

Solar 11.49 0.05 11.41 0.06
RF High Energy 11.00 0.10 9.98 0.11
RF Low Energy 9.15 0.12 8.66 0.10

Table 3: This table shows the amount of energy harvested by the optimistic sense-and-send program on each of the I–V surfaces, for centralized
and UFoP energy storage. The peripheral turn-on voltage was set to the Vsafe threshold, such that no transmissions would fail, and no resets
would occur. When using UFoP, the application harvests more energy for all I–V surfaces tested.

0%

25%

50%

75%

100%

Afternoon Evening Morning

a
v
a
il
a
b
li
ty

storage

Centralized MCU

Centralized Radio

UFoP MCU

UFoP Radio

Figure 6: This figure shows the availability of the radio, and mi-
crocontroller, for both energy storage solutions, for the deployment.
Three different time periods are shown; the afternoon, when the
sun was brightest, the evening, when the sensors energy harvesting
began to decrease dramatically, and the morning of the next day,
when the energy harvesting begin to increase. Even though the
centralized system and the UFoP system had the same amount of
energy storage, the same harvester, and the same duty cycle, the
UFoP sensor had more radio, and computational availability.

can be used. With this approach, UFoP can trigger a wakeup pin
on the microcontroller when a peripheral capacitor has reached a
logic level threshold. This form of voltage monitoring requires no
extra energy beyond the sleep current of the microcontroller. If
greater accuracy is required, the program can do an ADC check
immediately after the interrupt wakes the microcontroller.

6. DEPLOYMENT
To evaluate UFoP in a real application scenario, we deployed a

UFoP enabled greenhouse monitoring program for eighteen hours
over two days, in a local greenhouse in late summer. We also de-
ployed a centralized version on the same bed, as a comparison.
Greenhouses waste a significant amount of water by overwatering
plants. This happens because in large greenhouses, managers do not
know the status of individual plant beds, and overwater to ensure
plants do not die. This waste is significant for economic and sustain-
ability reasons, as water is a finite and costly resource especially at
large scales. Current commercial plant monitoring systems are little
more than weather stations, these have dedicated power supplies,
are too large or too expensive to be deployed densely, and can’t
move with the plants they monitor. Because of this, sensor data is

usually very coarse, not localized, and often wrong (in the case of
plants that were moved from bay to bay). Dense deployment of tiny,
unobtrusive, energy harvesting, sensors has been suggested as one
way to monitor large volumes of plants in a greenhouse. Equipping
sensors with leaf wetness, temperature, and humidity sensors would
provide all the information necessary for managers to make local
decisions on water volume and plant health.

We developed an initial implementation of this greenhouse moni-
toring application with UFoP as an energy backbone. Two sensors
derived from those discussed in Section 5.1 were built; one using
our UFoP reference design, and one using the centralized reference
design. Each sensor had two peripherals: a CC1101 transceiver
for communication, and a resistive load that emulated a Decagon
Devices LWS leaf wetness sensor, a standard sensor used in plant
studies. The MSP430FR5739 was used as computational platform.
Each sensor used a small solar panel (of the same model) for energy
harvesting. To allow for data comparisons between the sensors, the
panels were located as close as possible. Both sensors had the same
amount of total energy storage in the form of SMD capacitors, and
the same duty cycle. Both sensors periodically wakeup from a low
power sleep mode, check the energy level(s) of the supply capaci-
tor(s), and if high enough, sense and send a leaf wetness reading. A
basestation was positioned inside the greenhouse to receive, and log,
all sensor readings.

6.1 Choosing Capacitor Sizes
Choosing capacitors for both sensors required consideration of

the duty cycle. Capacitors had to be large enough to support the pe-
ripherals, but not too large that they never charged to a high enough
voltage. Before deployment, we profiled the distinct stages of the
greenhouse monitoring duty cycle in terms of energy consumption,
using an oscilloscope and current sensor. Each of these stages we
matched to an adequately sized capacitor. The greenhouse moni-
toring program has three stages: “sense”, “send”, and “sleep”. For
each stage, we determined the minimum size of the capacitor, by
looking at how much energy was used over time, for what voltage
thresholds (we looked up voltage thresholds in device and peripheral
datasheets). For example, the CC1101 transceiver when used during
the “send” stage required 40ms at an average draw of 3mA to send a
message, all with a supply voltage above 1.9V. A capacitor sized at
100 µF and charged to 3.2V stored enough energy at a high enough
voltage to power the stage to completion.

The centralized version was equipped with the same amount
of total energy storage as the UFoP enabled system, to keep the
comparisons fair. Centralized thresholds were calculated in a similar
fashion to UFoP. By summing the total energy required for all three
stages, at the highest minimum voltage of all the components, the
threshold voltage can be determined for the centralized variant.

While these capacitor size and voltage threshold calculations
were done manually for this deployment, it is not hard to see how

an automated system could size UFoP capacitors using simple peak
detection techniques, developer or datasheet specified information
about peripheral voltages, and energy harvesting information gener-
ated or gathered by an Ekho device.

6.2 Deployment Results and Discussion
An ARM microcontroller and light sensor was deployed with

the sensors to unobtrusively record availability of the MCU, radio,
and sensor over time. The amount of light on the solar panels was
also recorded. Data was gathered for each sensor from 4pm, to
10am the following day. The UFoP equipped sensor outperformed
the sensor with the centralized reference design in terms of MCU
availability and radio availability as Figure 6 shows. The UFoP
enabled sensor was able to harvest significantly more energy than
the centralized version, especially during times when energy was
scarce (evening and morning). In the morning, from 7-10am, the
UFoP equipped sensors microcontroller was on for 79% of the
time, while the centralized sensor’s microcontroller was on for only
12% of the time. The amount of solar energy that was available to
harvest, was not enough to charge the much larger capacitor on the
centralized version, meaning that data was lost. In the evening, as
the sun began to drop, the UFoP equipped system harvested enough
energy for the radio to be broadcasting 9.6% of the time, while the
centralized version was only able to broadcast 1.7% of the time.
UFoP dramatically extended the amount of time the sensor was
available compared to using a centralized energy approach.

This first implementation could be improved; in full sun both sen-
sors were able to broadcast readings continuously, meaning that the
solar panel used was too large. Greenhouse managers only need leaf
wetness reports a few times an hour. By decreasing the size of the
solar panel, sensors can be more densely deployed. Computational
time was underutilized as well. UFoP allowed the sensor’s MCU
to be available even when there was very low sun, however, this
computational time was not used. Future programs will use this
time to calculate average leaf wetness readings, and calculate local
statistics on plant status, freeing up computation on the basestation.

7. RELATED WORK
Currently in the literature there does not exist a federated ap-

proach that stores and manages harvested energy in hardware. How-
ever, in this section, we review state-of-the-art designs and im-
plementations in energy harvesting and management for perpetual
sensing systems.

Virtual battery [2] attempts to “virtualize” the available energy,
allocating energy towards tasks. Virtual battery assumes a consistent
voltage, power supply, and a known battery size. It does not consider
how energy harvesting can change energy budgets. UFoP is designed
to work with a volatile supply voltage, frequent power failures,
unknown energy harvesting, and therefore unknown energy budget.
The essential difference between these two systems is that virtual
battery partitions available energy, while UFoP acts as a disruption
tolerant energy manager, storing incoming harvested energy and
notifying the application about changes in availability. To make a
system like virtual battery work on intermittently powered devices,
UFoP must first exist to hide the energy volatility. UFoP does
simplify application development for intermittently powered devices
in a similar way to virtual battery, in the sense that both systems
inform the application what energy is available, however, UFoP
manages this energy in real time and handles energy replacement.
eShare [26] is another energy sharing system to balance energy
supply and demand. The system’s energy router consists of an array
of ultra-capacitor with different levels of capacitances. Even though

eShare can extend the network lifetime, this system can only be
useful where power wiring is feasible.

Prometheus [12] uses two storage devices, i.e., super-capacitor
and lithium rechargeable battery. A solar panel charges the super-
capacitor and when its voltage is higher than a threshold, it charges
the battery. When the super-capacitor is exhausted, the battery is
used. Heliomote [16] uses a solar panel and two AA type NiMH
batteries. Energy harvesting occurs when the solar panel’s output
voltage is 0.7 V higher than that of the battery. When battery’s volt-
age is higher than the solar panels, even though enough power may
be available on the solar panel, a node can still draw current from
the battery. Everlast [19] uses a solar panel and a super-capacitor.
It charges a huge-sized super-capacitor (100 F) while tracking the
Maximum Power Point (MPP) of its solar panel. AmbiMax [15]
harvests energy from multiple ambient power sources (solar and
wind) while performing Maximum Power Point Tracking (MPPT)
on each of them. Each energy harvesting subsystem harvests en-
ergy and charges its own reservoir super-capacitors. The system is
powered solely by the ambient sources when the reservoir capacitor
array has a higher voltage at its terminal than a threshold. It draws
power from the battery when the reservoir capacitor array’s terminal
voltage drops below the threshold.

Other related energy harvesting systems including TwinStar [28–
30], EnHANTs [6, 7], SolarWISP [9] and the work of Yerva et
al. [23]. TwinStar [28–30] is an add-on energy harvesting and
management device, which uses ultra-capacitor as the only energy
storage unit. It has a dual solar panel solution (a small boot solar
panel and a big main panel to charge the ultra-capacitor). On top
of the hardware, the controller maintains a high duty cycle when
the voltage is high and a low duty cycle when the voltage is low.
Energy-Harvesting Active Networked Tags (EnHANTs) [6, 7] can
be attached to objects that are traditionally not networked, such
as books. The prototypes harvest indoor light energy using cus-
tom organic solar cells, communicate and form multihop networks
using ultra-low-power Ultra-Wideband Impulse Radio (UWB-IR)
transceivers. In [9], the authors add solar panel (SolarWISP) to
WISP (RF-powered tag) for hybrid energy harvesting. SolarWISP
increases effective communication range threefold and quadruples
read rate. In [23], the authors propose to add a new tier in the
sensor network architecture by using energy-harvesting leaf nodes,
which can communicate with battery-powered branch nodes and
wall-powered trunk nodes.

Software strategies for adaptive scheduling based on the dynamic
energy supply are studied in [1, 13, 27]. DEOS [27] is a dynamic
energy-oriented scheduling method that dynamically adjusts the
execution of tasks based on the tasks’ energy consumption and the
system’s real-time available energy. Dewdrop [1] is a CRFID run-
time that makes effective use of harvested energy. It adapts a tag’s
duty cycle to match the harvested power to the sensing and com-
putation cost of tasks. In [13], the authors propose mathematical
models to predict the ideal battery size and the rate of availability of
harvestable energy with an assumption that the energy consumed
by a node is always less than or equal to the harvested energy. Me-
mentos [17] is a software system that transforms general-purpose
programs into interruptible computations that are protected from
frequent power losses by automatic, energy-aware state checkpoint-
ing. At compile time, Mementos inserts function calls that estimate
available energy. At run time, Mementos predicts power losses and
saves program state to nonvolatile memory.

8. DISCUSSION
In our experiments, UFoP was able to improve the availability,

resiliency, and energy harvesting efficiency of tiny sensor devices

with capacitor-based energy storage. Based on our experimental
results, we believe that UFoP is a step forward for perpetual sensing,
potentially making long-term deployments for mobile and other
untethered computing devices possible. However, ambient energy is
still scarce in deployment and energy storage capacity is terminally
limited. Therefore, even though UFoP is able to relax the short-
term coupling between peripherals, power management is always
an important issue to consider. In this section, we discuss software
approaches to federating energy, UFoP’s design limitations, design
alternatives, and applications.

Software Energy Federation: An alternative approach to using
UFoP is to attempt to federate energy in software, by balancing
the peripherals voltage and energy requirements with the volatile
energy supply. This approach is used by all centralized programs
in Section 6 and Section 5. Federating (or virtualizing, as in Virtual
Battery [2]) energy in software has the advantage of being recon-
figurable; the duty cycle (and energy partitions) can be changed
dynamically. Additionally, no new hardware is required. However,
the cost of software complexity in adding a virtual layer must be
considered, especially in resource constrained systems that harvests
energy. Additionally, a software approach suffers from all the short-
comings (task coupling, slow charging, reduced MCU availability,)
associated with a single energy store. Hardware federation, for
the same energy supply, will always provide more availability, and
resiliency, than a software federated approach.

Limitations: The current UFoP reference design has some limita-
tions. Peripherals are susceptible to starvation since the peripheral
capacitors start charging when the input voltage in the main capac-
itor reaches 3.1 V. This can happen when an application requires
the microcontroller to run too much computation in a very low en-
ergy environment and thus the peripheral capacitors never have the
chance to charge. The centralized system has the same starvation
problem. Another cause of peripheral starvation is if the microcon-
troller has a higher active current draw than the one we currently use
(81.4 µA). To overcome this limitation, an application developer
can program, through software, the microcontroller to sleep for a
brief period immediately after turning on.

The current UFoP reference design trades off speed for low qui-
escent energy consumption in the choice of its active components.
Some of the comparators switch very slowly, meaning that high
current peripherals may be able to draw too much from the first
stage capacitor if no new energy is being harvested. This can be
solved by limiting capacitor charging with a resistor or op-amp, or
trading off low quiescent current for a faster switching peripheral
gate comparator.

Another limitation of the current prototype is we cannot use the
peripherals in the order we need if we change the behavior of an
application during runtime. This issue can be handled with dynamic
priority, allowing capacitors to be charged and used by different
peripherals according to the application. We leave this for future
work.

Applications: UFoP enables low power sensing applications that
use a variety of peripherals, with different energy needs and voltage
requirements. UFoP is most useful for perpetual, energy harvesting
systems that aggregate multiple types of sensor data. We envisage
UFoP being used in applications ranging from greenhouse mon-
itoring, low power wearable devices (humans and animals), and
any computational RFID application including but not limited to,
inventory management, building monitoring, activity monitoring,
and infrastructure monitoring.

9. FUTURE WORK
Currently, peripherals charge at the same rate, with no input from

the application designer. Situations could be imagined where set-
table priorities would be wanted. Using a resistor on the charging
line after the comparator that gates the peripheral capacitor could
give a form of priority; the smaller the resistor the quicker the periph-
eral capacitor charges. Current languages and operating systems for
programming embedded sensors [5, 14, 25] assume a stable power
supply and a sufficiently large battery. With UFoP, some system
components will not always be available when needed and thus
some tasks will need to be postponed. We are currently developing
a new programming language to ease building transiently-powered
sensing applications using UFoP.

10. CONCLUSIONS
This paper presents UFoP, the first system for capacitor-based

sensors that employs a federated approach to the storage and man-
agement of harvested energy. UFoP stores harvested energy in
multiple independent small capacitors, one dedicated to each periph-
eral. It employs a charge controller that charges the capacitors while
maintaining the supply voltage of the microcontroller. With UFoP,
power-hungry tasks from a radio or a heavyweight sensor will not
cause low voltage events that can potentially reset the microcon-
troller. In our experiments, we found that programs that use UFoP as
the energy backbone had as much as 10% more computational avail-
ability, and as much as four times more radio availability than the
centralized approach. Using UFoP, programs become dramatically
more resilient, reducing low voltage events and radio transmission
failure. Additionally, programs that use UFoP harvested more en-
ergy for all energy environments evaluated than programs using the
traditional centralized energy storage approach; meaning that UFoP
functions with zero overhead in many cases.

11. ACKNOWLEDGMENTS
The authors would like to thank the members of the PERSIST lab,

for helpful discussions around UFoP deployments and experimenta-
tion. We also thank our shepherd Kay Römer, and our anonymous
reviewers, for their helpful comments.

This research is based upon work supported by the National Sci-
ence Foundation under grants ACI-1212680 and CNS-1453607.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation

12. REFERENCES
[1] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: An

Energy-Aware Runtime for Computational RFID. In Proc. 8th
USENIX Conf. Networked Systems Design and
Implementation (NSDI’11), pages 197–210, Boston, MA,
USA, Mar. 2011. ACM.

[2] Q. Cao, D. Fesehaye, N. Pham, Y. Sarwar, and T. Abdelzaher.
Virtual Battery: An Energy Reserve Abstraction for
Embedded Sensor Networks. In Proc. 29th IEEE Real-Time
Systems Symposium (RTSS’08), pages 1–11, Barcelona, Spain,
Nov.–Dec. 2008. IEEE.

[3] J. A. Carr, J. C. Balda, and H. A. Mantooth. A Survey of
Systems to Integrate Distributed Energy Resources and
Energy Storage on the Utility Grid). In Proc. IEEE Energy
2030 Conf. (ENERGY’08), pages 1–7, Atlanta, GA, USA,
Nov. 2008. IEEE.

[4] M. Computing. Usb-201 data acquisition usb daq device
12-bit, 100 ks/s. http://www.mccdaq.com/

usb-data-acquisition/USB-201.aspx. [Online;
accessed 30 March, 2015].

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki—A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proc. 1st IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, Florida,
USA, Nov. 2004. IEEE Computer Society.

[6] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang,
and G. Zussman. Energy Harvesting Active Networked Tags
(EnHANTs) for Ubiquitous Object Networking. IEEE
Wireless Communications, pages 18–25, Dec. 2010.

[7] M. Gorlatova, R. Margolies, J. Sarik, G. Stanje, J. Zhu,
B. Vigraham, M. Szczodrak, L. Carloni, P. Kinget, I. Kymissis,
and G. Zussman. Energy Harvesting Active Networked Tags
(EnHANTs): Prototyping and Experimentation. Technical
Report 2012-07-27, Electrical Engineering, Columbia
University, New York, NY, USA, Jul. 2012.

[8] M. Gorlatova, R. Margolies, J. Sarik, G. Stanje, J. Zhu,
B. Vigraham, M. Szczodrak, L. Carloni, P. Kinget,
I. Kymissis, and G. Zussman. Prototyping Energy Harvesting
Active Networked Tags (EnHANTs). In Proc. 32nd IEEE Int’l
Conf. Computer Communications (INFOCOM’13), pages
585–589, Turin, Italy, Apr. 2013. IEEE.

[9] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the
Limits of Effective Hybrid Micro-Energy Harvesting on
Mobile CRFID Sensors. In Proc. 8th Int’l Conf. Mobile
Systems, Applications, and Services (MobiSys’10), pages
195–208, San Francisco, CA, USA, Jun. 2010. ACM.

[10] J. Hester, T. Scott, and J. Sorber. Ekho: Realistic and
Repeatable Experimentation for Tiny Energy-Harvesting
Sensors. In Proc. 12th ACM Conf. Embedded Network Sensor
Systems (SenSys’14), pages 1–15, Memphis, TN, USA, Nov.
2014. ACM.

[11] N. Instruments. Ni x series multifunction data acquisition.
http:

//sine.ni.com/ds/app/doc/p/id/ds-163/lang/en.
[Online; accessed 11 October, 2013].

[12] X. Jiang, J. Polastre, and D. Culler. Perpetual Environmentally
Powered Sensor Networks. In Proc. 4th Int’l Symp.
Information Processing in Sensor Networks (IPSN’05), Los
Angeles, CA, USA, Apr. 2005. ACM.

[13] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power
Management in Energy Harvesting Sensor Networks. ACM
Trans. Embedded Computing Systems (TECS), 6(4), Sept.
2007.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler.
TinyOS: An Operating System for Sensor Networks. In
Ambient Intelligence. Springer Verlag, 2004.

[15] C. Park and P. H. Chou. AmbiMax: Autonomous Energy
Harvesting Platform for Multi-Supply Wireless Sensor Nodes.
In Proc. 3rd Ann. IEEE Comm. Society Conf. Sensor, Mesh
and Ad Hoc Communications and Networks (SECON’06),
pages 168–177, Reston, VA, USA, Sept. 2006. IEEE.

[16] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and
M. Srivastava. Design Considerations for Solar Energy
Harvesting Wireless Embedded Systems. In Proc. 4th Int’l
Symp. Information Processing in Sensor Networks (IPSN’05),
pages 457–462, Los Angeles, CA, USA, Apr. 2005. ACM.

[17] B. Ransford, J. Sorber, and K. Fu. Mementos: System Support
for Long-Running Computation on RFID-Scale Devices. In
Proc. 16th Int’l Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS’11), pages
159–170, Newport Beach, CA, USA, Mar. 2011. ACM.

[18] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev,
and J. R. Smith. Design of an RFID-Based Battery-Free
Programmable Sensing Platform. IEEE Trans.
Instrumentation and Measurement, 57(11):2608–2615, Nov.
2008.

[19] F. Simjee and P. H. Chou. Everlast: Long-life,
Supercapacitor-operated Wireless Sensor Node. In Proc. Int’l
Symp. Low Power Electronics and Design (ISLPED’06),
pages 197–202, Tegernsee, Germany, Oct. 2006. IEEE.

[20] S. Thomas, J. Teizer, and M. Reynolds. Electromagnetic
Energy Harvesting for Sensing, Communication, and
Actuation. In Proc. 27th Int’l Symp. Automation and Robotics
in Construction (ISARC’10), Bratislava, Slovakia, Jun. 2010.
IAARC.

[21] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F. Abdelzaher.
SolarStore: Enhancing Data Reliability in Solar-Powered
Storage-Centric Sensor Networks. In Proc. 7th Int’l Conf.
Mobile Systems, Applications, and Services (MobiSys’09),
pages 333–346, Krakow, Poland, Jun. 2009. ACM.

[22] D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel,
and B. P. Otis. A 9 µA, Addressable Gen2 Sensor Tag for
Biosignal Acquisition. IEEE Journal of Solid-State Circuits,
45(10):2198–2209, Oct. 2010.

[23] L. Yerva, B. Campbell, A. Bansal, T. Schmid, and P. Dutta.
Grafting Energy-Harvesting Leaves onto the Sensornet Tree.
In Proc. 11th Int’l Conf. Information Processing in Sensor
Networks (IPSN’12), pages 197–208, Beijing, China, Apr.
2012. ACM.

[24] H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A
batteryless computational RFID and sensing platform.
Technical Report UM-CS-2011-020, UMass Amherst
Department of Computer Science, June 2011.

[25] R. Zhou and G. Xing. Nemo: A High-fidelity Noninvasive
Power Meter System for Wireless Sensor Networks. In Proc.
12th Int’l Conf. Information Processing in Sensor Networks
(IPSN’13), pages 141–152, Philadelphia, USA, Apr. 2013.
ACM.

[26] T. Zhu, Y. Gu, T. He, and Z. L. Zhang. eShare: A
Capacitor-Driven Energy Storage and Sharing Network for
Long-Term Operation. In Proc. 8th ACM Conf. Embedded
Networked Sensor Systems (SenSys’10), pages 239–252,
Zurich, Switzerland, Nov. 2010. ACM.

[27] T. Zhu, A. Mohaisen, Y. Ping, and D. Towsley. DEOS:
Dynamic Energy-Oriented Scheduling for Sustainable
Wireless Sensor Networks. In Proc. 31st Ann. IEEE Int’l Conf.
Computer Communications (INFOCOM’12), pages
2363–2371, Orlando, Florida, US, Mar. 2012. IEEE.

[28] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z. L. Zhang.
Leakage-Aware Energy Synchronization for Wireless Sensor
Networks. In Proc. 7th Int’l Conf. Mobile Systems,
Applications, and Services (MobiSys’09), pages 319–332,
Krakow, Poland, Jun. 2009. ACM.

[29] T. Zhu, Z. Zhong, T. He, and Z. Zhang. Energy-Synchronized
Computing for Sustainable Sensor Networks. Ad Hoc
Networks, 11:1392–Ű1404, 2013.

[30] T. Zhu, Z. Zhong, T. He, and Z. L. Zhang. Feedback
Control-Based Energy Management for Ubiquitous Sensor
Networks. IEICE Trans. Communications,
E93-B(11):2846–2854, 2010.

