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Abstract
Forming secure pairing between wearable devices has be-

come an important problem in many scenarios, such as mo-
bile payments and private data transmission. This paper
presents EMG-KEY, a system that can securely pair wear-
able devices by leveraging the electrical activity caused by
human muscle contraction, that is, Electromyogram (EMG),
to generate a secret key. Such a key can then be used by
devices to authenticate each other’s physical proximity and
communicate confidentially. Extensive evaluation on 10 vol-
unteers under different scenarios demonstrates that our sys-
tem can achieve a competitive bit generation rate of 5.51
bit/s while maintaining a matching probability of 88.84%.
Also, the evaluation results with the presence of adversaries
demonstrate our system is secure to strong attackers who
can eavesdrop on proximate wireless communication, cap-
ture and imitate legitimate pairing process with the help of
camera.

1 Introduction
Nowadays we are witnessing the fast development of

wearable devices. Such rapid growth has led to a prevalence
of direct communications between devices in proximity and
innovated many promising applications. This includes, mo-
bile payments, which enable users to make a purchase by in-
teracting their mobile devices or smart watches with an elec-
tronic payment device [1]; Private data transfer implemented
on many commercial off-the-shelf smart wristbands, such as,
fitbit [5], can directly transmit user’s biological data to an
authenticated mobile device or data collection hub in prox-
imity. Along with the wide adoption of these applications
are not only the convenience and excellent user experience,
but also an increasing concern about privacy and security, as
the data transmitted is often highly sensitive and private. As
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Figure 1. Example application of EMG-KEY on Mobile
Payment. The user attaches his arm to the payment de-
vice and performs a simple gesture. The EMG signal
caused by this gesture can be used to generate secret key
to secure further communication.

a result, establishing a secure pairing becomes an important
problem for wearable devices.

Since wearable devices often lack convenient input meth-
ods and have limited resources, researchers have proposed
many novel systems to serve as alternatives to traditional
PIN-code-based and cryptographic-based approaches. In
these works, the vital part of creating a secure pairing be-
tween devices is to ensure both devices obtain consistent
and confidential observations from an information source,
which allows them to reach an agreement on the same se-
cret key. Such a secret source can be the wireless channel
measurement [13, 28, 33, 36, 43], human movements (ges-
ture [10], gait [49], shaking trajectory [38]), ambient envi-
ronment, e.g., ratio [37], sound [46], or vibration [9].

However, since the characteristics and randomness of the
secret source directly determine the robustness of secure
pairing schemes, existing works are still exposed to some
disadvantages when facing strong attackers. Due to the shar-
ing nature of wireless medium, secure pairing schemes based
on wireless channel measurements [13, 28, 33, 36, 43] are
vulnerable to predictable channel attacks, in which various
hacking techniques can be employed by a malicious adver-
sary, e.g., blocking the Line-of-Sight (LOS) radio propa-
gation between devices, to cause predictable variations in
the wireless channel measurement [33]. Also, the secret
key generated by movement-based approaches [10, 38, 49]
might be attacked if the movement is captured by a camera
with motion analysis. Meanwhile, the ambient-environment-
based works [9,46] are threatened by an eavesdropper or ac-



tive attacker who can intentionally controls the ambient en-
vironment by making predefined noises or vibrations.

The security limitations of the aforementioned techniques
have motivated us to design a more secure pairing system us-
ing intrinsic signals which reside in the human body, i.e., the
electric activity caused by human muscle contractions. The
key insight is that, to perform any human body movement,
our central nerve system sends electrical signals to trigger
corresponding muscle contractions. Such an electrical sig-
nal propagates along with the muscle fibers and can be cap-
tured by electrodes placed on the skin. The recorded sig-
nal is termed the Electromyogram (EMG), which has several
promising characteristics. (i) Medical studies [22, 39] have
proven that the EMG signal is a quasi-random process. This
means the average value of EMG will be statistically larger
if we intend to generate stronger force, but the amplitude
variation of EMG under a given force value is stochastic in
nature. As a result, even if a gesture is imitated and the cor-
responding output force is estimated, the variation of EMG
amplitude is still indeterminable. (ii) The current volume and
propagation area of EMG are quite subtle, only physical con-
tact in proximity can sense the signal [22], which means the
eavesdropping without physical contact would be extremely
difficult, if not impossible. (iii) Fueled by the developments
in new human-machine interaction technologies, EMG sen-
sor is being increasingly adopted by many commercial wear-
able devices, e.g., Myo armband [7], Athos gear [3], and Leo
smart band [6]. These facts suggest that EMG signals can be
leveraged as a secure source to generate secret key. Such
a key can be used by wearable devices to authenticate each
other’s physical proximity and then to communicate confi-
dentially.

Inspired by this idea, we propose EMG-KEY, a system
that securely pairs two wearable devices by using the EMG
variation caused by human body movement, e.g., hand ges-
tures, as the secret source to generate cryptographic key.
Our system comprises a smart wristband and a smart device
equipped with EMG sensors. Through physically attaching
these devices to the human body and performing an arbitrary
gesture, EMG-KEY can generate secret keys from the cap-
tured EMG signals and use them to create a secure commu-
nication channel between devices. A typical application of
EMG-KEY is the mobile payment1, in which the transaction
data is very sensitive and requires a high security level. As
shown in Figure 1, a user touches a payment device with his
arm while wearing a smart wristband. He then makes an ar-
bitrary gesture, such as clenching the fist. The EMG signal
caused by this gesture will be recorded by the EMG sensors
embedded in the smart wristband and payment device. Then,
both devices use the captured EMG signal to generate a se-
cret key. As both of their measurements are from the same
source, they can reach a consensus on the same secret key
with a high success rate while attackers have no clue about
this secret key.

To realize such a system, there are several challenges.
First, it is not clear whether the randomness of EMG vari-

1Note that the mobile payment involves many steps, including secure

pairing, user authentication and so on. Our system only focus on the pairing

part.

ation is sufficient to generate a robust secret key. To answer
this question, we formulate the generation of EMG as a ran-
dom process model and gain several insights from theoreti-
cal study and empirical experiments on volunteers. Another
challenge stems from the design of secret key extraction: al-
though both devices involved in the pairing measure EMG
from the same source, there are still some inconsistencies
in the captured signals due to the different installation loca-
tions, electrode attenuation, and hardware imperfections. To
address these issues, we design a secret key generation algo-
rithm based on the temporal variation shapes of EMG signals
and leverage error correction coding [17] to alleviate the dis-
crepancy. Extensive experimental results have confirmed the
effectiveness and efficiency of our algorithm.

Our contributions in this work lay in the following as-
pects:

• As far as we know, we are the first to explore the possi-
bility of using EMG to enable secure pairing for wear-
able devices. We have demonstrated that EMG is a good
information source to build a secure pairing system due
to its physical characteristics and stochastic nature.

• We propose EMG-KEY, a secure pairing system for
wearable devices, that can defend against many strong
attackers and provide high security. In this system, we
design and implement a secret key generation algorithm
based on the temporal shape variations of EMG signal
and alleviate the inconsistency via error correcting cod-
ing.

• We comprehensively evaluate the performance of our
system under different scenarios with 10 volunteers.
The results indicate that our system can archive a high
bit rate of 5.51 bit/s while maintaining a successful pair-
ing rate of 88.84%. Also, the evaluation results, in the
presence of adversaries, demonstrate that our system is
secure against strong attackers who can eavesdrop prox-
imate wireless communication, capture and imitate the
users’ pairing process with the help of a camera.

The rest of paper is organized as follows. We first briefly
introduce the preliminary theory of EMG generation and in-
vestigate its feasibility as a secret source, then define the
threat model in Section 2. The system design and detailed
implementation are discussed in Section 3. In Section 4, we
describe our experimental methodology and evaluation met-
rics. Then, we present the performance of our secret key
generation, impact of confounding factors, and resistance to
attacks in Section 5, Section 6, and Section 7, respectively.
The discussion and related work are provided in Section 8
and Section 9, followed by a conclusion in Section 10.

2 Feasibility & Threat Model

In this section, we start with a brief introduction to EMG,
and then formulate its generation as a random process model.
From this model, we can theoretically verify that the ran-
domness of EMG is sufficient for secure pairing. Aside from
this, we also conduct empirical experiments on volunteers
to demonstrate the feasibility of our system. After that, we
discuss our target scenario and define the attack model.
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Figure 2. Anatomy of Muscle [35].
Skeletal muscles comprise dozens of
muscle fibers, which are innervated
by motor neurons.
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Figure 3. EMG modeling. Two motor units,
each of which innervates three muscle fibers at
different end-plates z, are presented in this ex-
ample.

2.1 Preliminary
The generation of physical movement in the human body

involves the activation of skeletal muscles [39]. As shown
in Figure 2, skeletal muscles comprise dozens of elongated,
cylindrical cells known as muscle fibers, which are attached
to the bones of skeletons via tendons. Each muscle fiber
is innervated by a motor neuron and the contact region is
termed the neuromuscular junction, in which each axon lies
in a groove on the surface of the muscle fiber called motor
end-plate. The motor neuron and the set of muscle fibers it
innervates compose the basic functioning unit of a muscle,
i.e., motor unit (MU).

It is through the contraction of muscle fibers that we form
the movement. It starts with an electrical excitation sent
from our nerve system to the muscle fibers which activates
the acetylcholine-gated channel in the end-plate and allows
large amounts of positive sodium to flow into the muscle
fiber [14]. This positive influx causes a local depolarization
of the fiber membrane and initiates the muscle fiber action
potential. Such action potential spreads along the muscle
fibers innervated by this motor neuron and results in their
contraction. The frequency at which the muscle fibers are
stimulated by their innervating axon is called the motor unit
firing rate and multiple motor units are recruited during a
movement to meet the requirement of output force.

Through placing electrodes on the skin around the con-
tracting muscle, the electrical activity during a muscle con-
traction can be captured and the recorded data is termed the
surface EMG signal.

2.2 EMG Modeling
As a complicated biological process, EMG begins with

the nerve impulse sent from motor neuron, which spreads
over end-plates and yields the muscle fiber action poten-
tial. The action potential propagates along fibers and tissues,
and eventually captured by electrodes on the skin. To quan-
tify this process, consider an example shown in Figure 3, in
which a set of muscle fibers are innervated by two motor neu-
rons. The contact regions where the axons of neurons meet
muscle fiber are labeled as z0, ...,zi, and the mean is zm. Let
d be the average distance between the muscle and skin, and
w indicate the spacing between electrodes.

When a motor unit is recruited, the motor neuron sends

excitation impulse to initiate the muscle fiber action poten-
tial. It is evidenced [39] that the firing pattern of motor neu-
ron is quasi-random, i.e., the average firing rate grows with
the increasing force requirement, but the occurrence of each
impulse is stochastic in nature; Moreover, the firing patterns
of different motor units are essentially independent [22]. Let
random function Rq(t) describe the firing pattern of the q-th
motor unit. Then, the overall firing pattern of motor units
recruited is:

R(t) =
Q

∑
q=1

Rq(t) (1)

When the nerve impulse arrives at the muscle fiber, it
causes the depolarization of the fiber membrane and gener-
ates the muscle fiber action potential. This action potential
propagates from end-plates to electrodes at a conduction ve-
locity u and can be described as:

p(t) = Aut(2−ut)e−ut , (2)

where A is a scale factor and u is the conduction velocity,
both of which are determined by fiber membrane properties.

However, one may notice that the geographic distribution
of end-plates, i.e., the starting points of the action potential
propagations, are quite different. This can be viewed as a
time shift from zm and described by the convolution of the
delta shift function:

D(t) =
M

∑
m=1

δ(t− τm), (3)

where τm = zm−z̄
u

is the time shift caused by the distance be-
tween zm and z̄.

Combining these factors, we can quantify the EMG gen-
eration using the following model:

EMG(t) =
Q

∑
q=1

{

Rq(t)∗Dq(t)∗ p(t)∗ e(t)

}

=
Q

∑
q=1

{

Rq(t)∗
[

Mq

∑
m=1

δ(t− τm)∗ p(t)
]

∗ e(t)

}

, (4)
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Figure 4. Prototype of EMG-KEY, which consists of a
wristband and payment device, both of which are equipped
with Olimex EMG sensors and controlled by Arduino
UNO board.
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Figure 5. The rectified EMG measurements
from the user device and payment device
present a high correlation, but they are signif-
icantly different from the attacker’s signal.

where Q is the number of motor units which are recruited in
the contraction, Mq is the number of muscle fibers innervated
by the q-th motor unit. The e(t) is the transfer function of
electrodes, which is defined by the electronic properties of
electrodes and its relative location with respect to the muscle.

From this model, we can gain several useful insights:

• To generate a movement, it often requires multiple mo-
tor units to be involved. However, the number of re-
cruited motor units Q is determined by the force re-
quirement. Thus, even under the same movement, the
number of recruited motor units can be different.

• Even when the gesture can be captured on camera
and the output force might be inferred, the attacker is
still agnostic about the user’s EMG signal due to the
stochastic nature of the firing patterns of motor units.

• The personal difference in the end-plate distribution,
conduction velocity of muscle fiber membrane and even
muscle fatigue level also introduce additional discrep-
ancies between the EMG signal generated by the legiti-
mate users and attackers.

Apart from these observations, we also find the current
volume of EMG signal is quite small (around ±1.5mv), and
propagation area is limited to the skin above the contract-
ing muscles, which implies eavesdropping without close-
proximity physical contact is extremely difficult. All of these
observations suggest that EMG could be a good randomness
source to generate secret keys.

2.3 EMG as Secret Source
To validate the feasibility of using EMG to generate secret

key, we build a prototype based on Arduino UNO develop-
ment board [2] and Olimex EMG shield [8]. As shown in
Figure 4, the prototype consists of a wristband and a pay-
ment device, both of which are equipped with Olimex EMG
sensors.

Similar to the mobile payment scenario, we ask volunteer
A to wear our wristband, and put his hand on the payment
machine. Meanwhile, volunteer E acts as the attacker, who
is also wearing the same type of wristband and can observe
every gesture made by user A. To simulate the worst case,
both user and attacker are required to perform an easy-to-

imitate gesture, that is, slowly clenching the fist and releasing
it, which is repeated three times.

Table 1. Pearson correlation coefficient among user A,
payment device B and attacker E

corr(A, B) corr(A, E) corr(B, E)

0.98 0.69 0.66

Figure 5 gives an example of the rectified EMG signal
(for the details of rectification, see Section 3) obtained from
the wristbands of user A and attacker E, and the payment de-
vice B. The pairwise Pearson correlation coefficients are also
present in Table 1. We can notice some interesting observa-
tions: (i) Even for the same person, making the same ges-
ture, the EMG measurement can be different each time; (ii)
Although some slight differences do exist, the EMG signals
recorded from user A’s wristband and the payment device are
highly similar in their variation shapes and are strongly cor-
related, evidenced by a correlation coefficient of 0.98. (iii)
The correlation between attacker and legitimate devices are
not minor (around 0.69). Such a correlation derives from the
fact that the attack can clearly observe the gesture and easily
imitate it. As the EMG amplitude is a quasi-random process
with respect to output force, the general rise and drop trend
at the beginning and end of a gesture can easily be imitated,
but fail in the matching of the small scale variations of the
gesture.

These observations correspond to our insights from EMG
modeling in Section 2.2, which provides additional support
for the feasibility of using the EMG signal as a secret source.

2.4 Threat Model
In our scenario, two legitimate devices, neither of which

have priori knowledge about the other, would like to commu-
nicate confidentially. We assume both devices are equipped
with EMG sensors. To associate them successfully, the user
needs to put them in close proximity (around 4 cm) above
the acting muscle and have physical contact with the skin.

For the threat model, we assume there exists a powerful
attacker, who knows the exact details of our system and can
observe all the gestures made by the legitimate users, or even
use a camera to capture it for further analysis. Besides, he



can imitate the same gesture as the user’s. Moreover, all
the packets transmitted through the wireless channel can be
overheard and unencrypted packet will be correctly decoded
by the attacker. We term such an attacker the copy attacker.

In such a threat model, the copy attacker can first record
the user’s gesture and capture all the packet over wireless
channel during this communication. As these packets are
encrypted with our secret key, he can imitate the user’s ges-
ture and generate his own key with the knowledge of our key
generation algorithm. Also, if there is any information about
the secret key exchanged over the wireless channel, it can be
captured by the attacker and used to help the hacking of real
secret key. In such way, the copy attacker poses a serious
threat to user’s data security and privacy.

3 System Design
In this section, we present the design of EMG-KEY in

detail. We start with the rectification process and noise re-
moval of the raw EMG signal, introduce the secret key gen-
eration, and then move to the discussion on how to alleviate
the discrepancies caused by the electrode transfer function
and hardware imperfections. Figure 6 provides an overview
of our system.

3.1 Pre-processing
As discussed in Section 2.1, the EMG signal can be mod-

eled as the convolution result of the firing pattern of motor
neurons, distribution of end-plates, muscle fiber action po-
tential and electrode transfer function. To magnify the effect
of neuron firing pattern, rectification is a common applied
approach [22]. The Root-Mean-Square-based rectification
of EMG signal x(t), is defined as:

EMGrect(t) =

√

[ 1

T

∫ T

t−T
x2(τ)dτ

]

, (5)

where T is the window size which controls the trade-off be-
tween smooth envelope against transient variations of EMG
signal. In our system, we set this value to be 0.8 seconds.

Also, during the recording of EMG, there are many
sources of noise and interference, such as the electrical noise
caused by the friction between the electrodes and the skin, or
the power line interference. We notice that the most signifi-
cant noise is either less that 10 Hz (friction noise) or concen-
trated around 50 Hz (power line interference, the frequency
of which can be different among countries). Besides, the
majority of arm EMG is above 20 Hz [14]. Thus, a high-
pass filter with cut-off frequency of 15 Hz and a notch filter
implemented based on Chebyshev IIR filter are adopted to
alleviate the interference of the noise . Figure 7(a) and 7(b)
show an example of raw EMG and its corresponding rectified
signal.

Through applying the rectification and filtering on a raw
EMG measurement, we can obtain the rectified EMG. In
what follows, we demonstrate how to generate secret key
based on the rectified EMG signal.

3.2 Secret Key Generation
The goal of the secret key generation scheme is to fully

explore the randomness of EMG signals and encode them
into secret bits at a high rate. A common practice to this

end is to divide the signal into segments, and encode each
segment via quantizing its amplitude into several levels. Al-
though such a method can preserve most information of the
signal, the quantification level is not to defined [43] and may
introduce many many mismatched bits in our case: as we
can observe in Figure 5, the signal amplitudes of legitimate
devices are not exactly coincident due to their hardware dif-
ference.

Algorithm 1 Shape-based Secret Key Generation.

Input:
Rectified EMG signal S, coding window size w

Output:
Secret bit list L = [c0,c1, ...,cn]

1: ind ← 0
2: while ind +w < size(S) do
3: s = S[ind : ind +w], range = max(s)−min(s)
4: rise = [min(s)+ i∗ range/w for i in 0 : w]
5: drop = [max(s)− i∗ range/w for i in 0 : w]
6: stay = [ range

2
for i in 0 : w]

7: Template list T ← [rise,drop,stay]
8: dis← ∞, c← NULL, tid ← 0
9: while tid < size(T ) do

10: d = f astDTW (s,T [tid]).
11: if d < dis then
12: c = toBinary(tid), dis = d
13: end if
14: ++ tid
15: end while
16: L.append(c)
17: end while
18: return L

However, we notice that even though the EMG ampli-
tudes of legitimate devices are not well matched, their vari-
ation trends are highly correlated. Moreover, the variation
in the EMG shapes of attacker is significantly different from
the legitimate devices. Therefore, we choose to encode the
EMG signal by using their variation shapes.

Our encoding algorithm consists of three steps. First, di-
vide the rectified EMG S into small segments of size w. For
each segment, we define three basic shape templates, i.e.,
rise, drop, and stay, according to their amplitude variations.
Then, we use Fast Dynamic Time Warping [30] to compute
the distance between the segment and these three templates
and find the best-matching shape template. After that, we
use the binary representation of the corresponding template
ID tid as the secret key. Algorithm 1 elaborates this process.

Let V be the number of shape templates and w define the

coding windows size in seconds. Since we can generate 1
w

segments per second and use the binary representation of the
best-matching shape template ID of each segment as secret
bits, the bit generation rate (in units of bit/second ) can be
computed as:

bit generation rate =
1

w
log2 V, (6)

where V = 3 in our case.
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Figure 7. Flow of EMG-KEY.

An example result of the shape-based encoding algorithm
is presented in Figure 7(c), in which the blue line is the recti-
fied EMG signal and the black line within each coding win-
dow is the approximated shape of the segment.

3.3 Reconciliation
After the secret key generation, each device individually

ends up with an n-bit secret key. However, due to the space
between the devices and the imperfection in the electrodes’
properties, e.g., signal amplification gain and resistance to
noise, the transfer function p(t) of each EMG sensor can
be different. As a result, there are some discrepancies in
the EMG variation shapes, which inevitably lead to mis-
matching bits among the secret keys.

The purpose of reconciliation is to alleviate the mismatch-
ing of the secret keys between legitimate devices. As both
of the secret keys of legitimate devices are derived from the
same EMG source, they can be viewed as two different dis-
torted versions of the same signal. Through employing the
Error Correction Coding (ECC) [17], the number of mis-
matching bits can be reduced.

Specifically, given two legitimate devices A and B, the
secret keys they obtained from secret key generation are ka

and kb, the mismatching bits between which are defined as
ε. Let C(n,k,r) be an error correction code that encodes k-
bit message into an n-bit code to resist r-bit random error.
Function f (·) and g(·) denote the corresponding encoding
function and decoding function. To perform the reconcilia-
tion, device A first computes an offset δ between ka and its

corresponding codeword:

δ = ka⊕ f
(

g(ka)
)

, (7)

Then, device A transmits this offset data to device B via a
public communication link, e.g., WiFi or Bluetooth. Once
device B receives the delta, it can deduce ka as follows:

ka′= δ⊕ f
(

g(kb⊕δ)
)

, (8)

If the mismatching rate ε can be roughly estimated, an ap-
propriate error correction code C can be leveraged to ensure
ka′ equals ka with a high probability.

The rationale is that, with an ECC of correction range of
r, any encoded message that is within the correction range
to a codeword w will be decoded as g(w). Moreover, ex-
changing the offset information δ can ensure both ka and kb

are within the correction range of the same codeword if the
distance between ka and kb is not larger than r. Therefore,
reconciliation process can map two different bit sequences,
which have at most r-bit mismatching, to the same key.

We understand this process not only reduces the mis-
matching bits between the secret keys of legitimate devices,
but also leaks partial information about the secret key. Since
the δ is transmitted over a public communication link, it may
be overheard by an attacker and can be used to help the attack
of secret key. However, it can be theoretical proved that there
are only (n− k) bits of information leakage occurred [37].
Moreover, since the secret key during is derived from the
random variation of EMG signal, the offset information δ

in each pairing procedure varies independently. Therefore,



an attacker still cannot infer ka by observing δ. To ensure
no partial information leakage, we can further reduce every
n-bit secret sequence to a k-bit sequence, for instance, use
g(ka) as the secret key instead of ka. As a result, after the
reconciliation, the valid bit generation rate will be reduced

by a factor of n−k
n

.

In our implementation of EMG-KEY, we employ the bi-
nary Golay Code G(23,12) [17] in the reconciliation stage.
It is a perfect linear error-correction code, which encodes 12-
bit of data into a 23-bit word and can detect any 7-bit errors
or correct any 3-bit errors in each 23-bit block.

4 Experimental Methodology
Experiment Setup: In our experiment, we build a pro-

totype of the EMG-KEY as shown in Figure 4. It includes
a wristband and a device that acts as the payment device,
both of which are embedded with Olimex EMG/EKG sen-
sors [8] with a sampling frequency of 250 Hz controlled by
Arduino UNO develop board [2]. Based on this prototype,
we have implemented the shape-based secret key generation
scheme in Python 2.7 and performed the reconciliation via
Golay Code G23(23,12).

Table 2. Details of human subjects

No. Age Gender Wrist Circ.(cm) BMI

1 29 M 17.8 34.7
2 26 M 15.5 20.7
3 23 M 17.5 24.9
4 28 M 16.2 25.2
5 23 F 15.8 21.8
6 24 F 14.1 17.5
7 23 M 17.5 29.4
8 28 F 14.0 20.8
9 27 M 16.8 26.2
10 25 M 16.3 22.4

Testing Scenario: To conduct a comprehensive evalua-
tion, we have recruited 10 volunteers (7 males and 3 females,
details in Table 2) to conduct extensive experiments. Nine of
them act as normal users while one simulates the attacker. In
each experiment, the user is required to wear the wristband
on his/her arm, have physical contact with the electrodes on
the payment device in proximity (around 4 cm) as shown in
Figure 4, and then perform a gesture to initiate a secure pair-
ing. During this process, an attacker who wears the same
type of wristband is standing nearby in such a way that he
can clearly observe the gestures, and imitate them exactly.
To simulate the worst case in a real application, we intention-
ally ask users to perform simple gestures which are easy to
imitate, e.g., slowly clench then release the fist. We evaluate
the information leakage during the reconciliation process by
letting the attacker know the exact offset data between legit-
imate devices during each pairing process. All the EMG sig-
nals measured from devices, and corresponding secret keys
generated during these experiments are recorded for further
analysis. Ten experiments are conducted on each user and
there are 30×10 = 300 records in total.

Performance Metrics: Throughout the evaluation, four
metrics are employed to measure the performance of our sys-

tem.

• Bit generation rate is the number of valid secret bits
we can generate per second. In our system, this met-
ric is directly determined by the key generation scheme
and reconciliation process. Let w be the coding window
size in seconds and V indicate the number of predefined
shape templates. With the adoption of error correction
code ECC(n,k), the final bit generation rate is defined
as:

BGR =
k

wn
log2 V, (9)

where V = 3 in our case.

• Bit Mismatching rate reflects the level of inconsis-
tency between secret keys. It is defined as the number
of mismatched bits divided by the length of secret key:

BMR =
bitcount(ka 6= kb)

min(|ka|, |kb|)
. (10)

A low bit mismatching rate ensures legitimate devices
agree on the same secret key and pair successfully with
a high possibility. In our system, some factors can obvi-
ously affect the bit mismatching rate, e.g., the distance
between devices, the choice of error correction code,
and even the complexity of gesture.

• Entropy is a measurement of information contained in
data [19]. Given a random variable X = [x0,x1, ...,xi],
its entropy can be computed as:

H(X) =−∑
i

Pr[xi] log2 Pr[xi], (11)

where Pr[xi] is the probability of the i-th value of X . In
our case, we use segment-wise entropy, in which Pr[xi]
is the probability of the i-th variation shape template.

• Mutual information measures the mutual dependence
between two variables [19], which quantifies the
amount of information obtained about one random vari-
able X through the other variable Y as:

I(X ;Y ) = ∑
y∈Y

∑
x∈X

p(x,y) log
p(x,y)

p(x)p(y)
. (12)

The smaller the mutual information between X and Y
is, the less information of Y can be gained by only ob-
serving X , or vice versa. In our evaluation, we use this
metric to measure the information leakage between user
and attacker.

5 Performance of Secret Key Generation
This section evaluates the performance of our secret key

generation scheme.
We begin with an examination of the choice of the coding

window size and the error correction code, both of which di-
rectly determine the bit generation rate and bit mismatching
rate. According to the result, our system can generate secret
bits at a rate of 5.51 bit/s, while retaining a low bit mismatch-
ing rate. After that, we show that the reconciliation process
can be further extended to achieve a required key matching
rate with a trade-off of bit generation rate and the generated
key is random enough to pass the standard randomness test.
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5.1 Effect of Parameters
5.1.1 Bit Generation Rate

An important performance indicator for a secret key gen-
eration scheme is how fast it generates secret bits. For our
system, the bit generation rate before reconciliation directly
depends on the coding window size w used to segment EMG
signals in the shape-based secret key generation. Although
a small coding window gives us a high bit generation rate, it
also reduces the information contained in the generated se-
cret key as the uncertainty of possible variation shapes within
each window becomes smaller. As we can image, if we set
the coding window size to an extreme small value, then all
the variations in each coding window will be very minor
and can be approximated by a horizontal-line, i.e., the “stay”
shape.

To find the optimal coding window size, we compute the
bit generation rate and segment-wise entropy of generated
secret keys with respect to different values of w. As shown
in Figure 8, we observe that, with the growth of the cod-
ing window size, the bit generation rate drops quickly, but
the entropy contained in each segment increases and then
converges to 1.54 bits per segment (Theoretically, the max-

imum entropy = −∑
3
1

1
3

log2
1
3
≈ 1.58bit/segment). To pre-

serve sufficient randomness, we set the coding windows size
to 0.15 seconds in our system, which leads to a bit generation
rate of 10.57 bit/s and 1.51 bits information per segment.

Note that this is not the final bit rate of our system, be-
cause the reconciliation process will sacrifice part of the bit
rate to alleviate the mismatching of bits via employing error
correction coding. In the next section, we analyze its impact
on system performance.

5.1.2 Choice of Error Correction Code
Due to the spacing between devices, differences in the

electrodes’ properties and the hardware imperfection, there
are some discrepancies in the EMG measurements of legit-
imate devices, which inevitably leads to mismatching bits
among the generated secret keys. To alleviate such inconsis-
tency, error correction code is adopted at the reconciliation
stage. As a result, the choice of error correction coding algo-
rithm, as well as its setting, i.e., n and k, not only define the

bit mismatching rate of our system, but also cause a loss in
valid bit rate.

To examine the effectiveness of different ECC codes,
three candidate codes are employed: (i) Hamming Code,
which is a linear perfect error correction code that encodes
4-bit data into 7-bit code by adding 3 parity bits. (ii) Golay
code, a well-known linear code which translates 12-bit mes-
sage into 23 bits in such a way that any 3-bit error can be
corrected. (iii) Reed-Solomon code (RS) is a cyclic code de-
signed to detect and correct multiple errors. By adding check
symbols to the raw data, a RS code, RS(n, k), can correct up

to ⌊ n−k
2
⌋ symbols of error. Such property make it suitable for

burst errors and thus is widely adopted in many data storage
applications [17]. Table 3 lists the ECC codes used in our
evaluation, plus their parameters and properties, i.e., code
word length n, code length k, error-correcting ability r, in-
formation leakage and bit loss ratio.

Table 3. Candidates of error correction codes
Code n k r Leakage Bit loss

Hamming Code 7 4 1 0.43 0.57
Golay Code 23 12 3 0.48 0.52
RS(7, 3) 7 3 2 0.57 0.43
RS(15, 5) 15 5 5 0.67 0.33
RS(15, 3) 15 3 6 0.8 0.2

Additionally, we collect a data set of raw EMG signals
and corresponding secret keys from 10 users as described in
Section 4. The average bit mismatching rate before recon-
ciliation of this data set is 0.065 and the standard deviation
is 0.029. We feed these data into the reconciliation process
with different ECC codes and compare their performances in
Figure 9.

From this figure, we find that, although Reed-Solomon
Code with n = 15,k = 3 has the lowest average bit mis-
matching rate, Golay code G(23,12) is a better choice as
it performs more stably among different data records. Be-
sides, we notice the standard deviation of linear ECC codes,
e.g., Hamming Code and Golay Code, are generally smaller
than the Reed-Solomon code. This can be explained by the
fact that the Reed-Solomon code may introduce more mis-



matching bits if the number of mismatching bits exceeds its
correction ability due to its nonlinear nature.

According to this result, we adopt the Golay Code,
G(23,12), in our system and the final bit generation rate is

12
0.15×23

× log2 3≈ 5.51 bit/s.

5.2 Extensibility of Reconciliation
Although Golay code provides a good performance, its

error correction ability is fixed, but in practice, different ap-
plications might pose distinct requirements on the bit gener-
ation rate and key matching rate. To further prove that our
system can be extended to meet the various requirements, we
employ the Reed-Solomon (RS) code in this experiment to
demonstrate that the reconciliation process can be extended
to achieve a required matching rate with the trade-off of bit
generation rate.

In this experiment, we adopt a RS code with n = 15,m =
3. It encodes n symbols of m bits into k symbols to handle

r = ⌊ n−k
2
⌋ symbol errors, and brings k

n
loss to the final bit

generation rate [17]. Also, we generate 500 keys for the test,
each of which is 60-bit long and equivalent to 18-digit PIN
code.

Figure 10 shows a trade-off between final bit generation
rate and corresponding key matching rate. For instance,
when error correction ability r = 1, the bit generation rate
is 9.2 bps but the key matching rate is only 0.31. This is
because the errors are larger than the error correction abil-
ity. With the growth of the error correction ability, the key
matching rate is significantly improved, e.g., key matching
rate = 0.9904 when r = 7. However, a higher error correc-
tion ability also introduces a larger bit rate loss, which linear
degrades the final bit generation rate.

5.3 Randomness of Generated Key
To ensure the randomness of generated key, we employ

the standard randomness test suite from NIST [44] to exam-
ine the randomness level of secret bits after the reconcilia-
tion. This test suite conducts a series of randomness tests
with a null hypothesis that the input key is random and com-
putes the corresponding p-value. If the p-value is less than a
significance level, e.g., 1% in our case, then the null hypoth-
esis is reject and the key is claimed to be non-random.

Table 4 shows the p-values of our secret keys in the ran-
domness tests. We can find that the p-value of each test are
larger than the 1%, which implies that our system can pass
the test with sufficient randomness.

Table 4. Randomness Test
Test p-value

Frequency 0.162606
Block Freq. 0.437274
Approximate Entropy 0.637119
Runs 0.162606
Longest Run 0.025193
Cum. Sum (forward) 0.162606
Cum. Sum (backward) 0.437274
FFT 0.012650
Serial 0.275709

6 Impact of Confounding Factors
This section investigate the impact of confounding fac-

tors, namely, the distance between devices, the placement of
electrodes and the gesture complexity. The evaluation re-
sults shows that, by placing the devices within 4 centimeters
of one another, our system can provide a good performance
with a simple gesture and is robust to the electrode place-
ment.

6.0.1 Secure Distance between Devices
In our system, both legitimate devices need to be placed

in close proximity on the skin to ensure a successful pairing.
This is because EMG signal is a very subtle electrical activ-
ity, which can only be precisely sensed near the contracting
muscles. Besides, the signal measured by devices are actu-
ally a composition of several individual EMG signals from
different muscles. For example, as a complex organ, the hu-
man arm consists of 23 muscles, each of which has different
functions [35]. Due to these facts, we can image that large
distances between legitimate devices could increase their in-
consistency in the EMG measurements, which would even-
tually introduce additional mismatching bits.

To evaluate how close the devices need to be placed to en-
sure a successful pairing, we conduct extensive experiments
on the volunteers by placing the wristband and payment de-
vice at different distances. Figure 11 shows the correspond-
ing bit mismatching rate between legitimate devices.

From this figure, we observe a growing trend in bit mis-
matching rate with the increase of distances between legit-
imate devices, which corresponds to our previous analysis.
Also, a distance of within 4 centimeters can still maintain a
good performance with the help of reconciliation. However,
larger distances will exceed the correction ability of the ECC
code and result in a high mismatching rate.

6.0.2 Placement of Electrodes
Apart from the distance between devices, another factor

deriving from the subtle propagation nature of EMG and
complex composition of the human arm muscle is the place-
ment of electrodes. Although the muscles of forearm are
elongated and often distributed over the whole of the fore-
arm, we wonder whether there is difference if the electrodes
is placed at different locations.

To evaluate the impact of electrode placement, we design
three groups of experiments, in each of which the electrodes
of the wristband and payment device are placed at different
locations as shown in Figure 12. The distances among differ-
ent placements are 4 centimeters while the spacing between
wristband and payment device in each experiment is fixed to
2 centimeters.

We first evaluate the bit mismatching rate under each
placement in Figure 13. An immediate observation from this
figure is that the mismatching rate at location 2 is lower than
at locations 1 and 3. This is because location 1 is relatively
far away from the contracting muscles, while location 3 is
often covered with more fat and tissue, which is evidenced
as being able to hinder the propagation of EMG [39]. Com-
pared with these two locations, the EMG measured at loca-
tion 2 is much stronger and suffers less interference, which
leads to a better performance. However, we also find that,
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with the help of reconciliation process, the performances at
locations 1 and 3 are still acceptable as most mismatching
bits in secret keys can be significantly reduced by error cor-
rection code.

Also, to quantify the randomness level of secret keys gen-
erated under different electrode placements, segment-wise
entropy is computed and reported in Figure 14. A higher
segment-wise entropy indicates more randomness will be in-
cluded in secret key and thus it is more difficult to attack.
Note that, since we use three predefined shapes to approxi-
mate the EMG variation in the shape-based secret key gen-
eration, a theoretical upper-bound of the segment-wise en-
tropy is achieved if all these shapes occur in the secret key
randomly and uniformly. Thus, the maximum can is com-

puted as: max(H)=−∑
3
1

1
3

log2
1
3
≈ 1.58bit/segment, which

is represented by the dashed line above the bars. According
to this figure, the entropies of secret keys generated under
different electrode placements are relatively identical and all
of them are approaching the theoretical maximum. This in-
dicates that most of the information of EMG randomness is
preserved no matter where the electrodes are placed.

6.0.3 Gesture Complexity
As our system requires users to perform a gesture to ini-

tiate the pairing process, one natural question is whether the
complexity of gestures can affect the system’s performance
and security level. This question comes along with an intu-
itive idea that the high-complexity gestures are hard to imi-
tate, which may introduce more robustness to attacks.

To explore the answer, we design three gestures with in-
creasing complexity, namely, g1, g2 and g3. In g1, the user
slowly clenches the fist, then releases it gently. The sec-
ond gesture, g2, requires users to clench and release the fist
quickly and repetitively. In the last gesture with the high-
est complexity, the users are asked to randomly moves their
fingers quickly as will.

Figure 15 shows the performance of secret key generation
under gestures of different complexity. We surprisingly find
that the bit mismatching rate gets higher with the increase in

gesture complexity. Upon further analysis, this turns out to
be rooted in the fact that complex gesture, such as moving
fingers randomly, is often accomplished by the collaboration
of several muscles. Therefore, multiple individual EMG sig-
nals are interfering with each other during a complex gesture.
Moreover, some individual EMG signals are quite minor and
can easily be overwhelmed by the others. As a result, the
interference between individual EMG signals leads to an ob-
vious inconsistency in the EMG measurements between le-
gitimate devices, which eventually results in a degradation in
the performance.

Given such frustrating results, a major concern is whether
a simple gesture can provide enough randomness for secure
pairing. To this end, we again employ the segment-wise en-
tropy to evaluate the randomness level provided by gestures
of different complexity and present the results in Figure 16.
We notice complex gestures actually does not provide infor-
mation gain. Also, the average entropy of simplest gesture,
i.e., the slow clenching and releasing of the fist, is about 1.51
bit/segment, which approaches the theoretical upper bound
of 1.58 bit/segment.

These results imply that, although a high-complexity ges-
ture does not provide any additional enhancement to our sys-
tem, the simple gesture will suffice as it can preserve enough
randomness and provide a good bit mismatching rate.

7 Resistance to Attacks

In this section, we evaluate the security performance of
our system. Throughout the experiments, we assume there
exists a strong attacker who is able to:

• know every details of our pairing algorithm;

• stand in close proximity, precisely observe and capture
all the gestures made by users during the pairing pro-
cess;

• imitate these gestures exactly;

• eavesdrop on and decode all the packets sent via a pub-
lic communication link, e.g., WiFi, Bluetooth or NFC;
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In order to examine the our system’s robustness to such
a strong attacker, we conduct extensive experiments on 10
volunteers, in which nine of them act as normal users while
one simulates an attacker who will imitate their gestures.
Each user is asked to perform the pairing process 30 times
in the presence of attacker and there are 10×30 = 300 pair-
ing records in total.

We start the evaluation with the analysis on the informa-
tion leakage to the attacker. The experiments demonstrate
that the attacker can only obtain a negligible amount of infor-
mation about the legitimate devices even when he can imitate
a user’s gesture exactly.

After that, we take a close look at the bit matching rate
of the secret keys generated by different users and attackers,
from which we can find that the bit mismatching rate of an
attacker is significantly higher even with the adoption of an
ECC code.

7.1 Information Leakage
To visualize the correlation between the EMG measure-

ments of devices, we present the pairwise scatter-plots of the
normalized EMG measurement of each pair of devices when
both user and attacker are performing the same gesture syn-
chronously in Figure 17.

From Figure 17(a), we can clearly observe that the EMG
signal from the payment device increases linearly with re-
spect to the measurements from user’s wristbands, which im-
plies there exists a strong correlation between them. On the
other hand, even through the attacker is imitating the user’s
gesture synchronously, his/her EMG measurement does not
appear to have a strong connection with either the user or the
payment device according to Figure 17(b) and 17(c).

To further quantify the amount of information can be
learned by imitating a gesture, we compute pairwise mutual
information between devices in Table 5. A smaller mutual
information implies less information can be learned from one
variable to anther. We note that, by measuring the EMG vari-
ation in close proximity, the wristband can obtain 1.158 bits
of information about the payment device’s corresponding se-
cret key. On the contrary, the attacker, albeit imitating the
gesture synchronously, can only gain 0.29 bits of informa-

tion about user’s secret key. This indicates that the legitimate
devices have 4 times more information about each other than
the attacker.

Table 5. Mutual information among user’s wristband A,
payment device B, and attacker’s devices E

A vs. B A vs. E E vs. B

Mutual info. 1.158 0.290 0.274

7.2 The Performance of Copy Attacker
In this section, we further assume that the attacker can

get the offset information δ transmitted in the reconciliation
stage between legitimate devices via eavesdropping, and try
to deduce their secret key during the pairing process.

In oder to simulate such an attack, we design an exper-
iment in which the offset information δ between legitimate
devices is explicitly shared with the attacker via public com-
munication. The same reconciliation is performed by the at-
tacker to help the secret key estimation used by legitimate
devices. The bit mismatching rate is used to quantify the
possibility that the attacker can have the same secret key as
legitimate devices.

The evaluation result on 10 volunteers (30 pairing exper-
iments for each volunteer) is reported in Figure 18. We can
find that the bit mismatching rate between user’s wristband
and payment device can be efficiently reduced by the rec-
onciliation process (the final average bit mismatching rate is
8.924× 10−3). However, the attacker can not benefit from
such a process: the bit mismatching rate between the key de-
duced by the attacker and the real secret key used actually in-
crease after the adoption of the error correction code, which
ends up with an average bit mismatching rate of 0.298. This
is because if the number of mismatched bits exceeds the er-
ror correcting ability of ECC code, some matched bits might
be erroneously flipped and thus more mismatching bits are
introduced.

As a result, it is impossible for an attacker to hack
the pairing process even if he can eavesdrop the offset
information. Consider PIN codes commonly used, e.g.,
4-digit PIN in traditional Bluetooth and 6-digit PIN for
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Figure 17. Flow of EMG-KEY.
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Figure 18. Bit mismatching rate of users and copy attackers.

many bankcards [37], the corresponding pairing probabili-
ties between legitimate devices are (1−0.008924)log2 10∗4 ≈
88.84% and (1− 0.008924)log2 10∗6 ≈ 83.64%, respectively.
Meanwhile, the attacker only has a extreme low chance to
to deduce the same secret key: (1− 0.298)log2 10∗4 ≈ 0.91%

in terms of 4-digit PIN, and (1− 0.298)log2 10∗6 ≈ 0.09% in
terms of 6-digit PIN.

8 Discussion
In this section, we discuss the practical issus of our sys-

tem, and possible directions of future exploration.

EMG Wearables. As the major security of our system
relies on the employment of EMG measurements, one may
question whether the EMG sensor is available for wearable
devices. According to our study, there are already several
wearable products embedded with EMG sensors, e.g., Myo
armband [7], Athos gear [3], and Leo smart band [6], which
enable many promising applications. For instance, the Myo
armband can recognize a user’s gestures and provide a new
way for human-computer interaction, while the Athos gear
can monitor the contraction state of the muscle and be used
to help physical training. We envision that, in the near future,
there will be more wearable devices equipped with EMG
sensors due to the fast development of Augmented Reality
(AR) and the health-care market [4, 42].

Another practical concern is that wearing EMG elec-
trodes is not convenient and comfortable. However, our
system does not require users to wear the EMG electrode

all the time. It only needs to be contacted with skin dur-
ing the pairing process, which normally takes a few seconds.
Besides, many other commercial devices with EMG sensors
also impose the same constraint, we believe this issue can be
alleviated by better industrial design in near future.

Threat of electromagnetic emanation. Recent studies
have exposed a new threat derived from electromagnetic em-
anation (EM). By using the electromagnetic nature of de-
vices, it is possible for adversaries to eavesdrop the infor-
mation [27] or even perform an EM signal injection attack,
in which the attacker manipulates the input to the device by
emitting chosen electromagnetic waveforms [48]. However,
such attack techniques can not defeat our system. First, due
to the fact that the EMG voltage is unobtrusive (often with-
ing ±10 mv), it is extremely hard to eavesdrop on its EM
radiation in practice. Also, the EM signal injection attacks
can be prevented via better hardware design.

Multi-Channel EMG. To make our system more reliable
and practical, there are some possible directions worth ex-
ploring in the future. The first one is the adoption of the
multi-channel EMG. To measure the muscle activity accu-
rately, many existing wearable devices are equipped with
more than one EMG sensor. We believe that the performance
of our system can be further enhanced if the EMG signals
from different channels can provide more information and
randomness. Also, our current system only employ three ba-
sic shapes to quantify the EMG variation, therefore a more
fine-grained quantization level can be adopted to improve the



system’s performance.

Impact of Body States. As our system depends on the
EMG signal from human body, one may concern whether
the body state changes can affect the sensing of EMG.

The first one is the muscle fatigue. Although it is evi-
denced that the EMG signal drifts to lower frequency when
the muscle fatigue occurs [15], it does not significantly affect
our system as a successful pairing only requires both legit-
imate devices have a consistent measurements on the same
EMG source. However, to comprehensively examine other
side effects, an in-depth medical study should be conducted.
We leave it for future exploration.

Besides, as our system requires users to wear electrodes
on their skin, sweating inevitably degrades the signal qual-
ity and introduces more mismatching bits. To alleviate such
problem, an ECC code of stronger error correction ability
can be adopted to ensure the key matching rate with a sacri-
fice of bit rate.

Another factor is the body mass. Many studies indicate
that body fat can restrain the sensing of surface EMG sig-
nal [39]. To understand the effect of this issue on our system
performance, we intentionally include an overweight volun-
teer in the evaluation (volunteer 1 in Table 2, BMI=34.7).
Throughout all the experiments, we have not found any dif-
ference between this overweight volunteer and the others. In
the future, we plan to conduct a larger-scale experiment and
recruit more volunteers of different BMI to further validate
this issue.

9 Related Work

9.1 Secure Pairing
Many techniques have been proposed to enable secure

pairing between mobile devices based on pre-shared secrets.
A variety of information sources have been exploited to
generate shared secret keys without prior information ex-
change. Such sources can be wireless channel measure-
ments [13, 28, 33, 36, 43], human motion [10, 38, 49], vibra-
tion [9], or ambient environments [37, 46]. Azimi et al. [13]
are among the first to leverage the channel reciprocity to
generate secret keys from wireless signal strength. Jana et
al. [28] propose an environmental-adaptive key generation
scheme to boost the bit generation rate. Liu et al. [33] take
one step further by using the fine-grained channel state infor-
mation (CSI) as the reciprocal information to extract more
information for key generation in OFDM systems. Simi-
larly, Puzzle [43] leverages the frequency shapes of channel
measurements to obtain more robust secret bits. Checksum
Gestures [10] uses a single-continuous gesture to generate
an authentication code to replace the traditional PIN input
for wearables. Mayrhofer [38] establishes a secure link be-
tween two devices by shaking them together, and leverages
their trajectories as shared information. Gait is also exploited
by Xu et al. to pair on-body devices [49]. Instead of using
hand-incurred motion, Ving [9] leverages the vibration of a
desk as the shared secret for all devices on the desk. Ambient
environment based approaches authenticate the proximity of
two devices based on ambient wireless signals [37] or ambi-
ent audios [46].

Another research direction is the secure near-field com-

munication. Dhwani leverages the self-jamming and self-
interference cancellation to provide an secure acoustic com-
munication in near field [41], EnGarde is a compact hard-
ware design to jam malicious interactions for NFC [26], and
nShield attenuates the signal strength against passive eaves-
dropping to provide better security [51].

Different from these approaches, EMG-KEY exploits a
new dimension, i.e., EMG, to provide secure pairing. Due
to its subtle and random characteristics, EMG variation is
random in nature and can only be sensed in close proxim-
ity with physical contact, which makes our system robust to
proximate eavesdroppers and even camera-based shoulder-
surfers.

9.2 EMG Analysis
Traditionally, EMG is used by clinic doctors and biomed-

ical scientist to study muscle fatigue [15, 24], neuromus-
cular diseases [23, 47] and human kinesiology [40]. In re-
cent years, the EMG is also widely adopted to enable differ-
ent promising applications, e.g., controlling prosthetic [12],
emotion recognition [16,21], and speech recognition [29,34].
Apart from this, extensive effort has been devoted to the ex-
ploration of using EMG as an interface of Human-machine
interaction [11, 31]. Alternatively, our system leverages the
EMG signal to secure the pairing of devices.

9.3 Other Biometric Applications
Apart from EMG, fingerprint, face, gait and voice are

wildly used on modern devices to strengthen security [32].
Other biometrics, such as bio-impedance [18], electrocardio-
graph [20], body electric potential change [25], bio-vibration
response [50], and body capacitance profile [45] are also ex-
ploited to provide similar secure functions. In complement
to these works, our system is the first one to utilize EMG sig-
nal to enable secure pairing with a comparative performance
and high security level.

10 Conclusion
In this work, we propose a secure pairing system for wear-

able devices by exploring the randomness embedded in an
EMG signal. We design a shape-based secret key generation
scheme and leverage the error correction code to alleviate
the inconsistency between devices. Extensive experiments
on ten volunteers indicate that our system is robust to many
confounding factors and can achieve a competitive bit gener-
ation rate of 5.51 bit/s while maintaining a highly successful
pairing rate of 88.84%. Also, evaluation results in the pres-
ence of copy attackers demonstrate our system can defend
against strong attacks.
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