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Abstract—Data center management (DCM) is increasingly
becoming a significant challenge for enterprises hosting large
scale online and cloud services. Machines need to be monitored,
and the scale of operations mandates an automated management
with high reliability and real-time performance. Existing wired
networking solutions for DCM come with high cost. In this
paper, we propose a wireless sensor network as a cost-effective
networking solution for DCM while satisfying the reliability and
latency performance requirements of DCM. We have developed
CapNet, a real-time wireless sensor network for power capping, a
time-critical DCM function for power management in a cluster of
servers. CapNet employs an efficient event-driven protocol that
triggers data collection only upon the detection of a potential
power capping event. We deploy and evaluate CapNet in a
data center. Using server power traces, our experimental results
on a cluster of 480 servers inside the data center show that
CapNet can meet the real-time requirements of power capping.
CapNet demonstrates the feasibility and efficacy of wireless
sensor networks for time-critical DCM applications.

I. INTRODUCTION

The continuous, low-cost, and efficient operation of a

datacenter heavily depends on its management network and

system. A typical data center management (DCM) system

handles physical layer functionality such as powering on/off

a server, motherboard sensor telemetry, cooling management,

and power management. Higher level management capabilities

such as system re-imaging, network configuration, (virtual)

machine assignments, and server health monitoring [1], [2]

depend on DCM to work correctly. DCM is expected to

function even when the servers do not have a working OS

or the data network is not configured correctly [3].

Today’s DCM is typically designed in parallel to the pro-

duction data network (in other words, out of band), with a

combination of Ethernet and serial connections for increased

redundancy. There is a cluster controller for a rack or a group

of racks, which are connected through Ethernet to a central

management server. Within the clusters, each server has a

motherboard microcontroller (BMC - Baseboard Management

Controller) that is connected to the cluster controller via point-

to-point serial connections. For redundancy reasons, every

server is typically connected to two independent controllers

on two different fault domains, so there is at least one

way to reach the server under any single point of failure.

Unfortunately, this architecture does not scale. The overall

cost of management network increases super-linearly with the

number of servers in a data center. At the same time, massive

cabling across racks increases the chance for human errors and

prolongs the server deployment latency.
This paper presents a different approach to data center

management network at the rack granularity, by replacing

serial cable connections with low cost wireless links. Low

power wireless sensor network technology such as IEEE

802.15.4 has intrinsic advantages in this application.

• Cost: Low-power radios (i.e., IEEE 802.15.4) are cheaper

individually than wired alternatives and the cost scales

linearly with the number of servers.

• Embedded: These radios can be physically small and be

integrated onto motherboard to save precious rack space.

• Reconfigurability: Wireless sensor networks can be self-

configuring and self-repairing with the broadcast media

to prevent human cabling error.

• Low power: With a small on-board battery, the DCM

based on wireless can continue to function on batteries

providing monitoring capabilities even when the rack

experiences a power supply failure.

However, whether a wireless DCM can meet the high relia-

bility requirement for data center operation is not obvious for

several reasons. The amount of sheet metals, electronics, and

cables may completely shield RF signal propagation within

racks. Furthermore, although typical traffic on a DCM is low,

emergency situations might need to be handled in real time,

which could require the design of new protocols.
Power capping is an example of emergency event that

imposes real-time requirements. Today, data center operators

commonly oversubscribe the power infrastructure by installing

more servers to an electric circuit than it is rated. The rationale

is that servers seldom reach their peak at the same time.

By over-subscription, the same data center infrastructure can

host more servers than otherwise. In the rare event when

the aggregate power consumption of all servers exceeds the

circuit’s power capacity, some servers must be slowed down

(i.e. power capped), through dynamic frequency and voltage

scaling (DVFS) or CPU throttling, to prevent the circuit

breaker from tripping. Every magnitude of oversubscription is

associated with a trip time which is a deadline by which power

capping must be performed to avoid circuit breaker tripping.
This paper studies the feasibility and advantages of using

low-power wireless for DCM. In two data centers, we empir-

ically evaluate IEEE 802.15.4 link qualities in server racks to
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show that the overall packet reception rate is high. We further

dive into the power capping scenario and design CapNet,
a wireless Network for power Capping, that employs an

event-driven real-time control protocol for power capping over

wireless DCM. The protocol uses distributed event detection

to reduce the overhead of regularly polling all nodes in the

network. Hence, the network throughput can be used by

other management tasks when there is no emergency. When

a potential power surge is detected, the controller uses a

sliding window and collision avoidance approach to gather

power measurements from all servers, and then issues power

capping commands to a subset of them. We deployed and

evaluated CapNet in a data center. Using server power traces,

our experimental results on a cluster of 480 servers in the data

center show that CapNet can meet the real-time requirements

of power capping. It demonstrates the feasibility and efficacy

in power capping like wired DCM with a fraction of the cost..

II. THE CASE FOR WIRELESS DCM (CAPNET)

Typical wired DCM solutions in data centers scale poorly

with increase in number of servers. The serial-line based point-

to-point topology incurs additional costs as we connect more

of them together. Here, we compare the costs of the wired

DCM to our proposed wireless based solution (CapNet) by

considering the cost of the management network, and by

measuring the quality of in-rack wireless links.

A. Cost Comparison with Wired DCM

To compare the hardware cost, we consider the cost of

the DiGi switches ($3917/48port [4]), controller cost (approx.

$500/rack [5]), cable cost ($2/cable [6]) and additional man-

agement network switches ($3000/48port on average [7]). We

do not include the labor or management costs for cabling for

simplicity of costing model, but note that these costs are also

significant with wired DCMs. We assume that there are 48

servers per rack, and there can be up to 100,000 servers that

need to be managed, which are typical for large data centers.

For the wireless DCM based CapNet solution, we assume

IEEE 802.15.4 (ZigBee) technologies for its low cost benefits.

The cost of network switches at the top level layer stays, but

the cost of DiGi can be significantly reduced. We assume

$10 per wireless controller, which is essentially an Ethernet

to ZigBee relay. For wireless receivers on the motherboard,

we assume $5 per server for the RF chip and antenna as the

motherboard controller is already in place [8].

# of servers Wired-N Wired-2N CapNet-N CapNet-2N
10 7450 14900 3060 6070
100 16560 33120 3530 6560
1000 98820 197640 8210 11420
10000 980780 1961560 79090 108180
100000 9772280 19544560 781840 1063680

TABLE I
SYSTEM COST (IN US DOLLAR) COMPARISON AND SCALABILITY

We develop a simple cost model based on these individual

costs and compute the total devices needed for implementing

management over number of servers ranging from 10 to

Fig. 1. Mote placed in bottom sled

100,000 (in order to capture how cost scales with the number

of servers). We consider solutions across two dimensions 1)

Wired vs Wireless, and 2) N-redundant vs 2N-redundant (A 2N

redundant system consists of two independent switches, DiGis

and paths through the management system). Table I shows the

cost comparison across these solutions. We see that a wired

N-redundant DCM solution (Wired-N) for 100,000 servers

is 12.5× the cost of a wireless N-redundant DCM solution

(CapNet-N). If we increase the redundancy of the management

network to 2N, the cost of a wired solution (between Wired-

2N and Wired-N) doubles. In contrast, the cost of a wireless

solution increases only by 36% (due to 2N controllers and

2N switches at the top level). The resulting cost of Wired-

2N is 18.4× that of CapNet-2N. Given the significant cost

difference between wired DCM and CapNet, we next explore

whether wireless is feasible for communication within racks.

B. Choice of Wireless - IEEE 802.15.4

We are particularly interested in low bandwidth wireless

like IEEE 802.15.4 instead of IEEE 802.11 for a number of

reasons. First, the payload size for data center management is

small and hence a ZigBee (IEEE 802.15.4) network bandwidth

is sufficient for control plane traffic. Second, in WiFi (IEEE

802.11) there is a limit on how many nodes an access point can

support in the infrastructure mode since it has to maintain an

IP stack for every connection, and this impacts scalability in

a dense deployment. Third, to support management features,

the data center management system should still work when

the rack is unpowered. A small backup battery can power

ZigBee longer at much higher energy efficiency. Finally,

ZigBee communication stack is simpler than WiFi so the moth-

erboard (BMC controller) microcontroller can remain simple.

Although we do not rule out other wireless technologies, we

chose to prototype with ZigBee in this paper.

C. Radio Environment inside Racks

We did not find any previous study that evaluated the signal

strength within the racks through servers and sheet metal.

The sheet metals inside the enclosure are known to weaken

radio signal, giving a harsh environment for radio propagation

inside racks. RACNet [9] studied wireless characteristics in

data centers, but only across racks when all radios are mounted
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(c) PRR at a receiver

Fig. 2. Downward signal strength and PRR in bottom sled

at the top of the rack. Therefore, we first perform an in-depth

802.15.4 link layer measurement study based on in-rack radio

propagation inside a data center of Microsoft Corporation.

Setup. The data center used for measurement study has racks

that consist of multiple chassis in which servers are housed.

A chassis is organized into two columns of sleds. In all

experiments, one TelosB mote is placed on top of the rack

(ToR), inside the rack enclosure. The other motes are placed in

different places in a chassis in different experiments. Figure 1

shows the placement of 8 motes inside a bottom sled (which

is open in the figure but was closed during the experiment).

While measuring the downward link quality, the node on ToR

is the sender and the nodes in the chassis receive. Then we

reverse the sender and the receiver to measure the upward link

quality. In each setup, the sender transmits packets at 4Hz. The

payload size of each packet is 29 bytes. Through a week-long

test capturing the long-term variability of links, we collected

signal strengths and packet reception rate (PRR).

Results. Figure 2(a) shows the cumulative distribution func-

tion (CDF) of Received Signal Strength Indicator (RSSI) val-

ues at a receiver inside the bottom sled for 1000 transmissions

from the node on ToR for different transmission (Tx) power

using IEEE 802.15.4 channel 26. For -7dBm or higher Tx

power, RSSI is greater than -70dBm in 100% cases. RSSI

values in ZigBee receivers are in the range [−100, 0]. Previous

study [10] on ZigBee shows that when the RSSI is above

−87dBm (approx.), PRR is at least 85%. As a result, we see

that signal strength at the receiver in bottom sled is quite

strong. Figure 2(b) shows the CDF of RSSI values at the

same receiver for 1000 transmissions from the node on ToR on

different channels at Tx power of -3dBm. Both figures indicate

a strong signal strength, and in each experiment the PRR was

at least 94% (Figure 2(c)). We observed similar results in all

other setups of the measurement study, and omit those results.

The measurement study reveals that low-power wireless,

such as IEEE 802.15.4, is viable for communication within

data center racks and can be reliable for telemetry purpose.

We now focus on the power capping scenario and CapNet

design for real-time power capping over wireless DCM.

III. CAPNET DESIGN OVERVIEW

Power infrastructure bears huge capital investment for a

data center, up to 40% of the total cost of a large data

center that can cost hundreds of millions of US Dollars [11].

Hence, it is desirable to use the provisioned infrastructure to

����

���

�

���

� � � � �� ��

	

��

��
�
�

��
��
�

��

���
��
�������
��

����
��

���

Not Tripped

Tripped

Long-delay

Conventional
Tripping

Short Circuit

��

�

	���
����
����

Fig. 3. The trip curve of Rockwell Allen-Bradley 1489-A circuit breaker at
40◦C [16]. X-axis is oversubscription magnitude. Y-axis is trip time.

its maximum rated capacity. The capacity of a branch circuit

is provisioned during design time, based on upstream trans-

former capacity during normal operation or UPS/Generator

capacity when running on backup power. To improve data

center utilization, a common practice in enterprise data centers

is to do oversubscription [12]–[15]. This method allocates

servers in a circuit exceeding the rated capacity (i.e. cap),

since not all servers reach their maximum power consumption

at the same time. Hence, there is a circuit breaker (CB)

that trips to protect expensive equipment. The peak power

consumption above the cap has a specified time limit, called

a trip time, depending on the magnitude of over-subscription

(as shown in Figure 3 for Rockwell Allen-Bradley 1489-A

circuit breaker). If the over-subscription continues for longer

than the trip time, the CB will trip and cause undesired server

shutdowns and power outages disrupting data center operation.

Power capping is the mechanism to bring the aggregate power

consumption back to the cap. An overload condition under

practical current draw trips the CB on a time scale from several

hundred milliseconds to hours, depending on the magnitude

of the overload [16]. These trip times are the deadlines for

the corresponding oversubscription magnitudes within which

power capping must be done to prevent CB tripping to avoid

power loss or damage to expensive equipment.

A. The Power Capping Problem

To enable power capping for a rack or cluster, a power
capping manager (also called controller) collects all servers’

power consumption and determines the cluster-level aggregate
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Fig. 4. Wireless DCM architecture

power consumption. If the aggregate consumption is over the

cap, the manager generates control messages asking a subset

of the servers to reduce their power consumptions through

CPU frequency modulation (and voltage if using DVFS) or

utilization throttling. The application level quality of service

may require different servers to be capped at different levels.

So the central controller needs all individual server readings.

In some graceful throttling policies, the control messages are

delivered by the BMC Controller to the host OS or VMs,

which introduce additional latency due to OS stack [14],

[17]. To avoid abrupt changes to application performance, the

controller may change the power consumption incrementally

and require multiple iterations of the feedback control loop

before the cluster settles down to below the power cap [14],

[18]. These control policies have been studied extensively by

previous work and are out of the scope of this paper.

B. Power Capping over Wireless DCM

Servers in a data center are stacked and organized into

racks. One or more racks can comprise a power management

unit, called a cluster. Figure 4 shows the wireless DCM

architecture inside a data center. All servers in a cluster

incorporate a wireless transceiver that connects to the BMC

microcontroller. Each server is capable of measuring its own

power consumption. A cluster power capping manager can

either directly measure the total power consumption using

a power meter, or, to achieve fine-grained power control,

aggregates the power consumption from individual servers.

We focus on the second case due to its flexibility. When the

aggregate power consumption approaches the circuit capacity,

the manager issues capping commands over wireless links

to individual servers. The main difference compared to a

wired DCM is the broadcast wireless media and challenge

of scheduling communication to meet the real-time demands.

To reduce extra coordination and to enable spatial spec-

trum reuse, we assume a single IEEE 802.15.4 channel for

communication inside a cluster. Using multiple channels,

multiple clusters can run in parallel. Channel allocation can

be done using existing protocols that minimize inter-cluster

interference (e.g. [19]), and is not the focus of our paper. For

protocol design, we focus on a single cluster of n servers.

C. A Naive Periodic Protocol

A naive approach for a fine-grained power capping policy

is to always monitor the servers by periodically collecting

the power consumption readings from individual servers. The

manager periodically computes the aggregate power. When-

ever the aggregate power exceeds the cap, it generates a control

message. Upon finishing the aggregation and control in η
iterations, it resumes the periodic aggregation again.

D. Event-Driven CapNet

Oversubscribing data centers may provision for the 95-th (or

more) percentile of the peak power, and require capping for 5%

(or less) of the time, which may be an acceptable hit on per-

formance in relation to cost savings [17]. Thus power capping

is a rare event, and the naive periodic protocol is an overkill

as it saturates the wireless media by always preparing for the

worst case. Other delay-tolerant telemetry messages cannot get

enough network resources. An ideal wireless protocol should

generate significant traffic only when a significant power surge

occurs. Therefore, CapNet employs an event-driven policy

that is designed to trigger power capping control operation

only when a potential power capping event is predicted. Due

to the rareness and emergency nature of power surge, the

network can suspend other activities to handle power capping.

It provides real-time performance and a sustainable degree

of reliability without consuming much network resource. The

details of the protocol is explained in the next section.

IV. POWER CAPPING PROTOCOL

We design a distributed event detection policy, where we

assign local caps to each individual server from their global

(cluster-level) cap. When a server observes a local power surge

based on its own power reading, it can trigger the collection of

the power consumption of all the servers to detect a potential

surge in the aggregate power consumption of cluster. If a

cluster-level power surge is detected, the system initiates a

power capping action. As many servers can simultaneously

exceed their local caps, a standard CSMA/CA protocol can

suffer from significant packet loss due to excessive contention

and collisions. Similarly, a slot stealing TDMA (Time Division

Multiple Access) protocol such as Z-MAC [20] would suffer

from the same problem as those servers will try to steal

slot simultaneously. Furthermore, pure TDMA based protocols

do not fit well for our problem since they need to have

a predefined communication schedule for all nodes. Finally,

as power aggregate consumption can be quite dynamic, it

may be infeasible to predict an upcoming power peak based

on historical readings. This observation leads us to avoid a

predictive protocol that proactively schedule data collection

based on historical power readings.

While a global detection is possible by just monitoring at

the branch circuit level, say using a power meter, it cannot

support fine-grained and flexible power capping policies such

as those based on individual server-priority or reducing powers

of individual servers based on their power consumptions. Also,

a centralized measurement introduces a single point of failure.

That is, if the power meter fails, power oversubscription will

fail also. In contrast, our distributed approach is more resilient

to failure. If individual measurement fails, the system can
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Fig. 5. CapNet’s event-driven protocol flow diagram

always assume a maximum power consumption at that server

and keep the whole cluster going.

The event-driven protocol runs in 3 phases as illustrated

in Figure 5: detection, aggregation, and control. The event

detection phase generates alarms based on local power surges.

Upon detecting a potential event, CapNet runs the second

phase which invokes a power aggregation protocol. False

detection may happen when some servers generate alarms

exceeding the local caps, but the aggregate value is still under

the cap. This is corrected in the aggregation phase, where the

controller determines the aggregate power consumption. The

impact of a false positive case is that the system runs into the

aggregation phase which incurs additional wireless traffic. The

control phase is executed only if the alarms are true.

We normalize each server’s power consumption value be-

tween 0 and 1 by dividing its instantaneous power consump-

tion by the maximum power consumption of an individual

server. This normalized power consumption value of server i
is denoted by pi, where 0 ≤ pi ≤ 1, and is used in this paper

as a server’s power consumption. The cap of a cluster of n
servers is denoted by c, and the total power consumption of

n servers is considered as the aggregate power consumption

and is denoted by pagg.

Assigning local cap. If pagg > c, a necessary condition is

that some servers’ (at least one) individual power consumption

values locally exceed the value c
n . Therefore, a possible way

is to assign c
n as each server’s local cap. However, there

can be situations where only one server exceeds c
n while all

other servers are under c
n , thereby triggering an aggregation

phase upon a single server’s alarm. As a result, this policy

will generate many false alarms. Therefore, to suppress false

alarms, we assign a slightly smaller local cap, and consider

alarms from multiple servers before aggregation phase. Thus

we use a value 0 < α ≤ 1 close to 1 and assign αc
n as the

local cap for each server. A server i reports alarm if pi >
αc
n .

Each server is assigned a unique ID i, where i =
1, 2, · · · , n. The manager broadcasts a heartbeat packet at

every h time units called detection interval. The detection

interval of length h is slotted among n slots, with each slot

length being
⌊
h
n

⌋
. The value of h is selected in a way so that

a slot is long enough to accommodate one transmission and

its acknowledgement. After receiving the heartbeat message,

the server clocks are synchronized.

A. Detection Phase

Each node i, 1 ≤ i ≤ n, takes its sample (i.e., power

consumption value pi) at the i-th slot in the detection phase.

If its reading is over the cap i.e. pi > αc
n , it generates

an alarm and sends the reading (pi) to the manager as an

acknowledgement of the heartbeat message. Otherwise, it

ignores the heartbeat message, and does nothing. If an alarm

is received at the s-th slot, the manager determines, based on

whether the network is reliable or not, whether an aggregation

phase has to be started. Let the servers who have sent alarms

in the current detection window so far be denoted by A.

Reliable Network. Let an alarm be generated in the s-th slot

of a detection interval. Considering a reliable network we can

consider that no server message was lost. Therefore, each of

the other s−|A| servers among the first s servers has a power

consumption reading of at most αc
n as it has not generated an

alarm. Each of the remaining n− s servers can have a power

consumption value of at most 1. Thus based on the alarm

at s-th slot, the manager can estimate an aggregate power of∑
j∈A pj+(s−|A|)αcn +(n−s). Hence, if an alarm is generated

at the s-th slot, the manager will start aggregation phase if∑
j∈A

pj + (s− |A|)αc
n

+ (n− s) > c (1)

Unreliable Network. Now we consider a scenario where some

server alarms were lost. As a result, if an alarm is generated

in the s-th slot of a detection window, each of the other

s − |A| servers among the first s servers may have a power

consumption reading of at most 1 as its alarm is assumed to

be lost. Therefore, each of the n−|A| servers can have power

consumption of at most 1, making an estimated aggregate

power of
∑

j∈A pj +(n−|A|). Thus, if an alarm is generated

in the s-th slot, the manager will start aggregation phase if∑
j∈A

pj + (n− |A|) > c (2)

If there are no alarms in the detection phase or all alarm

messages were lost due to transmission failure, the controller

resumes the next detection phase (to detect the surges again

using the same mechanism) when the current phase is over.

B. Aggregation Phase

To minimize aggregation latency, CapNet adopts a sliding

window based protocol to determine aggregate power con-

sumption denoted by pagg. The controller uses a window

of size ω. At anytime, it selects ω servers (or, if there are

fewer than ω servers whose readings are not yet collected,

then selects all of them) in a round-robin fashion who will

send their readings consecutively in the next window. These

ω server IDs are ordered in a message. In the beginning of

the window, the controller broadcasts this message, and starts

a timer of length τd + ωτu after the broadcast, where τd
denotes the maximum downward communication time (i.e.,

the maximum time required for a controller’s packet to be

delivered to a server) and τu denotes the maximum upward
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communication time (server to controller). Upon receiving

the broadcast message, any server whose ID is in order i,
1 ≤ i ≤ ω, in the message transmits its reading after (i−1)τu
time. Other servers ignore the message. If the timer fires or

packets from all ω nodes are received, the controller creates

the next window of ω servers that are yet to be scheduled

or whose packets were missed (in the previous window). A

server is scheduled in at most γ consecutive windows to

handle transmission failures, where γ is the worst-case ETX

(expected number of transmissions for a successful delivery) in

the network. The procedure continues until all server readings

are collected or there is no server that was retried γ times.

C. Control Phase

Upon finishing the aggregation phase, if pagg > c, where c
is the cap, it starts the control phase. The control phase gener-

ates a capping control command using a control algorithm, and

then the controller broadcasts the message requesting a subset

of the servers to be capped. To handle broadcast failures,

it repeats the broadcast γ times (since the broadcast is not

acknowledged). The servers react to the capping messages by

DVFS or CPU throttling that incurs an operating system (OS)

level latency as well as a hardware-induced delay [17]. If the

control algorithm requires η-iteration, then after the capping

control command is executed in the first round, the controller

will again run the aggregation phase to reconfirm that capping

was done correctly. The procedure iterates up to (η− 1) more

iterations. Upon finishing the control, or after the aggregation

phase upon a false alarm, it resumes the detection phase.

D. Latency Analysis

Given the time criticality for power capping, it is important

for CapNet to achieve bounded latency. Here, we provide an

analytical latency upper bound for CapNet’s power capping

latency that consists of detection phase latency, aggregation

latency, OS level latency, and hardware latency. In practice, the

actual latency is usually lower than the bound. The analysis

can be used by system administrators to configure the cluster

to ensure power capping meets the timing constraints.

Aggregation latency. For n servers in the cluster, the total

aggregation delay Lagg under no transmission failure can be

upper bounded as follows. Note that each window of ω trans-

missions can take at most (τuω+τd) time units. There can be at

most
⌊
n
ω

⌋
windows where in each window ω servers transmit.

Then, the last window will take only (n mod ω+ τd) time to

accommodate the remaining (n mod ω) servers. Hence,

Lagg ≤ (τuω + τd)
⌊n
ω

⌋
+ (n mod ω + τd)

Considering γ as the worst-case ETX in the network,

Lagg ≤
(
(τuω + τd)

⌊n
ω

⌋
+ (n mod ω + τd)

)
γ (3)

The above value is only an analytical upper bound, and in

practice the latency can be a lot shorter.

Latency in detection phase. The time spent in the detection

phase is denoted by Ldet. In a detection window the protocol

never will need the readings from the last �c� − 1 servers as

an aggregation phase must start before this should a power

capping needed (assuming that not all alarms were lost).

Therefore the alarms generated within the first (n− �c�+ 1)
slots must trigger aggregation phase. Hence,

Ldet ≤
⌊
h

n

⌋
(n− �c�+ 1) (4)

Total power capping latency. To handle a power capping

event, a detection phase and an aggregation phase are followed

by a control message that is broadcasted γ times and takes τdγ
time. In addition, once the control message reaches a server,

there is an operating system level latency, and after processor

frequency changes, there is a hardware-induced delay. Let the

OS level latency and the hardware level latency in the worst

case be denoted by Los and Lhw, respectively. Thus, the total

power capping latency in one iteration, denoted by Lcap, is

bounded as

Lcap ≤ Ldet + Lagg + τdγ + Los + Lhw

A η-iteration control means that once power capping command

is executed, the controller will again need to collect all

readings from servers, and reconfirm that capping was done

correctly in (η − 1) more iterations. Therefore, for η-iteration

control, the above bound is given by

Lcap ≤ Ldet + (Lagg + τcγ + Los + Lhw)η (5)

V. EXPERIMENTS

In this section, we present the experimental results of

CapNet. The objective is to evaluate the effectiveness and

robustness of CapNet in meeting the real-time requirements

of power capping under data center realistic settings.

A. Implementation

The wireless communication side of CapNet is implemented

in NesC on TinyOS [21] platform. To comply with realistic

data center practices, we have implemented the control man-

agement at the power capping manager side. In our current

implementation, wireless devices are plugged to the servers

directly through their serial interface.

B. Workload Traces

We use workload demand traces from multiple geo-

distributed data centers run by a global corporation over a pe-

riod of six consecutive months. Each cluster consists of several

hundreds of servers that span multiple chassis and racks. These

clusters run a variety of workloads including Web-Search,

Email, Map-Reduce jobs, and cloud applications, catering to

millions of users around the world. Each cluster uses homo-

geneous hardware, though there could be differences across

clusters. We use workload traces of 2 representative server

clusters: C1 and C2. In both clusters each individual server

has CPU utilization data of 6 consecutive months in every 2

minutes interval. While we recognize that full system power

is composed of storage, memory and other components, in

addition to CPUs, several previous works show that a server’s
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utilization is roughly linear to its power consumption [22]–

[25]. Hence, we use server’s CPU utilization as a proxy for

power consumption in all experiments.

C. Experimental Setup

1) Experimental Methodology: We experiment with Cap-

Net using TelosB motes for wireless communication. First we

deployed 81 motes (1 for manager, 80 for servers) in Mi-

crosoft’s data center in Redmond, WA. When we experiment

with more than 80 servers to test scalability, one mote emulates

multiple servers and communicates for them. For example,

when we experiment for 480 servers, mote 1 works for first

6 servers, then mote 2 works for next 6 servers, and so on.

We place all 80 motes in racks. The manager node is placed

on ToR and connected through its serial interface to a PC that

works as the manager. No mote in the rack has direct line of

sight with the manager. Using the workload demand traces,

CapNet is run in a trace-driven fashion. For every server the

reading at a time stamp sent from its corresponding wireless

mote is taken from these traces at the same time stamp. While

the data traces are of 6-month long, our experiment does not

run for actual 6-month. When we take a subset of those traces,

say for 4 weeks, the protocols skip the long time intervals

where there is no peak. For example, when we know (looking

ahead into the traces) there is no peak between time t1 and

t2, the protocols skip the times between t1 and t2. Thus our

experiments finish in several days instead of 4 weeks.

2) Oversubscription and Trip Time: We use the trip times

from Figure 3 as the basis, in order to determine the different

caps required in various experiments. X-axis shows the ratio

of current draw to the rated current and is the magnitude of
oversubscription. Y-axis shows the corresponding trip time.

The trip curve is shown as a tolerance band. The upper curve

of the band indicates upper bound (UB) trip times above which

is the tripped area, meaning that the circuit breaker will trip

if the duration of the current is longer than the UB trip time.

The lower curve of the band indicates lower bound (LB) trip
times under which is the not-tripped area. This band between

2 curves is the area where it is non-deterministic if the circuit

breaker will trip. LB trip time is a very conservative bound.

In our experiments we use both LB and UB of conventional

trip times to verify the robustness of CapNet.

3) CapNet Parameters: For all experiments, we use channel

26 and Tx power of -3dBm. The payload size of each packet

sent from the server nodes is 8 bytes, which is enough for

sending power consumption reading. The maximum payload

size of each packet sent from the manager is 29 bytes, the

maximum default size in IEEE 802.15.4 radio stack for TelosB

motes. This payload size is set large to contain the schedules as

well as control information. For aggregation protocol, window

size ω is set to 8. A larger window size can reduce aggregation

latency, but requires the payload size of the manager’s message

to be larger (since the packet contains ω node IDs indicating

the schedule for next window). In the aggregation protocol

both τd and τu were set to 25ms. The manager sets its timeout

using these values. These values are relatively larger compared
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Fig. 6. 60 Servers on Rack R1 in Cluster C1

to the maximum transmission time between two wireless

devices. The time required for communication between two

wireless devices is in the range of several milliseconds. But

in our design the manager node is connected through its serial

interface to a PC. The TelosB’s serial interface does not always

incur a fixed latency for communication between PC and the

mote through serial. Upon experimenting and observing a wide

variation of this time, we have set τd and τu to 25ms.

4) Control Emulation: In our experiments, we emulate the

final control action since we use workload traces. We assume

that one packet is enough to contain the entire control message.

To handle control broadcast failure, we repeat control broad-

cast γ = 2 times. Our extensive measurement study through

data center racks indicated that this is also the maximum ETX

for any link between two wireless motes. Upon receiving the

control broadcast message, the nodes generate an OS level

latency and hardware level latency. We use the maximum

and minimum OS level and hardware level time required for

power capping experimented on three servers with different

processors: Intel Xeon L5520 (frequency 2.27GHz, 4 cores),

Intel Xeon L5640 (frequency 2.27GHz, dual socket, 12 cores

with hyper-threading), and an AMD Opteron 2373EE (fre-

quency 2.10GHz, 8 cores with hyper-threading), each running

Windows Server 2008 R2 [17]. The ranges of OS level and

hardware level latencies are in the range of 10-50ms and 100-

300ms, respectively [17]. We generate OS and hardware level

latencies using a uniform distribution in this range.

D. Power Peak Analysis of Data Centers

We first analyze whether CapNet protocol is consistent with

the data center power behavior leveraging our data traces. For

brevity, we present the trace analysis results of 3 racks: Racks

R1 and R2 from Cluster C1, and Rack R3 from Cluster C2.

To give an idea on how power consumption varies over time

in a data center, Figure 6(a) shows the aggregate power of 60

servers on RACK R1 in cluster C1 for 2 consecutive months

which is zoomed in for 6 consecutive days in Figure 6(b). For
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Fig. 7. Power characteristics (2 month data)

each rack, we use the 95-th percentile of aggregate power over

2 consecutive months as the power cap.

We first explore the power dynamics of the servers and

the unpredictability of power capping events. Using 2-month

long data, Figure 7 shows that the time intervals between

two consecutive peaks can range between few minutes to

several hundred hours. We define power jump as the difference

between the power that exceeds the cap and the preceding

measurement that is below the cap. As Figure 7(b) shows that

power jumps can vary between 0 to 51 for 60 servers in each

rack (while their aggregate power is in range [0, 60]). This

result shows the motivation for an event-driven protocol.

Figure 8 illustrates the correlations across 180 servers from

different racks and clusters using their raw power consumption

data over 1 week. The image is a visualization of a 180×180
matrix, indexed by the server number. That is, the entry

indexed at [i, j] in this matrix is the correlation coefficient

of the values (5040 samples) between the i-th and the j-

th server. We can clearly see that the servers in the same

rack are strongly positively correlated, and those in the same

cluster are also positively correlated. But the servers between

clusters are less or negatively correlated. This usually happens

because the servers in the same cluster hosts similar workloads

leading to synchronous power characteristics [25]. We further

assume a local cap of c
60 (considering α = 1) for each

individual server, and show in Figure 8(b) the CDF of the

number of servers that exceed local caps when the cluster

level aggregate power exceeds cap c. The figure shows that

in 80% cases when the rack level aggregate power exceeds

cap c, the numbers of servers (among 60 servers per rack)

that are over the local cap are 43, 55, and 50 for Rack R3,

R1, and R2, respectively. The strong intra-cluster synchrony
in power surge suggests the feasibility of detecting a cluster-

level power surge based on local server-level measurements.

Figure 8(c) shows probabilities of different racks in 2 clusters

to be at peak simultaneously. The entry indexed at [i, j] in

this 2D matrix is the probability that the i-th rack in cluster

1 and the j-th rack in cluster 2 are at peak simultaneously.

The probabilities were found in the range [0, 0.0056]. This

strong inter-cluster asynchrony implies that using an event-

driven protocol (that performs wireless communications only

upon detecting an event) significantly minimizes inter cluster

interference caused by transmissions generated by the event-

driven CapNet in different clusters.

We observe strong synchrony in power behavior among

the servers in the same cluster and strong asynchrony among

between different clusters. The major implication of the trace

analysis is that CapNet protocol is consistent with real data

center power behavior. As the intra-cluster synchrony suggests

the potential efficacy of a local event detection policy, our

protocol is particularly effective in the presence of strong

intra-cluster synchrony that exists in enterprise data centers as

observed in our trace analysis. However, in absence of intra-

cluster synchrony in power peaks, CapNet will not cause un-

necessary power capping control or more wireless traffic than

a periodic protocol. The synchrony only enhances CapNet’s

performance.

E. Power Capping Results

Now we present our experimental results with CapNet’s

event-driven protocol. First we compare its performance with

the periodic protocol and a representative CSMA/CA protocol.

We then analyze its scalability in terms of number of servers.

First we experiment only for the simple case, where a single

iteration of control loop can settle to a sustained power level,

and then we also analyze scalability in terms of number of

control iterations, where multiple iterations are needed to settle

to a sustained power level. We have also experimented it under

different caps and in presence of interfering clusters. In all

experiments, detection phase length, h, was set to 100 ∗n ms,

where n is the number of servers. We set this value because

this makes each slot in the detection phase equal to 100ms,

which is enough for receiving one alarm as well as for sending

a message from the manager to the servers. Setting a larger

value reduces the number of cycles of detection phase, but

reduces the granularity of monitoring. For assigning a local

cap of αc
n to the servers, we first experiment with α = 1.

Later, we experiment under different values of α. Condition 1

is used for detection and starting an aggregation phase. In the

results, slack is defined as the difference between the trip time

(i.e. deadline) and the total latency required for power capping.

That is, a negative value of slack implies a deadline miss.

We use LB slack and UB slack to define the slack calculated

considering LB trip time and UB trip time, respectively. In

our results, in cases timing requirement can be loose, while

there are cases where these are very tight, and the results are

shown for all cases. We particularly care for tight deadlines,

and want to avoid any deadline misses.

1) Performance Comparison with Base Lines: Figure 9

presents the results using 60 servers on one rack for single-

iteration control loop. We used 4 weeks long data traces for

this rack. We set the 95-th percentile of all aggregate powers
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Fig. 9. Performance of Event-Driven protocol on 60 servers (4 weeks)

values of all data points in every 2-minute interval as its cap c.
For assigning local cap we use α = 1. In running the protocols

using these traces, the protocols observe all peaks. The upper

bound of aggregation latency (Lagg) given in (3) was set as

the period of the periodic protocol. Figure 9(a) shows the

LB slacks for both the event-driven protocol and the periodic

one. The figure only plots the CDF for the cases where

the magnitude of oversubscription was above 1.5 for better

resolution as the slack was too big for a smaller magnitudes

(which are not of interest). Since UB trip times are easily met,

we also omit those results. The non-negative LB slack values

for each protocol indicate that it easily meets the trip times.

Hence there is no benefit in using non-stop communications

(i.e., the naive periodic protocol).

While the slacks in event-driven protocol are shorter than

those in the periodic protocol because the former spends some

time in the detection phase, in 80% cases event-driven protocol

can provide a slack of more than 57.15s while the periodic

protocol provides 57.88s. The difference is not significant

because as shown in Figure 9(b) in 90% cases among all

power capping events the detection happened in the first slot

of the detection cycle. Only in 10% cases, it was after the

first slot of the detection phase, and all detection happened

within the 6-th slot, although the phase had a total of 60 slots

(for 60 servers, one slot per server). These results indicate

that CapNet’s local detection policy can quickly determine the

events. This is also an implication that experimental values

of power capping latencies are quite different (or shorter)

from the pessimistic analytical values derived in (5). Also,

in this experiment, 94.16% of the total detection phases did

not have any transmission from the servers. Therefore, if we

compare with the periodic protocol that needs to continue com-

munication always in the network, the event-driven protocol
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Fig. 10. CDF of LB slack under various numbers of servers (4 weeks)

suppresses transmissions at least by 94.16% while the real-

time performance of two protocols are similar.

We also evaluate the performance when BoxMAC (the

default CSMA/CA based protocol in TinyOS [21]) is used

for power capping communication for up to first 6 capping

events in the data traces. Figure 9(c) shows that it experiences

packet loss rate over 74% while performing communication

for a power capping event. This happens because all 60 nodes

try to send at the same time, and the back-off period in

802.15.4 CSMA/CA under default setting is too short, which

leads to frequent repeated collisions. Since we lose most of

the packets, we do not consider latency under CSMA/CA.

Increasing the back-off period reduces collisions but results

in long communication delays. In subsequent experiments, we

exclude CSMA/CA as it does not fit for power capping.

2) Scalability in Terms of Number of Servers: In our data

traces each rack has at most 60 active servers. To test with

more servers, we combine multiple racks in the same cluster

since they have similar pattern of power consumption (as

we have already discussed in Subsection V-D. For sake of

experimentation time, in all subsequent experiments we set

cap at 98-th percentile (that would result in a smaller number

of capping events). The lower bound slack distribution are
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shown in Figure 10 for 120, 240, and 480 servers by merging

2, 4, and 8 racks, respectively (for single iteration capping).

Hence, for single iteration, the deadlines are easily met for

even 480 servers (since in each setup, 100% of all slack values

are positive).

3) Experiments under Varying α: Now we experiment with

different values of α for assigning a local cap of αc
n to the

servers using 480 servers. The results in Figure 11 show the

tradeoff between false alarm rate and power capping latency

under varying α. As we decrease the value of α from 1 to 0.80,

the false alarm rate decreases from 45% to 2%. This happens

because with decreased value of α, CapNet considers multiple

alarms before detecting a potential event. Note that this alarm

rate is very small compared to the whole time window since

power capping happens in at most 5% cases. Therefore alarms

are also generated rarely. Since waiting for multiple alarms

increases the latency in detection, the total power capping

latency increases as the value of α decreases. However, as this

latency increase happens only in the detection phase which

is negligible compared to the total capping latency, there is

hardly any impact on deadline miss rates. The figure shows a

deadline miss rate of 0 under varying α.

4) Scalability in Number of Control Iterations: Now we

consider a conservative case where multiple iterations of con-

trol loop are required to settle to a sustained power level [14],

[17], [18]. The number of iterations required for the rack-level

loop as experimented in [18] can be up to 16 in the worst

case (which happens very rarely). Hence, we now conduct

experiments considering multiple numbers of control iterations

(up to 16 assuming a pessimistic scenario). We plot the results

in Figure 12 for various numbers of servers under various

number of iterations. As shown in Figure 12(a), for 120 servers

under 16-iteration case, we have 13% cases with negative

slack meaning that the LB trip times were missed. However,

the UB trip times were met in 100% cases. Note that we

have considered a quite pessimistic set up here because using

16-iteration as well as trying to meet the lower bound of

trip times are both very conservative considerations. For 120

servers under 8 iterations, in 0.13% cases slacks were negative.

However, in 80% cases the slacks were 92.492s, 66.694s, and

22.238s for 4, 8, and 16 iterations, respectively indicating that

the trip times were easily met, and the system could oversub-

scribe safely. For 4-iteration, the minimum slack was 23.2s.

To preserve figure resolution, we do not show the UB slacks

since they were all positive. For 480 servers (Figures 12(b),

12(c)), 98.95%, 97.86%, 94.93%, and 67.2% LB trip times

were met for 2, 4, 8, and 16 iterations, respectively. For 240

nodes, we miss deadlines in 5% cases under 8-iteration and

13.94% cases under 16-iteration.

For all cases we met UB trip times in 100% cases. Note that

assuming 16-iteration and considering the LB trip times are

very conservative assumption as it can rarely happen. Hence,

the above results show that, even for 480 servers, the latencies

incurred in CapNet for power capping remain within even the

conservative latency requirements in most cases.

5) Experiments under Varying Caps: In all experiments

we have performed so far, CapNet was able to meet UB

trip times. Now we make some setup changes to encounter

some scenario where UB trip times can be smaller, by making

oversubscription magnitude higher. For this purpose, we now

decrease the cap to decrease the trip times so as to make

scenarios to miss upper bound trip times to see the robustness

of the protocol. Now again we set the 95-th percentile of ag-

gregate power as the cap. This would give the previous capping

events shorter deadlines since a smaller cap implies a larger

magnitude of oversubscription. For the sake of experiment

time, we only tested with 120 servers and their 4 week data

traces. Figure 13 shows that we now miss more LB trip times

and miss some UB trip times as well since the deadlines now

become shorter. However, UB trip times are missed only in

0.11% and 1.02% cases under 8 and 16 iterations, respectively,

while LB deadlines were missed in 2.14%, 6.84%, and 26.56%

cases under 4, 8, and 16 iterations, respectively. All deadlines

were met for up to 3 iterations (and not shown in the figures).

We have shown the results only for higher number of iterations

that rarely happen. These results demonstrate the robustness

for larger magnitude of oversubscription in that even when we

use 16-iteration only 1.02% UB trip times are missed.

6) Experiments in Presence of Multiple Clusters: We have

shown through data center trace analysis in Figure 8(c) that the

probability that two clusters are over the cap simultaneously is

no greater than 0.0056. Yet, in this section we perform some

experiment from a pessimistic point of view. In particular, we

perform an experiment and see the performance of CapNet

under an interfering cluster.

We mimic an interfering cluster of 480 servers in the

following way. We select a nearby cluster and place a pair

of motes in the rack: one at the ToR and the other inside the

rack. We set their Tx power at maximum (0dBm). The mote

at the ToR represents its manager and carries on a pattern of

communication like a real manager to control 480 servers. The

mote inside the rack responds as if it were connected to each

of 480 servers. Specifically, the manager executes a detection

phase of 100 ∗ 480ms, and the node in the rack randomly

selects a slot between 1 and 480. On that slot, it generates an

alarm with probability 5% since capping happens in no more

than 5% cases. Whenever the manager receives the alarm, it

generates a burst of communication in the pattern like what it

would have done for 480 servers. After finishing this pattern

of communication it resumes the detection phase.

We run the main cluster (system used for experiment)

using 4 weeks data traces, and plot the results in Figure 14.
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Fig. 12. Multi-iteration capping under event-driven protocol (4 weeks)

−2 0 2 4 6 8
x 10

6

0

0.2

0.4

0.6

0.8

1

Slack (ms)

C
D

F

 

 

UB Trip time (8 iterations)
LB Trip time (8 iterations)
UB Trip time (16 iterations)
LB Trip time (16 iterations)

(a) CDF of slack values (Cap: 95-th percentile)

4 8 16
0

5

10

15

20

25

30

Number of iterations

M
is

s 
ra

te
 (

%
)

 

 

Cap: 95−th percentile
Cap: 98−th percentile

(b) LB trip time miss rate

4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of iterations

M
is

s 
ra

te
 (

%
)

 

 

Cap: 95−th percentile
Cap: 98−th percentile (values are 0 here)

(c) UB trip time miss rate

Fig. 13. Capping under different caps on 120 servers (4 weeks)
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Fig. 14. Capping for 480 servers under interfering cluster

Figure 14(a) shows the latencies for different capping events in

4 weeks data both under interference and without interference

(when there was no other cluster). Under interfering cluster,

the delays mostly increase. This happens because the event-

driven protocol experiences packet loss and uses retransmis-

sion for those, thereby increasing network delays. While the

maximum increase was 124.63s, in 80% cases the increase was

less than 15.089s. We noticed that such big increase happened

due to the loss of alarms in a detection phase that resulted in

a detection in the next phase (i.e., while the phase length is

48s). Still power capping was successful in all cases but those

when the control broadcast was lost. Among 375 events, 4

broadcasts were lost at some server even after 2 repeatations,

resulting in control failure in 1.06% cases. This value became

0 in multi-iteration cases. For multi-iteration cases, at least one

control broadcasts was successful that resulted in no capping

failure for control message loss. However, as the delay due to

transmission failure and recovery increased in detection phase,

we experienced capping failure. For 16-iteration, we missed

the upper bound of trip time in 40.27% cases and lower bound

of trip times in 32.08% cases. However, we use a conservative

assumption here. For 4 iteration miss rate was 5.06% and

8.26% only. And for 2-iteration they are only 2.13% and 2.4%

which are very marginal. The result indicates that even under

interference, CapNet demonstrates robustness in meeting the

real-time requirements of power capping.

VI. DISCUSSIONS AND FUTURE WORK

While our paper addresses feasibility, protocol design and

implementation, several engineering challenges such as secu-

rity, EMI and fault tolerance needs to be addressed.

Fault Tolerance. One important challenge is handling the

failure of power capping manager in a cluster. To address this,

power capping managers can be connected among themselves

either through a different band or through a wired backbone.

As a result, when some manager fails, a nearby one can

take over its servers. This paper focuses on communication

within a single cluster. DCM fault detection, isolation, and

node migration need to be studied in future work.

Security. Another challenge is the security of the management

system itself. Since the system relies on wireless control,

someone might be able to maliciously tap into the wireless

network and take control of the data center. There are two

typical approaches to handle this security issue: First, the

signal itself should be attenuated by the time it reaches outside

the building. We can identify secure locations inside the data

center from which the controller can communicate, and iden-

tify a signature for the controllers which would be known to

the server machines. Second, it is possible to encrypt wireless

messages, for example, using MoteAODV (+AES) [26]. We
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can also use shielding within the data center to keep the RF

signals contained within the enclosed region.

EMI & Compliance. While less emphasized in research

studies, a practical concern of introducing wireless commu-

nications in data centers is that they do not adversely impact

other devices. There are FCC certified IEEE 802.15.4 circuit

design available(e.g. [27]). Previous work has also used WiFi

and ZigBee in live data centers for monitoring purposes [9].

VII. RELATED WORK

In order to reduce the capital spending on data centers,

enterprise data centers use an over-subscription approach as

studied in [12]–[15], which is similar to over-booking in

airline reservations. Server vendors and data center solutions

providers have started to offer power capping solutions [28],

[29]. Power capping using feedback control algorithms [30]

has been studied for individual servers. In contrast, the study

of this paper concentrates to coordinated power capping which

is more desirable in data centers as it allows servers to exploit

power left unused by other servers. While such power capping

has been studied before [14], [18], [31]–[34], all existing

solutions rely on wired network for controller-server com-

munication. In contrast, we focus on wireless networking for

power capping. We have outlined the advantages of wireless

management in Section II.

Previous work on using wireless network in data centers ex-

ists on applications to high bandwidth (e.g. with 60GHz radio)

production data network [35]. In contrast, CapNet is targeted

at data management functions that have much lower band-

width requirement while demanding real-time communication

through racks. RACNet [9] is a passive monitoring solution in

the data center that monitors temperature or humidity across

racks where all radios are mounted at the top of the rack. Our

solution enables active control and requires communication

through racks and server enclosures, and hence encounters

fundamentally different challenges. Also, RACNet also does

not have real-time features, while CapNet is designed to meet

the real-time requirements in power capping.

VIII. CONCLUSION

Power capping is a time-critical management operation for

data centers that commonly oversubscribe power infrastructure

for cost savings. In this paper, we have designed CapNet,

a low-cost, real-time wireless management network for data

centers and validated its feasibility for power capping. We

deployed and evaluated CapNet in an enterprise data center.

Using server power traces, our experimental results on a

cluster of 480 servers inside the data center show that CapNet

can meet the real-time requirements of power capping. CapNet

represents a promising step towards applying low power

wireless networks to time-critical, close-loop control in DCM.
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