
HarvOS: Efficient Code Instrumentation for
Transiently-powered Embedded Sensing

Naveed Anwar Bhatti
Politecnico di Milano, Italy

naveedanwar.bhatti@polimi.it

Luca Mottola
Politecnico di Milano, Italy and SICS Swedish ICT

luca.mottola@polimi.it

ABSTRACT

We present code instrumentation strategies to allow transien-
tly-powered embedded sensing devices efficiently checkpoint
the system’s state before energy is exhausted. Our solu-
tion, called HarvOS, operates at compile-time with limited
developer intervention based on the control-flow graph of a
program, while adapting to varying levels of remaining energy
and possible program executions at run-time. In addition,
the underlying design rationale allows the system to spare
the energy-intensive probing of the energy buffer whenever
possible. Compared to existing approaches, our evaluation
indicates that HarvOS allows transiently-powered devices
to complete a given workload with 68% fewer checkpoints,
on average. Moreover, our performance in the number of re-
quired checkpoints rests only 19% far from that of an “oracle”
that represents an ideal solution, yet unfeasible in practice,
that knows exactly the last point in time when to checkpoint.

CCS CONCEPTS

•Computer systems organization →Embedded sys-
tems; Sensor networks;

KEYWORDS

Embedded Systems, Sensor Networks, Checkpointing, Tran-
siently-powered computing

ACM Reference format:

Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient
Code Instrumentation for Transiently-powered Embedded Sensing.
In Proceedings of The 16th ACM/IEEE International Conference

on Information Processing in Sensor Networks, Pittsburgh, PA
USA, April 2017 (IPSN 2017), 12 pages.

DOI: http://dx.doi.org/10.1145/3055031.3055082

1 INTRODUCTION

Advances in energy harvesting and wireless energy transfer
are redefining the scope and extent of the energy constraints
in embedded sensing [8]. It now becomes conceivable to power

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

IPSN 2017, Pittsburgh, PA USA

© 2017 ACM. 978-1-4503-4890-4/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3055031.3055082

not just RFID-scale devices out of harvested or wirelessly-
transferred energy, but also more powerful devices operating
in sophisticated applications such as smart buildings, factory
automation, and mobile health [8]. However, energy provi-
sioning from ambient energy harvesting or wireless energy
transfer is generally erratic. Thus, devices need to cope with
highly variable, yet unpredictable energy supplies across both
space and time, and be prepared to survive periods of energy
unavailability.

The problem is exacerbated as the complexity of applica-
tions grows. Many modern applications are effectively state-
ful [8]. In these settings, for example, whenever actuation
becomes part of the application logic, actuators must retain
their operating settings after a power failure to safely resume
their functionality. Even in stateless implementations, the
application processing deployed on embedded devices might
not execute entirely on a single charge of the limited energy
buffers typically employed. For example, accelerometer sen-
sors may need to apply complex signal processing algorithms
before reporting the data, which typically requires a few
seconds of intense MCU utilization.

One way to enable the operation of such transiently-
powered devices is to efficiently checkpoint the system’s state
on non-volatile memory [9, 20] whenever energy is about
to be exhausted. This allows a device to resume operation
from the saved state as soon as energy is newly available.
When and how to perform the checkpoint, which is an energy-
expensive operation per se, is crucial. Doing so too early
would essentially correspond to a waste of energy that could
be usefully employed in further computations. In contrast,
excessively postponing a checkpoint may yield a situation
where insufficient energy is left to complete the operation.
Because of the unpredictable supply of energy from the en-
vironment and the varying run-time execution of programs,
striking an efficient trade-off is challenging.

We present code instrumentation strategies to place calls
to trigger functions that, based on the current system state,
decide whether to perform the checkpoint before continuing
the execution [20]. Different from existing approaches, we
look at the control-flow graph (CFG) of a program and place
triggers according to different strategies depending on the
programming constructs, for example, branching statements
as opposed to loops. Simultaneously, we aim at reducing
the size of the checkpoint itself by placing triggers where the
size of the allocated memory is reduced. The decision on
whether to checkpoint is based on available energy as well as
the worst-case estimation of the energy required to reach the
next trigger call.

IPSN 2017, April 2017, Pittsburgh, PA USA Naveed Anwar Bhatti and Luca Mottola

Such a scheme, which we call HarvOS, completely operates
at compile-time and dynamically adapts to varying levels
of remaining energy at run-time, while capturing the actual
program execution through the CFG. The underlying design
rationale also allows the system to spare energy-intensive
probing of the energy buffer, for example, through ADCs,
whenever possible.

HarvOS is largely independent of programming language,
OS, and underlying platform. It is generally applicable to
imperative programming languages. The execution of check-
points is transparent to the OS as long as a way to make
these operations atomic is somehow provided. Our solution
applies both to platforms where traditional volatile memory
is employed for normal processing and a separate non-volatile
memory is reserved for checkpoints, and to platforms where
non-volatile memory is used in place of volatile one; for
example, when FRAM chips replace normal SRAM chips.

Our evaluation considers modern 32-bit MCUs and three
increasingly complex benchmark codes commonly employed
in embedded sensing. We sweep the possible executions of
programs against varying size of the underlying energy buffers
to measure the performance of HarvOS against existing
approaches. The results we collect indicate that, for example,
HarvOS allows a device to complete a given workload with
68% fewer checkpoints, on average compared to existing
approaches. Moreover, such a performance rests 19% far
from that of an “oracle” that represents an ideal solution,
yet unfeasible in practice, that knows exactly the last point
in time when a checkpoint is required.

The benefits are not, however, limited to the number
of required checkpoints. Our evaluation also shows that,
because checkpoints in HarvOS happen much closer to the
last practical point in time when the system should take a
checkpoint, we can also reduce the processing that would go
wasted as its results would not become part of any checkpoint.
We further demonstrate that, unlike existing approaches,
our performance is largely robust against different program
structures. Ultimately, this means that energy utilization is
improved in a larger set of applications, as it is employed
more for useful computations than for checkpointing.

The rest of the paper unfolds as follows. Section 2 places
our work in context. Section 3 describes the design rationale
and the foundations of our approach. Section 4 describes the
compile-time rules we apply to decide on the placement of
trigger calls depending on the program structure. Experi-
mental results are reported in Section 5. We end the paper
with brief concluding remarks in Section 6.

2 RELATED WORK

Relatively little research exists on enabling transiently-powered
computing on embedded devices. Recent work comprehen-
sively describes existing approaches and quantitatively com-
pares them against each other [6]. Here we focus on the
aspects most relevant for code instrumentation. We recog-
nize two classes of such approaches.

One class is based on separate memory areas for normal
computations and for checkpointing. Examples are Mement-
OS [20] and Hibernus [7]. The MementOS prototype uses
flash memory for checkpointing. Trigger calls are executed
periodically or placed using a loop-latch or function-return
strategy. The former places trigger calls at the end of loop
iterations; the latter places trigger calls at function return
points. These are the locations where one may expect the
stack to store less data, which would then reduce the size
and energy cost of moving data to flash. The decision to
checkpoint is based on a voltage threshold obtained through
repeated emulation experiments that eventually determine
a single program-wide threshold based on average run-time
behavior and user-supplied energy traces.

Hibernus [7] uses FRAM instead of flash memory, and
triggers a checkpoint based on a hardware interrupt firing
if the operating voltage drops below a threshold. Because
of the higher energy efficiency of FRAM compared to flash
memory, the latter can be statically defined because Hibernus
can afford to copy the entire RAM segment independent of
the current memory occupation. The energy to perform such
a fixed-cost checkpoint is stored in a separate decoupling
capacitor, in turn driven by an external voltage regulator. In
contrast, one of our goals is to enable efficient checkpoint-
ing without requiring hardware modification. Furthermore,
FRAM chips are still limited in overall size. It is then difficult
to store multiple checkpoints; for example, to ensure that at
least a complete consistent checkpoint is always available.

The other class of solutions employ non-volatile memory,
especially FRAM, as the only memory space. This means
FRAM is used both for normal computations and for sav-
ing the system’s state in periods of energy unavailability.
The advantage is that application data already resides on
non-volatile memory, so only registers and program counter
need to be saved when checkpointing. QuickRecall [16] is an
example in this class. These solutions are especially indicated
for scenarios characterized by very short energy bursts, as
checkpoints can happen quickly. However, they suffer from an
increase of energy consumption during normal computations
due to the use of FRAM in place of SRAM, and from poten-
tial data consistency issues that require specialized compiler
techniques [18].

HarvOS is independent of the underlying memory archi-
tecture, and applies to both classes of approaches with only
minor changes. The trigger placement rules we describe next
may replace or complement the heuristics or periodic trigger
calls employed in the aforementioned systems. Our design is
rooted in the unbalance between normal computation and
the energy-hungry operation of checkpointing, and seeks to
reduce the overhead of the latter.

3 OVERVIEW

Calls to trigger functions placed anywhere in the code essen-
tially represent an overhead compared to the normal com-
putation. In existing systems, two operations are performed
every time the execution encounters a trigger call. First, the

HarvOS IPSN 2017, April 2017, Pittsburgh, PA USA

system verifies some condition that indicates whether it is
time to checkpoint. MementOS, for example, uses a voltage
threshold as explained in Section 2. If the condition is veri-
fied, the checkpoint takes place. The energy cost of checking
whether a checkpoint is necessary is normally constant.

The energy cost of the actual checkpoint, on the other
hand, depends on the underlying memory architecture. For
platforms that only employ a single non-volatile memory
area [16], the size of checkpoints is fixed and independent of
where the checkpoint takes place throughout the program
execution: only registers and program counter need to be
saved. Thus, the energy cost of checkpointing is fixed.

In platforms employing separate memory areas for nor-
mal computations and for checkpointing [7, 20], the entire
allocated memory needs to be saved, including stack and
heap, at the time of checkpointing. As a result, the size and
therefore the energy cost of checkpointing depend on where in
the program the checkpoint takes place, making this energy
cost typically proportional to the size of the allocated mem-
ory [9]. For example, the higher the stack at that point in
the execution, the larger is the energy cost of checkpointing.

Challenge. Our objective is to minimize the energy over-
head due to checkpointing operations. This means i) to
minimize the number of trigger calls that are uselessly ex-
ecuted, that is, to verify no checkpoint is needed, and ii)
to postpone the actual checkpoint to a moment where the
available energy is strictly sufficient to that end, that is, one
can not perform further computations without jeopardizing
the ability to checkpoint later.

The two needs are at odds with each other. Postponing
the checkpoint, in fact, requires to frequently check how close
is the execution to when no sufficient energy is left to perform
the checkpoint. However, trigger calls need to probe the en-
ergy buffer, for example, through ADC operations. Therefore,
frequently performing this operation may become prohibitive
because of the energy cost. The negative effects are not lim-
ited to energy consumption. Trigger calls might, in addition,
change the execution timings. Using resource-constrained
devices, this may introduce subtle software bugs [22].

Rationale. To optimize the point in time when the ac-
tual checkpoint takes places and its energy cost, we rely
on compile-time information on memory allocation patterns.
Static code analysis techniques exist that can return accurate
information on the evolution of the stack and, in many cases,
of the heap as well [4, 14, 15]. The latter techniques espe-
cially apply when the size of heap-allocated data structures
is known at compile-time; for example, whenever objects are
dynamically allocated in languages such as C++.

Similar to existing works [7, 16, 20], we focus on supporting
transiently-powered computing for the main MCU. Other
components on the device, such as sensors or radios, may
operate through separate energy buffers [13] or techniques
such as radio backscattering [17]. The former technique
effectively decouples the energy management of peripherals
from that of the MCU, which is in charge of driving the
entire system and thus requires ad-hoc techniques to operate

⟨1⟩ worst-case
memory

allocation

⟨2⟩ max MCU
cycles on full

charge

⟨3⟩ useful
cycles before
checkpoint

⟨4⟩ compute
CFG and split
in sub-graphs

ECKPmax

CMCUmax

Cuse

Figure 1: Compile-time operation of HarvOS.

across periods of energy unavailability. The latter techniques
enable networking among embedded devices and between
embedded devices and surroundings infrastructure through
energy-neutral operations. These ensure that the amount
of energy consumed for transmissions does not exceed the
harvested RF energy.

Operation. Figure 1 illustrates the compile-time operation
of HarvOS. Given a program, at step 〈1〉 we estimate the
worst-case memory usage throughout the code and use this
to obtain an estimate of the highest energy cost ECKPmax

for checkpointing at any point in a program’s execution. The
latter step is simple; for example, as the energy consump-
tion of flash chips obeys to specific trends dictated by the
manufacturing characteristics.

In case the underlying platform employs non-volatile mem-
ory also for normal computations, the energy cost ECKPmax

is constant; application data already resides on stable storage,
and only the content of registers and program counter needs
to be saved. In the following, we consider the more complex
case of variable energy cost for checkpointing operations,
germane to platforms that employ separate memory areas
for normal computations and for checkpointing.

At step 〈2〉, we calculate the maximum number of cycles
CMCUmax we can execute whenever the device wakes up with
a freshly charged energy buffer supplying energy Ewake−up.
Many transiently-powered devices include a wake-up circuit
that boots the device when the voltage level of the on-board
capacitor surpasses a certain threshold. Knowing this value,
computing CMCUmax is also simple, according to an MCU’s
datasheet. In doing so, we consider the maximum power
consumption of the MCU. This likely underestimates the
value of CMCUmax, and yet allows us to reason in a worst-
case setting that shields us from unexpected power failures.

Steps 〈1〉 and 〈2〉 above are independent of each other.
Their outputs are fed as input to step 〈3〉 where we compute
the number of useful cycles Cuse the MCU can execute in a
worst-case scenario where: i) the device starts afresh with
energy Ewake−up, ii) it does not receive any additional energy
contribution from the environment afterwards, and iii) it
needs to spend ECKPmax right before dying to checkpoint the
system’s state. The number Cuse of cycles are therefore those
the MCU can execute with an amount of energy Ewake−up −
ECKPmax, and can be computed similarly to step 〈2〉. These
cycles are, in practice, those the MCU can execute to make
progress in the program.

Next, in step 〈4〉 we compute the CFG of the program and
associate every block in the graph to the number of cycles
required to execute it with the target MCU. A combination

IPSN 2017, April 2017, Pittsburgh, PA USA Naveed Anwar Bhatti and Luca Mottola

𝑇1 𝑇2 𝑇3 𝑇4

𝐶𝑢𝑠𝑒/ 2

Local minima

𝐶𝑢𝑠𝑒/ 2 𝐶𝑢𝑠𝑒/ 2 𝐶𝑢𝑠𝑒/ 2

Figure 2: Splitting the CFG in sub-graphs whose required number of MCU cycles is at most Cuse/2. The
picture considers a linear CFG for simplicity.

𝑻𝒊

𝐶𝑢𝑠𝑒
2

𝑻𝒊−𝟏

𝑬𝒏𝒆𝒙𝒕

𝑬𝑪𝑲𝑷
Energy Buffer

𝑬𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈

Figure 3: Decision logic to take a checkpoint. At the
Ti−1-th trigger call, the system checks if sufficient energy
remains to reach the next trigger call at Ti and to checkpoint
at Ti. If so, the execution continues. If not, a checkpoint
takes place at Ti−1.

of mature code inspection and emulation tools, such as Un-
derstand (www.scitools.com), Emul8 (emul8.org), and Kiel
uVision (www2.keil.com) can be used to this end. We then
split the CFG in sub-graphs whose total stretch in number
of cycles is at most Cuse/2, as intuitively shown in Figure 2.
The picture considers a linear CFG for simplicity; we discuss
the general case next.

Within each sub-graph, we identify the block corresponding
to the minimum size of allocated memory, and place a trigger
call right at the end of it. This means we aim at possibly
checkpointing the system’s state whenever the cost of the
checkpoint operation is reduced, as the amount of data to
copy over stable storage is minimal within a sub-graph. In
doing so, we do not add any instrumentation other than
the trigger calls themselves. As a result of these procedures,
provided the code can execute entirely on a single charge,
that is, the Cuse cycles are sufficient to cover the entire
execution, no trigger calls are placed anywhere in the code,
which remains unaltered.

Step 〈4〉 explained above is crucial in the general case.
Because of our placement strategy, the maximum number of
MCU cycles separating any two trigger calls, for example,
T3 and T4 in Figure 2, is bound to be less than Cuse. The
extreme case is where the Ti−1-th call is at the start of
a sub-graph and Ti-th call is at the end of following sub-
graph; in this case as well, the cycle distance is at most Cuse.
Thus, even in a worst-case situation, a device that starts
afresh with energy Ewake−up from the location of a previous
checkpoint can reach the next trigger call with sufficient
energy to complete the checkpoint before dying again.

As a result of the placement logic and based on the informa-
tion collected up to step 〈4〉, at every trigger call the system
can take an informed decision on whether to checkpoint. Say
Enext is the energy to execute the required MCU cycles from
the Ti−1-th call to the Ti-th call, whereas ECKP (i) is the
energy required to checkpoint the system’s state against the
size of the allocated memory at the Ti-th call, as intuitively
depicted in Figure 3. A checkpoint at the Ti−1-th call is
required if

Eremaining ≤ Enext + ECKP (i) (1)

where Eremaining is the energy left in the buffer when exe-
cuting the Ti−1-th trigger call.

The condition in equation (1) essentially checks if the
remaining energy is sufficient to reach the next trigger call
and to checkpoint there. This reasoning assumes that the
environment provisions no additional energy between Ti−1

and Ti, that is, we are operating in a worst-case situation in
terms of energy provisioning. At run-time, we can obtain the
value of Eremaining through software-based techniques [10,
21] or hardware solutions [12, 19] with negligible overhead.

The ability to reason on whether the system can reach the
next trigger call is one of the key of traits of our approach,
and a major source of improvements compared to previous
work, as we discuss in Section 5.

Generalization. CFGs are generally not linear as the ex-
ample of Figure 2. On the contrary, they show complex
structures reflecting the variety of available programming
constructs, such as branching statements, loops, and function
calls. This means there may be multiple places in a sub-
graph corresponding to the minimum allocated memory, as
a function of different execution paths. Moreover, embedded
devices often operate in an interrupt-driven manner, that is,
the execution through a CFG may be arbitrarily preempted
and temporarily re-directed through the CFG of interrupt
handlers. The latter case does not appear to be taken into
explicit account in existing systems [7, 20].

To address these issues, the next section describes a set
of trigger placement rules that, depending on the program
structure, dictate where to place the trigger call and what to
consider as the Enext energy to reach the next trigger call. We
identify branches, loops, function calls and interrupt handlers
as the fundamental structures of the CFG, and design specific
rules for them. The complete set of rules is recursively applied
until an elementary block in the CFG is reached. The rules
also determine the conditions when probing the energy buffer
for the value of Eremaining is strictly needed, or Eremaining

www.scitools.com
emul8.org
www2.keil.com

HarvOS IPSN 2017, April 2017, Pittsburgh, PA USA

IF

If the ‘IF’ block executes in one complete segment

If the local minima in terms of memory is at
‘3’ then save the energy budget of the path in
‘A’ which needs highest power consumption

to reach ‘3’. 3 requires ADC operation

If the local minima is at ‘1’, we still need to
place one checkpoint outside the ‘if’ block.

Save the budget of the path in ‘A’ which needs
highest power consumption to reach either ‘3’

or ‘1’. ‘1’ requires ADC operation and will
contain the energy consumption of a path till
‘B’. Advantage: We will save energy by saving

small amount of data.

Same procedure as 1 will be applied on ‘2’, if
the local minima is at ‘2’

𝑻𝟏

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

(a) The location of min-

imum allocated memory
is found outside of the

branching statement.

IF

If the ‘IF’ block executes in one complete segment

If the local minima in terms of memory is at
‘3’ then save the energy budget of the path in
‘A’ which needs highest power consumption

to reach ‘3’. 3 requires ADC operation

If the local minima is at ‘1’, we still need to
place one checkpoint outside the ‘if’ block.

Save the budget of the path in ‘A’ which needs
highest power consumption to reach either ‘3’

or ‘1’. ‘1’ requires ADC operation and will
contain the energy consumption of a path till
‘B’. Advantage: We will save energy by saving

small amount of data.

Same procedure as 1 will be applied on ‘2’, if
the local minima is at ‘2’

𝑻𝟏

𝑻𝟐

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

(b) The location of mini-

mum allocated memory is
found in either of the two

branches.

Figure 4: Placement rules for branching statements
fully included in a single sub-graph. The battery icon
indicates where probing the energy buffer is mandatory.

can be inferred from compile-time information. The latter
situation allows the system to spare operations that may be
energy-expensive per se, such as probing ADCs.

4 PLACEMENT RULES

We illustrate the set of rules used to place trigger calls for
arbitrary program structures. In conceiving these rules, our
reasoning is based on a worst-case analysis among the possible
program executions. In addition, interrupt handlers require
special care, as it is generally impossible to predict the point
in time when they preempt the execution.

4.1 Branching

The challenge here is to account for the lack of compile-
time information on what path is taken at run-time. To
address this, one may decide to instrument the code to trace
the actual execution. Doing so, however, would add further
overhead and greatly complicate the instrumentation strategy;
as the complexity of the code grows, the number of possible
paths increases exponentially. We rather adopt a worst-case
approach and avoid any further code instrumentation besides
the trigger calls. We demonstrate in Section 5 that this is
not necessarily detrimental to performance.

In general, what rule to apply depends on whether branch-
ing is fully included in a single sub-graph or not.

Branching in a single sub-graph. Figure 4 shows the
situation. We call TA (TB) the last (first) trigger call in the
preceding (following) sub-graph. We consider two cases:

(1) The minimum amount of allocated memory is outside
the branching statement, for example, at location
T1 in Figure 4a. If so, at trigger call TA we consider

IF

𝑻𝟏

𝑻𝟐

𝑻𝟑

𝐶𝑢𝑠𝑒
2𝐶𝑢𝑠𝑒

2

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

Figure 5: Placement rules for branching statements
executing across multiple sub-graphs. The battery icon
indicates where probing the energy buffer is mandatory.

the Enext value corresponding to the most energy-
consuming branch. This means that, if the environ-
ment provisions no additional energy since TA and
the least energy-consuming branch is taken, at T1

we are going to find a higher value for Eremaining

than we expect. This is the reason why at T1 we
are forced to probe the energy buffer to find out the
exact value for Eremaining before taking a decision
to checkpoint.

(2) The minimum amount of allocated memory is found
in either of the two branches, say at location T1 in
Figure 4b. According to Section 3, we place a trigger
call at T1. However, an issue arises if the other path
is taken, where no trigger calls are placed. To cater
for this, we place a trigger call right outside the
branching statement, say at location T2 in Figure 4b.
The Enext value at trigger call TA is set to the most
energy-consuming path between those leading to ei-
ther T1 or T2. At T1 we can spare probing the energy
buffer because, provided only one execution path ex-
ists, the energy necessary from TA to T1 is fixed.
Differently, we still need to probe the energy buffer
at T2. In fact, without additional instrumentation,
we cannot determine what path is taken at run-time.

Branching across multiple sub-graphs. Figure 5 illus-
trates a general example. Following the sub-graph where the
last trigger call is TA, different sub-graphs may correspond
to different paths. We may thus identify a block in the CFG
with the minimum amount of allocated memory in every
involved sub-graph. The Enext value at trigger call TA is
then set to the most energy-consuming path between the one
leading to either T1 or T2. If a single execution path exists,
the trigger call along this path does not require probing again
the energy buffer, as the energy required from TA up to the

IPSN 2017, April 2017, Pittsburgh, PA USA Naveed Anwar Bhatti and Luca Mottola

If the ‘WHILE’ block comes in one complete segment

“A” will save the energy budget of the to
reach ‘1’. ‘1’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘1’ again. ‘1’ will not require an ADC

operation

While

We will place another checkpoint at the end
of while e.g. ‘2’. ‘2’ will save the energy

budget of the path to reach ‘B’. ‘2’ will require
an ADC operation

𝑻𝟏

𝑻𝟐

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

(a) The loop executes in a

single sub-graph.

If the ‘WHILE’ block does not comes in one complete
segment

“A” will save the energy budget of the path to
reach ‘1’. ‘1’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘2’. ‘2’ will not require an ADC operation

We will place another checkpoint at the end
of while e.g. ‘3’. ‘3’ will save the energy

budget of the path to reach ‘B’. ‘3’ will require
an ADC operation

‘2’ will save the energy budget of the path to
reach ‘1’.

While

𝑻𝒇𝒊𝒓𝒔𝒕

𝑻𝟐

𝐶𝑢𝑠𝑒
2

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

𝑻𝒍𝒂𝒔𝒕

(b) The loop executes

across multiple sub-graphs.

Figure 6: Placement rules for loops. The battery icon
indicates where probing the energy buffer is mandatory.

trigger call is fixed. The same does not hold for the path
requiring the least energy.

Based on a similar reasoning, the Enext value at trigger
call T1 or T2 is set to the energy required to reach T3. At
the latter, however, we necessarily need to probe the energy
buffer; again, we cannot determine what path the execution
is coming from. Cases may exist where combining these rules
recursively might introduce a slight overhead. For example,
if multiple branch statements are nested inside each other,
all of them are forced to probe the energy buffer at the end.
A single probe operation may be, however, sufficient.

4.2 Loops

When the number of iterations is known or can be statically
determined, placing trigger calls when a sub-graph includes
loop statements is not an issue. One may first exercise
existing loop unrolling schemes [11]; then apply the remainder
of the techniques in this section to the resulting CFG.

Whenever the number of iterations is determined by run-
time information, however, we are faced with two challenges.
First, we need to decide whether the last (or single) trigger
call inside the loop should consider as the Enext value the
energy to reach the first trigger call inside the same loop,
that is, the loop continues with the next iteration, or rather
the energy to reach the first trigger call outside the loop, that
is, the execution exits the loop. Second, whenever the latter
happens, it is impossible to know how many iterations were
executed without additional instrumentation, for example,
in the form of counters, which would increase the overhead.

The lack of run-time information at compile-time prevents
us from taking an accurate decision here. However, loops
that depend on run-time information are likely to yield some
number of iterations. Again, we need to distinguish whether
the loop is fully included in a single sub-graph or not.

Loop in a single sub-graph. Figure 6a illustrates the
situation. Consider TA (TB) is the last (first) trigger call

in the preceding (following) sub-graph. Inside the loop, T1

indicates the trigger call corresponding to the location of
minimum allocated memory.

The Enext value at TA is set to the energy to reach T1,
which is fixed if a single execution path exists; therefore, the
trigger call at T1 may not need to probe the energy buffer.
This already implicitly considers the case that the execution
enters the loop at least once, which may be considered as the
most frequent case.

Because of the above observation, at T1 we consider the
Enext value to reach the next trigger call as the one corre-
sponding to the execution continuing with the next iteration.
In Figure 6a, this corresponds to the energy to execute from
T1 back to T1. In this case, if the code inside the loop shows
a single execution path, we can spare probing the energy
buffer, as the energy to reach T1 from T1 itself is fixed.

Note that the other option here would be to consider the
Enext value corresponding to the execution exiting the loop,
that is, the energy necessary to reach the first trigger call
outside the loop. If this was higher than the one to reach
T1 again, the system would likely over-checkpoint without
any need. Every time the execution reaches T1 with little
energy, the system would detect there is no sufficient energy
to reach the first trigger call outside of the loop and it would
checkpoint. However, the energy may be sufficient for another
iteration of the loop if the individual iterations are less energy-
expensive than reaching the first trigger call outside of the
loop. We expect this to be the most frequent case.

Finally, we place another trigger call, indicated with T2 in
Figure 6a, right outside the loop. This is necessary because
we have no information on how many loop iterations executed
before exiting. The last time the trigger call at T1 is executed
before the loop breaks may not checkpoint, as the system
thinks one more iteration is possible. As this reasoning is no
longer applicable when the execution exits the loop, at T2 we
are forced to probe the energy buffer to possibly checkpoint.
The Enext value at T2 considers the energy to reach TB , that
is, the first trigger call in the following sub-graph.

Loops across multiple sub-graphs. Figure 6b illustrates
a general example. We handle this case as an extension of
the previous one, with the added complexity that multiple
trigger calls are necessarily included in the loop body because
it spans multiple sub-graphs.

In this case, the last trigger call in the previous sub-graph
considers the Enext value to reach the first trigger call inside
the loop, indicated with Tfirst in Figure 6b. Inside the loop
body, the last trigger call, that is, Tlast in Figure 6b, considers
the energy value Enext corresponding to continuing with a
further loop iteration, which leads to Tfirst. Again in the
case of a single execution path, the Enext value at Tlast to
reach Tfirst is fixed, so we can spare probing the energy
buffer. This again considers the case of the loop continuing
with the following iteration as the most probable.

Right outside the loop, we still need to place a further
trigger call T2, required for the exact same reasons as the
case of Figure 6a.

HarvOS IPSN 2017, April 2017, Pittsburgh, PA USA

Function

If the ‘FUNCTION’ block does not comes in one
complete segment

“A” will save the energy budget of the path to
reach ‘1’. ‘1’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘2’. ‘2’ will not require an ADC operation

‘2’ will save the energy budget of the path to
reach ‘3’. ‘3’ will not require an ADC operation

‘3’ will save the energy budget of the path to
reach ‘B’. ‘B’ will not require an ADC

operation

𝐶𝑢𝑠𝑒
2

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

Function Call

𝑻𝒇𝒊𝒓𝒔𝒕

𝑻𝒍𝒂𝒔𝒕

𝑻𝒓𝒆𝒕𝒖𝒓𝒏

(a) Function calls.

If the ‘ISR’ comes in one complete segment

“A” will save the energy budget of the path to
reach ‘3’. ‘3’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘2’. Neither 1 nor 2 will require an ADC

operation

‘2’ will check if the flag is raised then
checkpoint otherwise not.

‘3’ will save the energy budget of the path to
reach ‘B’. Neither 3 nor B will require an ADC

operation

If it is evident that the checkpointing is required after reaching the next
checkpointing function then before continuing we will raise the flag ‘F’ while we
are in the current checkpointing function. We will place the checkpointing
function in the start which will check whether enough energy is left to complete
the current ISR or not. And place another checkpointing function in the end which
will check if the flag ‘F’ is raised or not, and if it is raised then checkpoint the state

𝑻𝟑

𝑻𝟏

𝑻𝟐

Interrupt Handler

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

𝑻𝒏

(b) Interrupt handlers.

Figure 7: Placement rules for function calls and in-
terrupt handlers. The battery icon indicates where probing
the energy buffer is mandatory.

4.3 Function Calls and Interrupt Handlers

Placement rules for function calls and interrupt handlers
follow a similar rationale as the previous cases.

Function calls. Whenever a given execution path includes
a function call, the situation is equivalent to “inlining” the
CFG of the function within the CFG of the caller, as shown
in Figure 7a.

If the execution of a function call spans multiple sub-
graphs, at least one trigger call is placed at a local minimum of
allocated memory inside the function. The energy value Enext

at the last trigger call in the previous sub-graph considers
the energy to reach the first trigger call inside the function,
that is, Tfirst in Figure 7a.

The issue here is that same function may be called at
multiple places in the code. Without resorting to additional
code instrumentation, it is impossible to differentiate these
cases. Therefore, at Tfirst we necessarily must probe the
energy buffer, as the function’s execution is unaware of where
the caller code issued the call; thus, we cannot know uniquely
what is the amount of energy spent since an arbitrary TA.

Because of the same reason, we need to place a further
trigger call right after the function returns, indicated with
Treturn in Figure 7a. Chances are that the local minimum in
allocated memory within the sub-graph is found right when

the function returns, that is, the time when the function’s
activation record—including the memory allocated for local
variables and to resume execution of the main code—is de-
allocated. The Enext value at the last trigger call inside a
function considers the energy spent to reach Treturn.

Interrupt handlers. The case of interrupt handlers adds
another challenge to those for function calls. Without addi-
tional instrumentation, interrupt handlers have no informa-
tion on what was the situation in the execution the handler
preempted. Consider Figure 7b as an example. The trigger
call at TA decides not to checkpoint as the condition in equa-
tion (1) indicates the execution may reach T3. An interrupt
handler preempts the execution between TA and T3. Coping
with this case requires two rules in addition to those normally
applied to the code in the interrupt handler:

(1) When it starts, the interrupt handler has no informa-
tion on what decision was taken at TA. Therefore,
we place a trigger call right at the beginning of the
interrupt handler to verify that, based on remain-
ing energy, the next trigger call within the interrupt
handler is reachable. Probing the energy buffer is
thus mandatory at T1.

(2) When the interrupt handler finishes, it has no infor-
mation on where the next trigger call is located in
the main code. It may happen that the execution
at TA was actually expecting to checkpoint at T3, as
we predicted we could reach T3 with just the right
amount of energy. As the interrupt handler con-
sumes some energy per se, T3 may be unreachable
now, and we need to checkpoint before returning to
the main code. To capture these situations, every
trigger call raises a flag if it expects to checkpoint
at the immediately following trigger call. In this
example, TA would raise the flag. The flag prompts
an additional trigger call at the end of the interrupt
handler, shown as T2 in Figure 7b to checkpoint.

Finally, we need a second flag to indicate that the main
code was preempted. The trigger call at T3 may be one
that does not require probing the energy buffer, according to
normal placement rules. This decision must be superseded if
an interrupt handler executed in between, whose energy cost
is generally not known.

5 EVALUATION

We assess the effectiveness of HarvOS along multiple dimen-
sions. In the following, Section 5.1 describes the experimental
settings, whereas Section 5.2 reports on the results. Our key
findings are summarized as follows:

• HarvOS allows transiently-powered devices to com-
plete a fixed workload with with 68% fewer check-
points, on average compared to existing approaches;

• HarvOS performance rests 19% far from that of
an “oracle” that, while unpractical in reality, knows
exactly the last point in time when to checkpoint;

IPSN 2017, April 2017, Pittsburgh, PA USA Naveed Anwar Bhatti and Luca Mottola

• compared to existing approaches, HarvOS reduces
the amount of MCU processing whose results do not
eventually become part of a checkpoint;

• compared to existing approaches, HarvOS allows
transiently-powered devices to complete the same
fixed workload using smaller energy buffers;

• HarvOS performance is robust against implemen-
tations of different complexity and structure, unlike
existing approaches.

The following sections provide quantitative evidence of
these findings.

5.1 Settings

Benchmarks and setup. We consider publicly available C
implementations of Kalman filter [3], finite impulse response
(FIR) filter [2], and Advanced Encryption Standard (AES) [1]
with key length of 256 bits. Kalman filters are often used
in embedded sensing to process accelerometer values; for
example, to predict future trends. FIR filters are equally used
in embedded sensing to filter out noise, especially when the
input signal includes multi-rate components. AES is a block-
cipher algorithm widely employed in embedded systems.

The implementations we consider include a variety of
branching statements, loops, and function calls; therefore,
they exercise most of the trigger placement rules described
in Section 4. These implementations also exhibit different
degrees of complexity, with the Kalman filter code being the
simplest, the FIR filter code being the longest in number
of lines of C code, and the AES implementation being the
one structurally most complex. Overall, the benchmarks are
arguably on par, and sometimes more complex, than those
considered in existing literature [6, 20]

The Kalman filter code executes a fixed workload of 1000
iterations using 48 bytes of dummy data as input, emulating
the use of Kalman filter to process consecutive acceleration
readings. Instead, we consider a single iteration of both the
FIR filter and AES implementations as they perform enough
processing in a single iteration to raise the problem of resets
with limited energy buffers. We feed the FIR filter code with
116 bytes of dummy data, whereas AES processes 100 bytes
of dummy data for both encryption and decryption. We
consider these sizes as they are comparable to the size of a
radio packet.

These benchmark codes do not take decisions based on
sensed values or perform actuation. To introduce some degree
of unpredictability, we experiment with a further custom
version of the Kalman filter code, where we artificially modify
the executions so that there is a 75% probability that a
dummy interrupt handler worth 10000 MCU cycles preempts
the execution. The latter version serves to measure the
performance of the rules in Section 4.3 in an extreme case.

We consider an ARM Cortex M3 MCU aboard an ST
Nucleo L152RE board, equipped with a standard flash chip
as stable storage. The board is not specifically designed for
transiently-powered operation; however, here we are only
interested in the MCU, which represents state-of-the-art

technology and was recently employed in designs with power
consumption comparable to earlier 16-bit platforms [5]. To
this end, ST Nucleo boards crucially provide a range of hooks
useful to monitor the MCU execution and isolate its power
consumption. Using the ST-Link in-circuit debugger, Kiel
uVision, and a Tektronix TBS 1072B oscilloscope, we can
obtain very fine-grained information on the real hardware
execution, including all the information required at compile-
time as described in Section 3. This is key to the accuracy
of the results.

Metrics. Based on the information gathered with the setup
above, we consider a variable size for a capacitor used as
energy buffer that we assume to fully recharge every time
is exhausted. Then, similar to existing works [6, 20], we
synthetically emulate the execution of the code and compute
three key metrics:

(1) The number of times the MCU resets because the
capacitor needs to recharge to complete the fixed
workload. This figure is inversely proportional to
the effectiveness of a given instrumentation strategy.
Given a fixed workload, the more the MCU needs
to reboot, the more the checkpointing operation is
subtracting energy from useful computations. Lower
values are thus better.

(2) The number of wasted cycles because the MCU ex-
hausts the energy before reaching the next trigger
call. This figure is again inversely proportional to
the effectiveness of a certain solution. The higher is
this figure, the more a given instrumentation strat-
egy is failing in accurately identifying the last useful
moment where to possibly checkpoint. Lower values
are thus again better.

(3) The minimum size of the energy buffer that allows
the MCU to complete the workload under a given
instrumentation strategy. For example, depending
on how the trigger calls are placed, with small capac-
itor sizes, the execution may not reach even the first
trigger call. This means checkpointing never hap-
pens and the system is stuck in a live-lock situation,
rebooting every time from the initial state.

Baselines. We consider the loop-latch and function-return
strategies of MementOS, described in Section 2, as represen-
tative of current approaches.

Note that the voltage threshold MementOS considers to
decide whether to checkpoint is the result of repeated emu-
lation experiments ran with a specific application code and
user-supplied energy traces [20]. HarvOS does not require
users to supply similar traces, which may be hard to obtain
in the first place. Our solution is rather based on a worst-
case analysis and assumes that the environment provides no
additional energy once the device can reboot.

Considering this specific energy supply pattern also in the
evaluation, as we do, does not impact the results. Should
the environment provide new energy after the device reboots,
equation (1) in Section 3 would capture the new supply of
energy as part of Eremaining. Similarly, the new supply of

HarvOS IPSN 2017, April 2017, Pittsburgh, PA USA

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

50

100

150

200

250

300

350

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS
Oracle

(a) Kalman filter.

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

2

4

6

8

10

12

14

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS
Oracle

(b) FIR filter.

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

5

10

15

20

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS
Oracle

(c) AES.

Figure 8: Number of resets necessary to complete a fixed workload. HarvOS improves by a 69% factor on average,
with a peak improvement of 80% compared to MementOS, while performing close to the oracle.

energy would affect the execution of MementOS as soon
as it is sufficient to move the operating voltage above the
threshold.

To study the performance of MementOS in a manner
orthogonal to the availability of energy traces, in our exper-
iments we manually vary the value of MementOS voltage
threshold. This way, we are likely to cover also the spe-
cific setting that MementOS would identify given a specific
application code, and orthogonally to energy traces. We
experiment with multiple such thresholds, always above the
minimum voltage that still allows the system to write onto
the flash chip. Settings of or below 2.2V, in particular, were
never seen for MementOS in related literature [6, 20], and
are likely to play favorably to it.

In addition, we apply a brute-force search on all possible
executions of the code to identify an oracle that, by predicting
how the execution is going to unfold in the future, knows the
last practical point in time when to checkpoint. This is not
feasible in reality; to make it work in a concrete execution,
one would theoretically need to place a trigger call after every
instruction in the code, yielding an unbearable overhead.

5.2 Results

Number of resets. Figure 8 plots the results we obtain
in the number of MCU resets for a fixed workload, with no
preemption due to interrupt handlers. As expected, bigger
capacitor sizes generally correspond to fewer resets, in that
individual executions progress farther on a single charge.

Compared to either of the MementOS strategies, Har-
vOS completes the fixed workload with 69% fewer resets
on average, with a peak improvement of 80% fewer resets.
On the other hand, certain configurations exist, especially
for the FIR filter code in Figure 8b and for the AES imple-
mentation in Figure 8c, where the performance is the same.
Yet, HarvOS never performs worse than MementOS in our
experiments.

Moreover, in most cases the performance of our solution
rests very close to the oracle. Notably for the Kalman filter

code, the performance is often almost the same. This demon-
strates that the rationale explained in Section 3 strikes an
effective trade-off between opposite needs, ultimately per-
forming similarly to an optimal solution that is, however,
unfeasible in practice.

Comparing Figure 8a, obtained using the Kalman filter
code, with Figure 8b that shows the performance with the FIR
filter code as well as Figure 8c that depicts the performance of
the AES implementation, one may note that the performance
of HarvOS is robust against diverse benchmark codes. The
Kalman filter code is 1053 lines of C code and includes a few
function calls at the outmost level of the code structure; the
size of a checkpoint is 442 bytes. The AES implementation
is 2848 lines of C code and it includes two loops and multiple
function calls at the outmost level of the code structure; the
size of a checkpoint is 624 bytes. The FIR code is 14986
lines of C code as it includes several digital signal processing
functions part of a larger library, but includes two loops with
fewer function calls than AES at the outmost level of code
structure; the size of a checkpoint is 568 bytes.

MementOS, on the other hand, shows a different behavior
in terms of how the program structure affects the performance.
For a certain voltage threshold, the performance of both
MementOS strategies is very similar for the Kalman filter
code in Figure 8a and for the FIR filter code in Figure 8b.
In contrast, loop-latch performs distinctively better than
function-return for the AES implementation, as shown in
Figure 8c. In fact, one should generally not only emulate
different voltage thresholds for configuring MementOS, but
also try with different instrumentation strategies to find the
best performing configuration [20]. The process may then
become laborious.

To complement these results, Figure 9 depicts the number
of resets necessary to complete the Kalman filter workload
with a 75% probability that the main code is preempted by a
dummy interrupt handler. As MementOS does not explicitly
account for interrupt handlers, we can only compare against
the oracle here. Compared to Figure 8a, the performance is
remarkably similar. The strategy described in Section 4.3, as
a result, bears minimal additional overhead.

IPSN 2017, April 2017, Pittsburgh, PA USA Naveed Anwar Bhatti and Luca Mottola

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

50

100

150

200

250

300

350

CFG-based
Oracle

Figure 9: Number of resets necessary to complete a
fixed workload with the implementation of Kalman
filter in preemptable executions. We emulate a 75%
probability of preemption by an interrupt handler. The per-
formance is close to that of Figure 8a with no interrupts.
The rules of Section 4.3 bear minimal additional impact.

[MementOS]
Voltage

threshold

Checkpointing
not possibleVoltage

[HarvOS] Can I reach
the next T? Yes!

[HarvOS] Can I reach
the next T?

No, checkpoint!

[HarvOS] Can I reach
the next T? Yes!

[MementOS]
Did I surpass

the threshold?
Yes, checkpoint!

Figure 10: Graphically comparing the behavior of
MementOS against HarvOS. The voltage threshold in
MementOS defines a “grey area” that corresponds to a manda-
tory checkpoint as soon as it is entered. While this threshold
applies globally to the whole program and may penalize specific
executions by checkpointing too early, HarvOS can postpone
the decision to checkpoint based on the specific situation.

Explaining the improvements. The gains over Memen-
tOS are intuitively explained in Figure 10. MementOS em-
ploys a single voltage threshold in all of its trigger calls.
Such threshold defines a “grey region” of energy supplies
that, during the off-line emulation experiments, were found
at least once to immediately require a checkpoint, or the
device would die before reaching the next trigger call with
sufficient energy to checkpoint. As soon as MementOS enters
the grey region and a trigger call is executed, a checkpoint
takes place without checking whether it can reach the next
trigger call given the available energy.

In contrast, our solution works in a localized fashion. Once
we enter in what MementOS would consider the grey area,
every trigger call results in a checkpoint only if the available
energy is insufficient, in the worst-case, to reach the next
trigger call and to checkpoint there. This is, in essence, what
equation (1) in Section 3 stipulates. This reasoning allows

us to postpone checkpointing in time and space, essentially
“digging” down into the grey area as long as possible.

Wasted cycles. Figure 11 shows the number of wasted
cycles against the capacitor size. As expected in light of
the discussion of Figure 10, at higher threshold voltages,
MementOS wastes a higher number of cycles because check-
points tend to happen too early, leaving unused energy in
the buffer.

Moreover, the staircase pattern in MementOS, especially
visible for the Kalman filter code in Figure 11a and the FIR
filter code in Figure 11b, appears because both its strategies
are too coarse-grained. Either the trigger call is located at
the “right” place, and so there are only a few wasted cycles,
or it is located at “wrong” place and so a lot of unused
energy remains in the buffer. In fact, MementOS placement
strategies only look at the structure of the code and not at
its energy consumption patterns.

Differently, with smaller capacitors, HarvOS results in
a higher number of wasted cycles than MementOS because
equation (1) in Section 3 often finds Eremaining insufficient
to reach the next trigger call in the worst case. The value
of Eremaining is, in fact, upper-bound by the size of the
capacitor. The worst-case analysis we apply is here counter-
productive, in that it tends to be excessively pessimistic.
The larger is the capacitor, however, the less this issue af-
fects the operation of HarvOS, yielding increasingly precise
checkpoint decisions that reduce the number of wasted cycles.

Minimum size of energy buffer. Figure 12 reports the
minimum capacitor size required to complete the three bench-
marks, against different threshold voltages for MementOS.

When operated under lower threshold voltages, MementOS
finishes the execution only with bigger capacitors. This is
essentially a result of its logic for placing triggers and of
basing the decision to checkpoint on voltage levels. Without
reasoning on the energy necessary to reach the next trigger
call, MementOS may place trigger calls too far from each
other. Under lower threshold voltages, the execution may
then continue “blindly” up to a point when insufficient energy
is left to complete the checkpoint, namely it is too late to
checkpoint. To remedy this, a bigger capacitor is needed.

In contrast, our solution allows one to employ smaller
capacitors. The splitting of the CFG in sub-graphs whose
stretch is at most equal to the number of cycles the MCU can
execute in a worst-case situation, as explained in Section 3,
rules out the possibility of placing trigger calls too far apart.
In fact, our performance in Figure 12 is independent of the
voltage threshold used by MementOS. At each trigger call, we
again decide whether to continue the execution or to check-
point based on the ability to reach the next trigger call with
sufficient energy to checkpoint there, as equation (1) indicates.
The ability to complete a given workload with smaller capac-
itors may be particularly beneficial in applications requiring
quick recharge times.

HarvOS IPSN 2017, April 2017, Pittsburgh, PA USA

Capacitor size(uF)
0 100 200 300 400 500

W
as

te
d

cy
cl

es

#107

0

2

4

6

8

10

12

14

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS

(a) Kalman filter.

Capacitor size(uF)
0 100 200 300 400 500

W
as

te
d

C
yc

le
s

#106

0

1

2

3

4

5

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS

(b) FIR filter.

Capacitor size(uF)
0 100 200 300 400 500

W
as

te
d

C
yc

le
s

#106

0

2

4

6

8

10

12

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS

(c) AES.

Figure 11: Number of wasted cycles. Both MementOS strategies are too coarse-grained and oblivious of energy consumption
patterns. Differently, basing the checkpointing decisions on the ability to reach the next trigger call yields increasingly precise
decisions with bigger capacitors.

Voltage threshold(V)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
ap

ac
ito

r
si

ze
(u

F
)

0

20

40

60

80

100

120

Loop-latch
Function-return
HarvOS

(a) Kalman filter.

Voltage threshold(V)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
ap

ac
ito

r
si

ze
(u

F
)

0

10

20

30

40

50

60

70

80

Loop-latch
Function-return
HarvOS

(b) FIR filter.

Voltage threshold(V)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
ap

ac
ito

r
si

ze
(u

F
)

0

10

20

30

40

50

60

70

80

Loop-latch
Function-return
HarvOS

(c) AES.

Figure 12: Minimum capacitor size required to complete the three benchmarks. MementOS places trigger calls
too far from each other, and thus requires bigger capacitors to complete the workload. Our placement rules allows the system to
complete the workload with smaller capacitors.

6 CONCLUSION

HarvOS operates at compile-time based on the control-flow
graph (CFG) of the program. Trigger calls are placed by
looking at the worst-case energy cost required to reach the
next trigger call and depending on the program structure as
represented in the CFG. The information collected at compile-
time also enables to spare the energy-intensive probing of the
energy buffers whenever possible. The combination of these
techniques allows the system to take informed decisions at
every trigger call on whether to continue with the normal
execution or to rather checkpoint. Our evaluation of the
approach, based on three diverse benchmarks, indicates that
our techniques allow transiently-powered devices to complete
a given workload with 68% fewer checkpoints, compared to
existing literature. Our performance also rests only 19% far
from that of an “oracle” that would know exactly the last
point in time when a checkpoint is required. The performance
of HarvOS may further improve by removing, whenever
possible, the worst-case assumption at the cost of additional
code instrumentation. We consider exploring the trade-off

between simplicity of instrumentation and the additional
information it may provide as a direction for future work.

Acknowledgments. This work was partly supported through
the Google Faculty Award program, by the Swedish Energy
Agency, and by projects “Zero-energy Buildings in Smart
Urban Districts” (EEB), “ICT Solutions to Support Logistics
and Transport Processes” (ITS), and “Smart Living Tech-
nologies” (SHELL) of the Italian Ministry for University and
Research.

REFERENCES
[1] 2016. AES C Implementation for Mbed platform. goo.gl/PBjhoF.

(2016).
[2] 2016. FIR Filter C Implementation for Mbed platform. goo.gl/

yFyUyX. (2016). Accessed: 10-13-2016.
[3] 2016. Kalman Filter C Implementation for Mbed platform. goo.

gl/ikzYFt. (2016). Accessed: 30-9-2016.
[4] 2016. mBed OS energy profiler. goo.gl/dghhd4. (2016). Accessed:

11-10-2016.
[5] Michael Andersen and others. 2016. System design for a synergis-

tic, low power mote/BLE embedded platform. In IPSN.
[6] Alberto Arreola and others. 2015. Approaches to Transient Com-

puting for Energy Harvesting Systems: A Quantitative Evaluation.

goo.gl/PBjhoF
goo.gl/yFyUyX
goo.gl/yFyUyX
goo.gl/ikzYFt
goo.gl/ikzYFt
goo.gl/dghhd4

IPSN 2017, April 2017, Pittsburgh, PA USA Naveed Anwar Bhatti and Luca Mottola

In ENSSYS.
[7] Domenico Balsamo and others. 2015. Hibernus: Sustaining com-

putation during intermittent supply for energy-harvesting systems.
IEEE Embedded Systems Letters 7, 1 (2015).

[8] Naveed Anwar Bhatti and others. 2016. Energy Harvesting and
Wireless Transfer in Sensor Network Applications: Concepts and
Experiences. ACM TOSN 12 (2016). Issue 3.

[9] Naveed Anwar Bhatti and Luca Mottola. 2016. Efficient state
retention for transiently-powered embedded sensing. In EWSN.

[10] Bernhard Buchli and others. 2013. Battery state-of-charge ap-
proximation for energy harvesting embedded systems. In EWSN.

[11] Jack Davidson and Sanjay Jinturkar. 1995. Improving Instruc-
tion level Parallelism by Loop Unrolling and Dynamic Memory
Disambiguation. In MICRO.

[12] Prabal Dutta and others. 2008. Energy metering for free: Aug-
menting switching regulators for real-time monitoring. In IPSN.

[13] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015.
Tragedy of the Coulombs: Federating Energy Storage for Tiny,
Intermittently-Powered Sensors. In SENSYS.

[14] Martin Hofmann and Steffen Jost. 2003. Static prediction of heap
space usage for first-order functional programs. In POPL.

[15] Martin Hofmann and Steffen Jost. 2006. Type-based amortised
heap-space analysis. In ESOP.

[16] Hrishikesh Jayakumar and others. 2014. QuickRecall: A low
overhead HW/SW approach for enabling computations across
power cycles in transiently powered computers. In VLSI Design.

[17] Vincent Liu and others. 2013. Ambient Backscatter: Wireless
Communication out of Thin Air. In SIGCOMM.

[18] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer
Programming and Execution Model for Intermittent Systems. In
PLDI.

[19] Saman Naderiparizi and others. 2016. µMonitor: In-situ Energy
Monitoring with Microwatt Power Consumption. In RFID.

[20] Benjamin Ransford and others. 2011. MementOS: System Sup-
port for Long-running Computation on RFID-scale Devices. In
ASPLOS.

[21] Philipp Sommer and others. 2016. Information Bang for the
Energy Buck: Towards Energy-and Mobility-Aware Tracking. In
EWSN.

[22] Jing Yang and others. 2007. Clairvoyant: A comprehensive source-
level debugger for wireless sensor networks. In SENSYS.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Placement Rules
	4.1 Branching
	4.2 Loops
	4.3 Function Calls and Interrupt Handlers

	5 Evaluation
	5.1 Settings
	5.2 Results

	6 Conclusion
	References

