
Timely Execution on Intermittently Powered Batteryless Sensors
Josiah Hester

Northwestern University
josiah@northwestern.edu

Kevin Storer
University of California, Irvine

storerk@uci.edu

Jacob Sorber
Clemson University
jsorber@clemson.edu

ABSTRACT
Tiny intermittently powered computers can monitor objects in hard
to reach places maintenance free for decades by leaving batteries
behind and surviving off energy harvested from the environment—
avoiding the cost of replacing and disposing of billions or trillions
of dead batteries. However, creating programs for these sensors
is difficult. Energy harvesting is inconsistent, energy storage is
scarce, and batteryless sensors can lose power at any point in time—
causing volatile memory, execution progress, and time to reset.
In response to these disruptions, developers must write unwieldy
programs attempting to protect against failures, instead of focusing
on sensing goals, defining tasks, and generating useful data in a
timely manner. To address these shortcomings, we have designed
Mayfly, a language and runtime for timely execution of sensing
tasks on tiny, intermittently-powered, energy harvesting sensing
devices. Mayfly is a coordination language and runtime built on top
of Embedded-C that combines intermittent execution fragments to
form coherent sensing schedules—maintaining forward progress,
data consistency, data freshness, and data utility across multiple
power failures. Mayfly makes the passing of time explicit, binding
data to the time it was gathered, and keeping track of data and time
through power failures. We evaluated Mayfly against state-of-the
art systems, conducted a user study, and implemented multiple
real world applications across application domains in inventory
tracking, and wearables.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Ar-
chitectures; • Human-centered computing → Ubiquitous and
mobile computing systems and tools; • Software and its engineer-
ing → Context specific languages;

KEYWORDS
Task language, Time, Batteryless, Intermittent, Energy harvesting

ACM Reference Format:
Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on
Intermittently Powered Batteryless Sensors. In Proceedings of 15th ACM
Conference on Embedded Networked Sensor Systems (SenSys’17). ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3131672.3131673

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys’17, November 6–8, 2017, Delft, The Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5459-2/17/11. . . $15.00
https://doi.org/10.1145/3131672.3131673

Task 2Task 1

Task 3 Task 4

misd(1s)

expires(10s)

expires(1s)

collect(10)

Dataflow

collect(num)
Collect a buffer of data

expires(time)
Age of data to discard

misd(time)
Time before more data is useful.

Figure 1: Mayfly programs are made up of a graph of con-
nected tasks with clearly specified timing constraints on the
data generated by each task.

1 INTRODUCTION
The vision of tiny, low cost wireless sensors that just work, main-
tenance free, for decades continues to elude us. This is because,
nearly all sensors depend on batteries, and today’s batteries all
wear out after a few years, regardless of our efforts to recharge and
conserve them. Batteryless energy-harvesting sensors offer hope,
but irregular power supplies and meager energy storage lead to
frequent power failures, and creating software that works reliably
in spite of frequent failures is challenging.

An intermittently-powered sensor may fail at any time, between
any two lines of code, with little warning, for unpredictable lengths
of time. Time can be difficult to measure, and execution times can
be difficult to predict. Programs may lose data, corrupt data, or fail
to make forward progress on long-running computations. Forward
progress can be preserved, if applications checkpoint their state
to nonvolatile memory (e.g.,Flash or FRAM) before a failure [26].
With programmer defined memory fences [19] programmers can
keep non-volatile data structures consistent. Breaking programs
into tasks and putting global data in channels, can help lighten the
developer’s cognitive load [9]. Developers can even use physical
hardware properties to estimate how long a device spends without
power [25]; however, responding to dramatically unpredictable
execution delays remains a daunting challenge for developers, in
spite of these advances.

As a sensor executes over time, data age, priorities change, and
opportunities come and go. Sensor data, once urgent, may only be
useful for a few minutes or even seconds. When data expire after
long outages, partial computations may need to be discarded and
possibly restarted. After short outages, an application may pick-up
where it left off. On power-up, an application’s priorities may have
changed. A time sensitive task may take precedence over a work-
in-progress. A task that has repeatedly failed to complete (due to
expired data), might be swapped out for a low-power alternative.

https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3131672.3131673

SenSys’17, November 6–8, 2017, Delft, The Netherlands J. Hester, K. Storer, and J. Sorber

Each of these cases are easy to understand and easy to handle
with traditional battery-powered sensors, but difficult to imple-
ment with today’s languages and runtime tools on intermittently
powered, batteryless sensors. Common imperative programming
languages, like C, ignore time and how it relates to data. Tradi-
tionally, this has not mattered as programmers expect tasks to run
quickly and sequential instructions to execute close together in time.
An intermittent C program that discards expired data, schedules
tasks appropriately in spite of power failures, or adapts to changing
energy conditions will invariably be full of explicit time checks and
cluttered with extensive branching logic.

This paper argues that 1) those who use existing languages to pro-
gram intermittently-powered devices are doomed to frustration and
complication, 2) those complications prevent capable programmers
from creating compelling, sophisticated intermittent applications,
and 3) programming for intermittent power can (and should) be
simple. We call on the research community to rethink how we write
programs for intermittent devices, and we specifically address the
issue of time as a key to enabling sophisticated applications to
intermittent batteryless sensors.

In the following sections, we describe why it is difficult to pro-
gram intermittent sensors and introduce the Mayfly1 Language
and Runtime. The Mayfly language is a declarative, graph based
programming language that enables developers to focus on ap-
plication policy, sensing goals, and timing of sensing tasks while
reducing the cognitive burden of intermittent programming (shown
in Figure 1. The Mayfly runtime is a task scheduler that maintains
temporal aspects of data automatically across power failures. We
evaluate Mayfly against state-of-the-art systems and explore the
language in the context of real-world applications in active RFID
based inventory tracking, and activity recognition on wearables.
Additionally, we present the results of a user study comparing the
utility of our approach and the standard approach to programming
batteryless sensors.

2 BATTERYLESS SENSING
The swarm of tiny devices—one day numbering in the trillions—that
will make up the edge of the Internet-of-Things (IoT), have a massive
energy problem. These tiny sensing devices have traditionally been
powered by batteries. Batteries are large, heavy, expensive, and
environmentally hazardous. Even rechargeable batteries wear out
after a few years. The environmental and financial cost of manufac-
turing, maintaining, replacing or disposing of trillions of batteries
every few years is not sustainable.

Batteryless sensors are a smaller, lighter, less-expensive, and
more environmentally friendly alternative. These devices harvest
energy from their environment opportunistically, store this free
energy in tiny capacitors (orders of magnitude smaller than a bat-
tery or super capacitor), and intermittently execute tasks when
energy is available. Powered by solar, RF, thermal, or kinetic en-
ergy harvested from the environment, batteryless sensors promise
decades of maintenance-free data gathering at unprecedented scale
in remote or impractical locations.

1Mayfly is named after the short-lived aquatic insect.

ON Threshold

OFF Threshold
1.5

1.8

2.1

2.4

2.7

0 1 2 3 4 5 6

Vo
lta

ge
 (

V
)

WISP Intermittent Execution

●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●

●●●
●●

●●● ●●● ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●● ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

0 1 2 3 4 5 6
Time (s)

D
at

a

Figure 2: Voltage supply of a WISP, powered by RFID reader
gathering acceleration readings across power failures for ac-
tivity recognition. Data is gathered at a variable sample rate
depending on the available energy. This volatility may nega-
tively influence quality of applications and reduce accurate
recognition.

2.1 Intermittent Operation
Despite the promise, batteryless sensors are difficult to program,
debug, and deploy, because they lose power frequently and often
unpredictably. Each power failure resets the device’s volatile mem-
ory, stack pointer, registers, and sense of time. Once enough energy
is harvested to turn back on, the sensor returns control to the start
of the program (main). This is shown in Figure 2. This style of exe-
cution is shown (from programmers perspective) in Figure 3, where
a source program is executed using both a continuous power sup-
ply and an intermittent power supply. With frequent failures and
unreliable power, programming becomes a best-effort probabilis-
tic game. As energy becomes available, developers piece together
execution fragments hoping to satisfy developer constraints. This
intermittent computing model causes developers to struggle
with what are generally simple tasks—like timestamping data, en-
suring that data structures remain consistent, and maintaining
forward progress on long-running computations.

When a power failure is approaching, developers can preserve
forward progress with checkpointing — saving some [26, 31] or
all [1] of the program’s state to nonvolatile memory (like Flash
or FRAM). Checkpointing, as shown in Figure 3, allows programs
to correctly continue where they left off after the last power fail-
ure. However, checkpointing is costly in energy and memory, as
demonstrated in Chain [9]. Chain proposes that developers divide
programs into discrete tasks that share data (kept consistent by
Chain) through channels, eliminating checkpointing cost. Each of
these methods work well in stringing together execution fragments
into cohesive programs, enabling long running computation. How-
ever, each of these methods ignores the fact that an application’s
success or failure often depends on when tasks are executed and
when data are collected, processed, and communicated. Application
designers often understand these constraints (albeit imperfectly),
but lack effective tools for communicating them in code.

Timely Batteryless Sensors SenSys’17, November 6–8, 2017, Delft, The Netherlands

main()
 while(1)
 t = temp()
 l = light()
 m = moist()
 w=wet(t,l,m)
 send(w)
 sleep(1)

<continued>

···

NV int t, l, m, w
main() {
 while(1)
 t = temp()
 l = light()
 m = moist()
 w=wet(t,l,m)
 send(w)
 sleep(1)
}

(a)

Source

(b)

Continuous
main()
 while(1)
 t = temp()
 l = light()

 m = moist()
 w=wet(t,l,m)

(c)

Intermittent

···
elapsed
time=?

Figure 3: Execution of a greenhousemonitoring program (a).
The expected continuous execution (b) is shown versus the
intermittent execution (c) caused by volatile energy harvest-
ing environments. Forward progress is preserved—however
if enough time has elapsed between lines of code, it may not
be worth continuing with execution as intermediate results
may not be relevant.

2.2 Complexity of Timekeeping
With remanence-based timing techniques [13, 25], batteryless de-
vices can measure time across power outages; however, reasoning
about the impact of unexpected delays in intermittent software is
a complicated and error-prone process. Nearly all sensing applica-
tions have temporal requirements, and whether we are monitoring
a user’s heart rate or a plant’s water needs, the data we gather is
often only useful when those requirements are met. A batteryless
program’s progress is difficult to predict, and current programming
models ignore the relationship between data and time, forcing pro-
grammers to deal with the added complexity. As developers add
explicit checks that consider data expirations, sensing rates, and
temporal signal properties, their programs become difficult to main-
tain, debug, and understand. We discuss the specific issues below:

Real data often ages. If a sensor gathers data, dies, then turns
back on, the time before that data is delivered (and can be used)
might be seconds, minutes, or even hours. If data is used to control
a process (plant watering in a greenhouse) or report in-the-moment
information (like the user’s current heart rate), data gathered may
not be useful if they are too old. After a power outage, applications
may continue processing fresh data but save energy and time by
discarding incomplete results derived from old data. One task may,
of course, depend on another, and preserving data freshness re-
quires time stamp checks throughout an application’s code. This
is shown in Figure 4—an accelerometer based wearable activity
recognition program that samples data, processes that data to
identify an activity, then sends its results over the radio. Because
of long power failures, that data has aged significantly and may
or may not not be useful to the application. Either way, it is not
specified explicitly in the program. Compounding the problem, the
data gathered in the sample phase has a mixed sampling rate with
an untrustworthy clock—untrustworthy because the device may
lose power before recording the time and assigning that time to
the data point, mixed sampling rate because power outages may
affect the sampling rate. Using timing information to inform sens-
ing allows batteryless sensors to use energy more effectively, sense

co
mp

ut
e

NV accel[N];
NV res,ndx=0;
main() {
 while(ndx < N) {
 accel[ndx++] =
 sample_adc();
 }

 transform(accel);
 featurize(accel);
 classify(accel);
 res=stats(accel);

 bcast(res);
}

 while(ndx < N) {
 accel[ndx++]=
 sample_adc();

 transform(accel);
 featurize(accel);
 classify(accel);
 res=stats(accel);

REBOOT
time elapsed = 14s

Source Code Intermittent Execution

 bcast(res);

t = age of oldest sample

sa
mp

le
se

nd

REBOOT
time elapsed = 10s

t=5s

t=19s

t=29s

t=19s

Figure 4: On left, source code of wearable activity recogni-
tion program, labeled into tasks sample, compute, send. On
the right, a possible execution of the activity recognition
shows how data ages through power failures. If the system
that uses this data makes data-driven decisions every 10s,
the 29 second old data may not be worth transmitting. Sens-
ing data becomes mixed sample rate, and clocks become
unreliable because of intermittent execution and variable
length outages.

only when they need to, and not transmit or process old data. How-
ever, how this timing information is used is currently application-
and developer-dependent because timing information is implicit in
current programming models.

Real applications often tolerate temporal variation.Apedome-
ter’s step-counting algorithmmay call for 30 accelerometer samples
collected at 10Hz. Depending on how it detects steps, that same
algorithm may give accurate results as long as the 30 readings fall
within a 4 swindow and as long as no two readings are taken within
80ms of each other. These relaxed requirements will be much easier
to satisfy with frequently-failing hardware, but more complicated
for application designers to implement. Meeting stringent timing
requirements is difficult in batteryless sensors that exist in unpre-
dictable energy situations.

Intermittent data complicates programs. When devices are
tethered or battery-powered, power supplies are stable and power
failures are rare—data collection and management is difficult, but
straightforward. When devices operate intermittently, program-
mers must add code to track when data are generated, when data
have expired, and when it is advantageous to gather more data.
Developers can use remanence timekeeping methods [13, 25] to
timestamp data; but writing code that knows when to discard the
whole, or part of a buffer of data, and that properly timestamps data
and checkpoints execution is tedious. Tedious programming tasks
lead to sloppy implementations, which leads to bugs in deployment.
Short sensing programs that perform simple sensing tasks quickly
explode with timing and consistency checks, recovery methods,
data collection, and age management heuristics, making implemen-
tation painful and applications difficult to debug, maintain, and
verify.

SenSys’17, November 6–8, 2017, Delft, The Netherlands J. Hester, K. Storer, and J. Sorber

Languages assume continuity. When using current program-
ming models, programmers assume that sequential instructions will
execute one after another with effectively zero time between them.
With intermittent execution, the actual time between two instruc-
tions (or tasks, for languages like Chain) could be microseconds,
seconds, minutes, hours, or even days because of unpredictable
placement of power failures. If the time between failure, and resum-
ing execution (the time between the device losing power, check-
pointing, and then resuming once power is restored) is almost zero,
then most likely continuing from where execution left off is best.
However, when longer delays occur, intermediate execution and re-
sults might not be useful going forward. The programmer’s intent
is not explicit—as regards time—with current programming models,
so the runtime has to make assumptions. Current languages ignore
the timeliness property of data caused by intermittent execution,
leaving the developer with few ways to strongly and safely express
time constraints of data.

A New Approach: Due to the limitations mentioned in this sec-
tion, we and others have struggled to build interesting batteryless
applications. In answer, the next section describes Mayfly, a task
based language that does away with checkpointing and integrates
time management as a first order concern, designed specifically
to help designers create sophisticated batteryless sensing applica-
tions. With Mayfly, developers can coordinate time-sensitive data
and tasks without getting lost in checkpoints, memory fences, and
timekeeping. Mayfly automatically takes care of common issues
like data expiration and time sensitive data collection. Additionally,
Mayfly handles computational dependencies and ensures they are
co-located in time despite interruption by power failures.

3 MAYFLY LANGUAGE
We developed the Mayfly language and runtime to enable develop-
ers to easily reason about the relationship between time and sensor
data in intermittently-powered, batteryless sensing applications.
Mayfly is designed to simplify or eliminate the time management
and intermittent programming challenges described in Section 2 in
three key ways:

(1) Simplify Time Management: Developers should not con-
cern themselves with recording and managing timestamps
and dealing with timing uncertainty at a low level. In Mayfly
programs, the developer can focus on the high level appli-
cation sensing goals instead of low level, error prone, time-
keeping drivers.

(2) EnableDataflowControl:Gathering, computing, and trans-
mitting accurate and timely data is a core function of all sen-
sors. Despite intermittent execution, Mayfly must provide
the ability to coordinate dataflow in spite of power failures
and unpredictable energy environments.

(3) Provide a Usable Programming Model: Language and
tools are useless if no one can use them. Mayfly focuses on
(and evaluates) providing a high level of usability, reduc-
ing distractions and enhancing developer understanding of
program execution and purpose.

The Mayfly language simplifies the development of batteryless
sensing applications—enabling programmers to confidently write
intermittent programs. The Mayfly runtime efficiently schedules

Listing 1: A Mayfly program for greenhouse monitoring

1 // Optional global policies

2 {: scheduling_policy(FINISH_FLOW); :}

3

4 // Task definitions

5 temp() -> (int temperature)

6 light() -> (int light)

7 moist() -> (int moisture)

8 wet (int tmp , int light , int mstr) -> (int wet)

9 send (int[] leaf_wetness) -> ()

10

11 // Data flows

12 temp -> wet -> send

13 light -> wet

14 moist -> wet

15

16 // Edge constraints

17 light -> wet {expires (10s)}

18 temp -> wet {expires (1m)}

19 moist -> wet {expires (2m)}

20 wet -> send {expires (4m), collect (10)}

TempLight

Wet Send
expires(20m)

expires(10s)

expires(1m)

Moist

collect(10)

expires(2m)

Figure 5: This figure shows the three constructs Mayfly
needs in a program; task definitions, flow definitions, and
constraints. Also shown are optional policy information.

programmer defined tasks in an unstable energy environment,
carefully timekeeping, managing relevant data and checkpoint-
ing progress. Together, the Mayfly language and runtime support
emerging batteryless applications for the Internet-of-Things and
beyond.

3.1 Language Overview
A Mayfly program is a directed data-flow graph; where nodes are
tasks and edges define the flow of data and their associated tem-
poral constraints. Tasks are connected by Flows, with data flowing
through the graph as tasks execute. Edges are annotated with Con-
straints that describe how to treat data as it flows through the task
graph. Each set of connected tasks is a Task Graph. The Task Graph
is executed by the runtime opportunistically, one task at a time,
from the top-most tasks (the tasks with no inputs) to the bottom-
most tasks (the tasks with no outputs). Representing a program
as a task graph allows developers to quickly and clearly see the
structure and purpose of an intermittent program without having
to worry about the effects of intermittent execution. From these
logical constructs each program is composed of three mandatory
syntactic constructs, 1) task definitions, 2) flows, and 3) constraints,
and optional policy information, all detailed below and shown in
Figure 5 and Listing 1.

Timely Batteryless Sensors SenSys’17, November 6–8, 2017, Delft, The Netherlands

Listing 2: Mayfly syntax examples

1 // (1) Task definition

2 task_name (TYPE input , ...) -> (TYPE output , ...)

3

4 // (2) Flow for activity recognition

5 sample -> compute -> send

6

7 // (3) Predicate

8 // compute -> (int error , int activity)

9 sample -> compute[_,RUN] -> send

10 compute[_,WALK] -> log

11

12 // (4) Program policies

13 {: scheduling_policy(FINISH_FLOW); :}

3.2 Tasks and Flows
Tasks encapsulate a single purpose; they are a logical grouping of
Embedded-C code that accomplishes a single objective—for exam-
ple, collecting temperature readings, processing a buffer of data, or
interfacing with a radio to send a packet. These tasks correspond
to C functions written by the programmer (possibly taken from
an existing code base), and can involve computation, use of exter-
nal sensors, or communication. A task’s inputs are defined by its
incoming edges, and a task’s outputs are defined by its outgoing
edges.

Tasks are treated as atomic units of computation, and must be
executed without being interrupted by a power failure. If a tasks
execution is interrupted, the runtime will rollback any intermedi-
ate results, and try to execute the task again at the next available
opportunity. After a task completes, its results are stored in non-
volatile memory, where they become available as inputs to other
tasks. In this way, Mayfly guarantees that forward progress will
be preserved, with the caveat that forward progress is only useful
as long as timing requirements on data (specified by the program-
mer) are met. Figure 4 shows how a wearable activity recognition
program (in C) could be divided into the tasks sample, compute
and send. These tasks could be further subdivided if developers
expect low energy availability in deployment causing many inter-
ruptions. For instance sample, could be broken into transform,
featurize, classify, and stats. Tasks are specified in a Mayfly
program using the syntax shown in the first example of Listing 2.
These task definitions precisely define the data types and sizes each
task expects as input, and the data the task generates.

Flows give structure to the task graph, defining the relationship
between tasks. Developers connect the tasks to each other, giving
explicit dependency information to the runtime. This also has the
effect of making program execution explicit, despite the frequent
power failures batteryless devices go through. This is shown in
the second example of Listing 2. Flows enable conditional execu-
tion between tasks, through the use of predicates between tasks.
With predicates, a programmer can adjust program behavior in
response to intermediate results, environmental input, or even user
actions. The third example of Listing 2 shows how a predicate flow
can be used to divert information to either of two actions in a
wearable activity recognition program. The compute task has two
outputs, a measure of the classification error, and the identifier
of the activity recognized (in this example, WALK or RUN). The

predicate states that if the compute task generates a RUN output,
then route data to the send task for broadcasting the information
to a basestation or the users phone. Otherwise route to the log task,
to record the data locally.

Policy information (example four in Listing 2) for the program is
optionally given at the top of the program. Policy settings allow
developers to specify global attributes of the program itself, select
runtime heuristics, and pass on hints to the runtime about what
the developer expects of the environment and the application. This
policy could define the scheduling method to use, choosing between
a scheduler that prioritizesmoving new data through a graph, or one
that focuses on finishing the processing of older data through the
graph. Policy can also change which metric to use for determining
priority, or which flow to prioritize.

Tasks, and Flows (with some help from policy) guarantee that devel-
opers will make forward progress in a program (assuming energy is
available to complete individual tasks). Additionally this structure
lets developers quickly and easily understand the logical execution
and purpose of aMayfly program, while providing a structure which
can be annotated to explicitly define timing related constraints for
data generation and processing.

3.3 Timely Data Constraints
Constraints describe how data is treated as it flows through pro-
gram tasks (the Task Graph). Constraints acknowledge that not all
data is equal, and in fact the value often depends on the time the
data was gathered, or how much repetitive data is available in the
same timespan. Constraints are provided by annotating the edges
between tasks with three possible constraints: expires, minimum-
inter-sample-delay (MISD), and collect. By using these three con-
straints, developers can specify what valued data means to their
final application.

Expires tells the runtime how long data can sit on an edge before
it loses value to the application. In programs with a stable power,
processing is usually predictable, and developers take appropriate
design-time measures to ensure that data is delivered while it is
fresh, instead of explicitly checking timestamps.

In intermittent devices, as start-to-end processing times vary
more dramatically, timestamp checking becomes both essential to
efficient operation and tedious, requiring time checks at least after
every reboot. In checkpointing systems, this timestamp gathering
is also prone to failure as it is easily interrupted, meaning that data
may appear to be timely, but in fact has an errant timestamp.

MISD, or minimum-inter-sample-delay throttles the data rate so that
the runtime does not generate more data than needed by the appli-
cation. When power is reliable, developers use timers to regulate
sampling rates—an approach ill suited to intermittent operation
(reboots reset timers). Instead, Mayfly developers explicitly tell the
runtime how long after generation before more data is useful. MISD
is a runtime hint from the developer that makes data collection
more efficient. MISD acknowledges that gathering new data that
has been specified by the developer as useless, is counterproductive
and wastes energy. The best thing to do is wait (put the processor

SenSys’17, November 6–8, 2017, Delft, The Netherlands J. Hester, K. Storer, and J. Sorber

expires

misd

time
data sample

Figure 6: This shows how the constraints expires and
minimum-inter-sample-delay (or misd) work together, letting
the runtime know exactly which data is most valuable to
gather and when.

in sleep mode) till new data is useful again (according to the devel-
oper), or enough energy has been gathered to execute a different
task. This mechanism is shown alongside expires in Figure 6.

Collect takes the tediousness of gathering a set of data off the
developer, and onto the runtime. Rather than look at a single data
point, many sensing applications collect multiple data and perform
operations on them.With reliably-powered sensors, getting a buffer
of data for processing, that is all fresh, and was gathered at a con-
sistent sample rate is trivial. When execution becomes fragmented
creating these buffers gets difficult, as now the programmer must re-
place expired samples in addition to all other sensing tasks. Memory
is limited. So, buffers should not contain redundant data (data that
violates a MISD constraint) or data points gathered too frequently
or too sparsely. Both scenarios provide data of little value to the
application. The collect constraint allows developers to simply
gather useful windows of data, coming out of a task. The collect
constraint is compatible with the expires and MISD constraints,
so that developers can specify the spacing and expiration of data
in a collect buffer. Collect also serves as a replacement for a tra-
ditional loop construct. Loops can be embedded in the task code,
alternatively, the loop body can be broken up into tasks, and then
represented as a task graph that will be continually executed based
on its priority, using a collect constraint going into the sink node
of the task graph.

These three constrains provide the core ways developers interact
with sensing data inside their programs. These constraints provide
a way for developers to declare what data is most valuable in a
structured way, that masks the intermittent operation of batteryless
sensors. We anticipate there will be more constraints added (or
current constraints extended) as the language develops and new
needs arise.

3.4 Ancillary Language Details
3.4.1 Multiple Task Graphs. Mayfly programs can be made up of

multiple task graphs, each of which comprises multiple dependent
tasks. These can all be defined in the same program. With multiple
task graphs, developers can describe different sequences of actions
to take during operation, under differing parameters. Each task
graph has an implicit priority assigned to it, based on the ordering
of the task graphs flows in the input file containing the source code.
This means that the highest priority task graph will be checked first
for any possible tasks to execute, if none are found, the next highest
priority task graph is checked. Low priority tasks are only executed
if there is nothing else to execute: Mayfly greedily execute tasks
based on priority. In some cases, this could potentially lead to task
starvation. To ensure that low priority task graphs are executed,

developers need to apply misd constraints to the highest priority
task graph, to leave time and energy for the other tasks graphs to
execute.

3.4.2 Memory Model. Mayfly prescribes a task-local memory
model (similar to Chain[9]) Mayfly programs have no global mem-
ory that is accessible, or writable, from individual tasks. Tasks are
only allowed to use volatile memory (local variables) internal to
the task itself, as well as the read only inputs, which are explicitly
defined by the program. Tasks generate output, which is accessible
on the edges only once the task has completed. Since tasks cannot
alter system or non-volatile memory, tasks will avoid consistency
issues associated with mixed memory volatility systems. This task-
local memory model also simplifies the programmer interface, as
programmers only need concern themselves with the input and
outputs of the task.

3.4.3 Hardware Interactions. The task-local memory model re-
moves the possibility of memory inconsistency for the computa-
tional device (usually a microcontroller). However the memory
and initialization state of the connected hardware peripherals such
as sensors, radios, and storage devices, can cause problems. For
example, any interactions a task has with external components
will change those components in a non-deterministic way from
the perspective of the next task to execute. To mitigate this issue,
Mayfly developers must write tasks that build up, and break down
hardware state, or simply reset hardware peripherals before use to
reduce consistency errors.

4 IMPLEMENTATION
This section describes the Mayfly Runtime and implementation.
We also describe the software and hardware used to evaluate, and
deploy Mayfly, as well as applications developed with Mayfly. All
software and hardware designs are freely available at our website.

4.1 Code Generation
Writing a new language from scratch is unnecessary, and potentially
hurts adoption by the community. The Mayfly language is instead
a coordination language built on Embedded-C, meaning developers
can reuse common libraries and functions.

The Mayfly compiler goes through multiple phases to create a
device specific firmware from a Mayfly program and user libraries.
The architecture of the compiler is shown in Figure 7. The compiler
is written in Java, the Java CUP library is used as a parser genera-
tor, with JFlex as scanner generator. A templating [17] is used to
construct the Mayfly runtime instance for each program. Using
templates makes porting to other processors and platforms easier.

First, Mayfly program code is parsed, and checked for syntax er-
rors. The compiler checks that inputs of tasks match edge data, and
that constraints, tasks, and policies are all defined. After validation,
graphs of tasks are constructed. Next, task graphs are annotated
with the constraints and policies given by the developer, and graph
structure is checked that no cycles exist. These constraints are an-
alyzed for logic errors or potential problems: for example, if the
expiration of a source node is too short, or if an edge is trying
to gather a prohibitive amount of data for the time period.. Once

Timely Batteryless Sensors SenSys’17, November 6–8, 2017, Delft, The Netherlands

Mayfly Program

Validation

custom tool

existing tool
Step 1: Parse program
and verify syntax.
Check for common
errors.

Step 2: Generate task
graphs from code.

Step 4: Take policy
information and task
graphs to generate
sensing schedule.

Step 5: Compile and
link with runtime
libraries and user code.

Compiler

binary code

Task Graph
Generation

Runtime
Generation

Linker

Libraries &
User Code

Hardware
Info

Policy
Info

C code

Task Graph Obj(s)

Valid Program

Installer

firmware Step 6: Install
firmware on device.

Analysis

Annotated Graph(s)

Step 3: Check for logic
errors. Annotate graph(s)
with constraints.

Figure 7: Architecture of the Mayfly compiler, showing the
steps in producing the firmware image for a given Mayfly
enabled, batteryless sensing device.

task graphs are validated, annotated, and analyzed, code genera-
tion can begin. Task and edge data structures are created from the
Task Graph(s), and written to the runtime templates. This approach
allows for flexibility in scheduling algorithms. At the end of this
stage, a complete Embedded-C program is generated. Finally, the
Embedded-C runtime is compiled, along with user code, hardware
headers, and runtime libraries. This is all linked into a binary, and
installed onto the batteryless sensing device.

4.2 Mayfly Runtime
The Mayfly Runtime is generated from the developers program and
the language specification by the Mayfly compiler. The generated
Embedded-C runtime is a statically defined schedule of tasks, with
energy management, timekeeping, and checkpointing built-in. The
schedule has to be static because of the extremely constrained
resources of these devices. Energy is limited, so any energy used
to execute runtime functions is taking away from potential user
and sensing tasks. The Mayfly Runtime keeps track of three things
through power failures: 1) local time, 2) the execution state as
in the progress thought the task graph(s), and 3) the data in each
edge of each task graph. Using these three things, Mayfly’s Runtime
can execute tasks across power failures, while respecting temporal
properties of sensor data. The runtime relies on hardware support
for timekeeping, byte addressable NVRAM technology (FRAM) for
checkpointing, coupled with software techniques to persist tasks
through failures.

Listing 3: Mayfly runtime operation pseudocode

1 main() {

2 if(timekeeper_reset ())
3 rollback_full () // Rollback all data

4

5 if(!state.atomic_lock)
6 rollback_one () // Rollback last task

7

8 time = get_time () // from RTC

9 while (1)
10 t = next_task ()

11 if(constraints_satisfied(t))
12 state.atomic_lock = FALSE
13 execute(t, input , output)

14 state.atomic_lock = TRUE
15 // User task ran

16 // Changes committed to task graph

17

18 if(t==NULL)
19 reset(t)

20 sleep() // Nothing to do

21 }

Runtime Operation: Pseudocode for the runtime operation is
shown in Listing 3. After rebooting from a power failure (Line 1),
the Mayfly runtime does three things (Lines 2-7), get the time, check
if the external remanence timekeeper was reset, and check if the
last task was completed. First, the Mayfly runtime updates the local
system time using the Remanence Timekeeper[13] which is exter-
nal to the microcontroller, on the same printed circuit board. This
is the only time the external timekeeper is polled. This timekeeper
is an external capacitor or real-time-clock (RTC) with its own dedi-
cated energy store—a 10 µF capacitor. The timekeeper draws orders
of magnitude less current than the microcontroller (MCU) while
maintaining the clock, drawing less than 20 nA. This timekeeper
might have reset if the time between a power outage and reboot was
too long, in which case the runtime will rollback all time sensitive
data as now it has no guarantees on the age of any previous data
collected. This is preferable to continuing to process on useless
(according to the developer constraints) data. The final check the
runtime performs before executing tasks is determining if the last
task executed was able to complete, and set the lock. If the lock is
not set, then the tasks outgoing edges are rolled back, and the tasks
is available to re-execute.

After successful recovery from a power failure, Mayfly begins
looking for something to do. Tasks are checked in priority order,
held in a static list defined at compile time. Task constraints are
checked and if the constraints are satisfied, the task is executed.
These constraints include all those listed in Section 4.2. Before the
task is executed, the lock is released, and the output values from the
incoming edges are placed into the task. Pointers to a temporary
output buffer are also put into the task to receive any generated
data. After a task is executed, the changes are committed to the task
graph state, if the task is interrupted or the commit is interrupted,
then the task is re executed when it becomes available again. In
this way, program state will not be corrupted. This continues until
either a power failure or a low voltage scenario, where nothing
can be done, at which point the runtime puts the device to sleep

SenSys’17, November 6–8, 2017, Delft, The Netherlands J. Hester, K. Storer, and J. Sorber

until more energy becomes available (or the device dies), or a task
becomes ready to be executed.

Data Management:Mayfly keeps all edge data in FRAM. FRAM
is a low power non-volatile memory (NVRAM) with write speeds
that allow it to be treated as RAM, enabling very fast checkpoints.
Edge data is double buffered, so that old data is not overwritten
by new data until the lock is set. This ensures that at any point,
the execution can rollback to the previous task safely. Each edge
also stores timestamps for each piece of data, array information
for the collect constraint, and the last time the task was used
to generate data for servicing the misd constraint. The runtime
checks data against all constraints defined on the edge to keep
collect buffers valid, only adding to the buffer if the data point
is unexpired (according to the developer constraints), and the last
sample is older than the developer defined misd. If no expiration
or misd is specified, the data is considered always useful, always
fresh, and will be gathered as fast as possible and never removed
from the buffer.

Timekeeping: The runtime keeps track of time across power fail-
ures by using Remanence Timekeepers[13]. When energy runs out,
the microcontroller, volatile RAM, and all clocks are reset. This
means that any previous timestamps must be updated when power
is regained. On each power-up, the runtime reads the timekeeper
using either an ADC or the SPI bus (depending on the platform).
After a read, the runtime charges a dedicated external small capaci-
tor that maintains the Remanence Timekeeper. The key insight is
that the remanence timekeeper will draw an order of magnitude
less power than the the main sensing platform, and the draw is not
dependent on sensor behavior. This means that it can maintain a
granular sense of time throughout power failures.

4.3 Applications
We implemented two complete applications with Mayfly. These
applications demonstrate real problems that batteryless, energy
harvesting systems can solve. Each application has time sensitive
data generated or transformed by tasks that vary in their time and
energy requirements. Each application encompasses multiple task
nodes, and uses multiple Mayfly constraints to specify the program.
These applications are variants of those presented in Chain [9],
developed for the WISP [28] Computational RFID platform. We
rewrite these applications using Mayfly, with timing information
specified from our own observations.

Cold-Chain Equipment Monitoring (CEM): CEM systems con-
tinuously monitor temperature controlled environments, such as
vaccine and biological sample storage. Temperature logging also
has application in smart home technology and HVAC monitoring
for commercial and industrial buildings. These logs could be read off
the device at a later time using an RFID reader, physical access, or
by broadcasting to a basestation. The CEM system implemented in
Mayfly can safely assume that temperature will not change rapidly,
meaning that the data generation rate can be throttled using the
MISD constraint. Since the temperature is being logged, each data
value has no expiration, but is tagged with a timestamp that persists
through reboots.

Exercise Recognition: The health and wellness of a large aging
population is a major concern in the USA. Exercises for elderly
people, especially overweight elderly people, are often prescribed
by doctors. Doctors often prescribe hip exercises for elderly patients,
including the sit to stand exercise, which helps prevent disability.
Providing doctors with information on exercise completion would
help treatment. Using a wrist-worn, batteryless wearable device
equipped with an accelerometer is one way that these exercises
could be tracked. By discarding the batteries, the wearable is easier
to wear, and does not have to be taken off to charge, which presents
opportunities for losing the device. Activity Recognition (AR) can
use the on-board accelerometer to determine sitting and standing
states to tally exercise completion based on prior training. AR
samples a sliding window, filters out noisy values, then extracts
features and classifies as standing up or sitting down. Mayfly can
take advantage of programmer timing knowledge to discern when
old accelerometer data has expired, and is therefore not worth
processing, or if it is too early after a standing or sitting action to
gather new data (since it is physically impossible to sit or stand in
a few milliseconds). It is assumed that energy is available such that
power failures are frequent, but the failures themselves are short,
as is the case in environments where RFID readers are deployed
throughout a space.

Activity recognition with intermittent devices has been under-
taken successfully [6, 27], and provides an interesting application
space for energy harvesting. Mayfly allows activity recognition ap-
plications to handle the lossy data problem caused by intermittent
execution by providing accurate timekeeping. Mayfly does not use
old acceleration data to classify activities, this means that elderly
patients will not be penalized if the application missed activities,
and that false positives are less likely to occur. Multiple battery-
less devices could also be used to reduce data loss, at lower cost
than a single battery powered system, potentially enabling a richer
dataset.

5 EVALUATION
We evaluate Mayfly by examining the benefits of timekeeping when
facedwith intermittent power, in comparison to untimely languages.
We make comparisons to other intermittent languages in terms of
memory overhead, data utility, and usability, for a variety of real
world applications outlined in Section 4. We introduce our experi-
mental setup and metrics in Section 5.1, then outline the results of
our experiments. We present execution overheads of the scheduler,
as well as initialization costs of the runtime in Section 5.5. Finally,
we investigate the usability of Mayfly and traditional Embedded-C
for programming intermittent devices in a user study in Section 5.6.

5.1 Experimental Setup
Designing experiments for runtime systems for intermittent de-
vices must be done with consideration of energy harvesting envi-
ronment, leakage, measurement overhead, and available platforms.
Because of low energy storage, measurement techniques must be
non-invasive and energy free. In this section we describe the ex-
perimental design we use to compare each state-of-the-art runtime
system with Mayfly.

Timely Batteryless Sensors SenSys’17, November 6–8, 2017, Delft, The Netherlands

Valid ValidExpiredExpired Valid

● ● ●
●
●
●

●
●

● ●
●

●
●
●
●

●
●

● ●
●
●
●

●
●

● ● ●
●

● ● ● ● ● ●

0 20 40 60 80
Time (s)Ac

ce
le

ra
tio

n
Da

ta

Chain Activity Recognition – execution trace
classify() classify() classify()

Figure 8: This shows the times at which the Chain app gath-
ers data during its execution. Once it gathers enough data, it
classifies that data into an activity. The taller the stack of
black dots, the more data gathered at that time. With Chain,
expired acceleration samples (blocked in red) are incorrectly
used to classify activities.

Test Devices: The WISP [28] and Moo [32] are, to our knowledge,
the only hardware platforms available for batteryless sensing. For
evaluating Mayfly, we use a WISP running at 8MHz, with 64KB of
main memory (FRAM) and 2KB of RAM (SRAM), augmented with
a custom printed circuit board (PCB) that attaches to the connector,
providing an RTC as remanence timekeeper which can time more
than 17 minutes of failure. We note this is longer than in previous
work [13] because we used a larger capacitor and larger trickle
resistor.

Runtime Systems: We compare implementations programs in
Mayfly to implementations of the same or similar applications for
DINO[20], and Chain[9]. The Chain artifact provided implemen-
tations of the CEM and activity recognition (exercise recognition)
application in DINO, and Chain. In our experiments, we compare
results for each application on every runtime system.

Measurement Setup:We used a number of tools to gather appli-
cation success metrics, sensor data, and execution statistics without
interfering with the execution of the devices under test. A Saleae
logic analyzer and an Energy-Interference-Free-Debugger (EDB) [8]
were used to record application success metrics by snooping a com-
munication bus on the test platforms. Python scripts were used to
coordinate the data collection, and start or stop test runs. An Impinj
RF2500 Speedway RFID Reader was used as the energy source.

5.2 Data Utility
Mayfly takes advantage of developer application knowledge and
insights to deliver the same or better quality of service and data
utility while doing less work. The exercise recognition application
described in Section 4 was run multiple times on the RFID reader,
with the Chain and Mayfly intermittent runtime systems. TheWISP
that the exercise recognition program was running on was placed
25 cm away from the mini guardrail antenna connected to the Im-
pinj RFID reader. At that distance, harvestable energy is scarce
and longer outages on the order of seconds are frequent. Figure 8
shows a representative trace of the Chain Exercise recognition app
running through this experiment. Figure 9 shows a representative
trace of the Mayfly Exercise recognition app running through this
experiment. These figures show the relative amount of data gath-
ered at specific times, taller stacks of black dots mean more data
was gathered.

●●
●●
●●
●●

●●
●●
●●
●

●●
●●
●●
●

●●
●●
●

●●
●●
●●

●●
●●
●●
●●

●●
●●
●●
●

●●
●●
●●
●●

●●
●●

0 10 20

Time (s)

Ac
ce

le
ra

tio
n

Da
ta

Mayfly Activity Recognition – execution trace

Va
li
d

classify()

●●
●●

● ● ● ● ● ●●

0 10 20Ex
pi

re
d

Da
ta

Data discarded by runtime

Va
li
d

classify()

Va
li
d

classify()

Va
li
d

classify(
)

Figure 9: This shows the times at which Mayfly gathers data
(gray dot stacks) and discards old data (red dot stacks) for the
activity recognition app. This data replacement is specified
by the developer flow constraints. With Mayfly, only valid
data is used to classify activities.

The Chain app gathers a predetermined number of samples
which are then used to classify the current activity. In Figure 8,
samples are represented by stacks of black dots, with the red high-
light showing expired samples. Figure 8, shows that Chain (and any
other untimely runtime) will use expired data to classify an activity,
giving a potentially incorrect classification and wasting cycles and
energy. The bottom part of Figure 9, shows times when Mayfly dis-
cards old data (red dot stacks) using its external timekeeper; only
using unexpired data for activity classification. These figures show
that not all data are equal in determining the Quality of Service
(QoS) of an application. These figures show that preserving forward
progress without regard for elapsed time of power failures can hurt
the quality of service. Throughput does not linearly relate to QoS,
which means that throughput can be traded off for energy without
reducing quality of service for applications that have temporal data
constraints.

5.3 Memory Usage
Memory usage is important in embedded devices in general, and
batteryless sensors especially. These ultra constrained devices can’t
holdmuch data (theMSP430FR5969 on theWISP has 64KB of FRAM,
2KB of SRAM) so must be intelligent in their data management. We
characterized the amount of memory used by each application im-
plemented on each runtime. The memory usage of each application
and its runtime implementation is shown in Table 1. Mayfly ben-
efits from the absence of checkpointing, since developers specify
which data is important, Mayfly only needs to store those data, not
the entire stack. A mirrored memory space is not required, meaning
that Mayfly will always have comparable or better memory usage
to the Mementos and DINO approach. None of the approaches use
a significant amount of memory in relation to the total memory
on the WISP device. Mayfly benefits beyond other approaches in
some cases since timing constraints control how much data is gath-
ered and stored. Mayfly can avoid storing excess data (that have
expired or that don’t benefit the application) based on user-defined
constraints like expires and MISD.

A significant portion of the memory footprint of the Mayfly run-
time is from libraries and platform initialization routines. Table 2

SenSys’17, November 6–8, 2017, Delft, The Netherlands J. Hester, K. Storer, and J. Sorber

Table 1: Non-volatile memory usage (KB) of each app and
system.

App. Mayfly Chain DINO

ER 2.9KB 2.5KB 4.2KB
CEM 3.1KB 4.1KB 5.8KB

Table 2: Mayfly memory breakdown per app in bytes.

App. Task data Scheduler Constraints

ER 406 B 884 B 476 B
CEM 270 B 1128 B 636 B

shows the breakdown of Mayfly runtime memory. Most of the mem-
ory footprint comes from the generated scheduler. Constraints, and
task data are directly created from user specified constructs. The
scheduler trades a higher memory footprint for a more efficient
runtime. We anticipate that further improvements to the scheduler
will reduce the memory footprint.

5.4 Developer Effort and Usability
For many applications, Mayfly is easier to program with than other
systems, because of the (1) reduced number of language constructs
that must be hand coded, and (2) the top-down, simple to visualize
development approach. Table 3 shows the difference in lines of code
required to develop an app in Chain and Mayfly. Mayfly was specif-
ically designed to make the job of writing time aware applications
for intermittently powered sensors easier. As we demonstrate in our
user study (Section 5.6), developers have a hard time with under-
standing intermittent programming when using Embedded-C, even
with a reliable, external timekeeper. Mayfly programs are designed
top-down. Developers define the input and outputs of tasks, then
make connections between tasks, then finally assign constraints to
the tasks or edges. This is assisted by a visualization tool that shows
a graphical representation of the Mayfly program on compilation
that looks similar to Figure 5. Once the Mayfly program has been
successfully created, developers only need to include a separate
source file with the task definitions implemented. These function
definitions can be ported from existing code, use existing libraries,
and are written in Embedded-C like every other runtime system
we evaluated.

Mayfly has the advantage over other runtime systems by sepa-
rating the global goals (the Mayfly program defining task graphs)
from the actual implementation of tasks in Embedded-C. Other
systems join the two; Chain for example, requires programmers
to explicitly specify memory channels and then specify control
flow inside the task definitions themselves, using new C language
constructs. While this approach can greatly reduce the memory
footprint, it obscures control flow, requiring users to search through
a program to find where tasks lead to. This is mainly because of
the approach; Chain is designed as a C library, Mayfly is a com-
piler, allowing for much greater freedom and flexibility in the input
language, and compiled output. Compiling gives greater control,
allowingMayfly to generate intelligible error messages, and capture
the most common errors in the validation stages.

Table 3: LOC for language constructs in Mayfly and Chain.

Mayfly Chain

App tasks flow constraints tasks ch flow decl

ER 5 1 13 11 49 19 61
CEM 9 3 17 12 63 19 82

Harvest Power-on

RTC Hard Reboot

RTC Soft Start Task Rollback

All Rollback

Get Time

Mayfly Runtime Initialization

Execution Time

Figure 10: Runtime initialization flowchart. Each function
has specific timing overhead. If a hard reboot happens
where the Real-Time-Clock (RTC) is reset because of a long
power failure, initialization cost increases.

Table 4: Initialization and scheduler runtime costs.

Init function Time

Power-on from brown-out 1.0ms

RTC hard reboot 708.5ms
RTC soft start 144.6 µs

Rollback all Data 23.6 µs
Single task rollback 4.6 µs

Get time (seconds, minutes, hours) 246.4 µs
Get time (seconds) 80.6 µs

Scheduler function

Process constraints for single task 4.5 µs
Scheduler cant find task to execute 56.3 µs
Task finished, commit results 7.0 µs

5.5 Overhead
Certain implementation details are pertinent to the overall evalu-
ation. We detail their effect on performance, note potential areas
of improvement, and provide practical implementation costs in
this section. Specifically we look at the runtime initialization costs
(above the execution costs of user defined tasks), and the scheduling
costs for determining which user defined task to run. The platform
initialization scheme is shown in Figure 10, along with execution
costs in Table 4.

In Figure 10, two paths are shown for initialization, the hard re-
set path, and the soft reset path. The soft reset path (“RTC Soft Start”
in figure) simply polls the RTC, rolls back the last task if it was
not completed and then gets the time. This happens fairly quickly.
However, when the external timekeeper loses power completely
(in addition to the MCU), the timekeeper resets its clock back to
zero on next boot. This reboot (“RTC Hard Reboot” in figure) takes
longer to initialize the timekeeper properly, than if it had not ex-
pired. Additionally, all timestamps (“All Rollback” in figure) must
be set back to zero for each task output. In our current implemen-
tation for the MSP430FR5969 this hard reboot could take up to one
second, but on average takes 0.71 seconds. This length of time is

Timely Batteryless Sensors SenSys’17, November 6–8, 2017, Delft, The Netherlands

significant, and difficult to overcome with current RTC components
available off-the-shelf, however, in our experiments the timer rarely
loses power completely, as we used a conservatively sized storage
capacitor of 10 µF for the timekeeper, which can time more than 17
minutes of of failure. This 17 minute timing ability is more than
adequate for our applications, however, for applications with longer
timing requirements, new advances in zero power timekeeping are
required.

Table 4 shows the costs of the scheduler functions. Before a
task can be executed, its constraints must be satisfied, this check
happens many times during the scheduling cycle and must be very
fast. On average, this check happens in 4.5 µs, quick enough to not
be a burden, and making the cost of not finding anything to do
low. The other important function is committing data from a task
to non-volatile memory so it can be preserved through a power
failure. This function only takes 7.0 µs.

Energy and Cost: To use Mayfly with the WISP, it must be aug-
mented with the custom PCB. The energy cost of maintaining the
timekeeper, the price increase per unit, and the firmware are all
overhead items for Mayfly. The initial charging of the timekeeper
requires 28.8 µJ, then a constant trickle current of 54 nA. Adding the
custom PCB, or designing a new PCB with required hardware only
increases the price point by $1.05 per unit. Additionally, the mem-
ory overhead of supporting the hardware timekeeper is constrained
to a small library that requires 1364 bytes.

5.6 User Study
We evaluated the usability of Mayfly on eleven participant drawn
from a junior-level, university Computer Operating Systems course2
Our findings suggest 1) Mayfly reduces the time needed to write
intermittent programs, 2) Mayfly helps developers reason about
intermittent behavior, and 3) the benefit of using Mayfly is high
enough for encourage C developers to migrate.

Methodology: Participants were provided documentation describ-
ing methods for writing intermittent programs in embedded-C,
relevant syntax, and function definitions provided by the research
team for sensing and timekeeping. They were given 20 minutes to
familiarize themselves, prior to the experiment. Participants were
then provided three unique programming challenges, with 20 min-
utes to complete each. The research team manually compiled partic-
ipants’ code, and reported errors in syntax and timing related bugs.
Participants repeated the above process for the same challenges,
but this time using the Mayfly language. Participants received doc-
umentation describing methods for writing intermittent programs
in Mayfly, relevant syntax, and function definitions, as above. Par-
ticipants used Mayfly to complete the same three programming
challenges, under the same conditions. These programming chal-
lenges asked participants to 1) sample a sensor and send only data
that is less than one minute old, 2) sample two sensors, ensuring
the first is not sampled more than once per minute, and the second
is sampled no more than once every five minutes, and 3) sample a
single sensor ten times in one minute, but no more than once every
two seconds, and send an average that is calculated using only data
that is no older than one minute. These challenges were designed

2This study was approved by our Institutional Review Board.

to model the three key Mayfly timing constraints, expires, misd,
and collect, to illustrate the difference in handling these scenarios
in C and Mayfly. After each set of three challenges, participants
completed a survey rating the ease of the language used.

Sample: Our eleven participants ranged in class standing from
junior to senior, with three to seven years of formal computing
education, and three to eight years of total programming experience.
Participants self-rated their overall programming abilities, comfort
using C, and knowledge of computer architecture, as compared to
other students, and average application developers. Overall, our
participants reported their abilities were average, but slightly above
other students.

Results: Mayfly reduced the time needed by our participants to
write intermittent programs. Participants using Mayfly unsuccess-
fully compiled an average of 0.64 fewer times per task, than they
did when using C. On average, participants successfully completed
1.54 more challenges within the set time limit, in Mayfly than in
C. Mayfly made overcoming the complexity of intermittent pro-
grams easier, for our sample. None of our participants successfully
completed our expires coding challenge in C, while all eleven
completed the challenge in Mayfly. Five participants completed our
misd challenge in C, while seven did so in Mayfly. Four participants
successfully completed our collect challenge in C, while eight did
so in Mayfly.

Mayfly was reported to be more usable than C, to accomplish
these tasks. Using a series of 5-point Likert-type scales, participants
rated the usability of each language. The items in this survey were
verified using confirmatory factor analysis, to ensure validity. We
summed and divided these ratings by the total possible, to create
a percent language usability score for both C and Mayfly. Nine of
our eleven participants reported C was their preferred program-
ming language, prior to this study, and seven participants indicated
their C programming abilities are above average compared to other
students at their university. However, working with Mayfly, ten of
eleven eleven users rated its usability higher than C, for completing
the assigned challenges. Additionally, Mayfly received a 23% higher
mean score than C, on our usability survey.

While we recognize several limitations to this study, including
sample size, and, consequentially, order effects, we believe our
results indicate that the benefit of migrating to Mayfly from C is
high enough to propose using Mayfly for temporally-constrained,
batteryless applications.

6 RELATEDWORK
Disruption tolerance is a core area of computer science research.
However, researchers have traditionally either ignored disruptions
due to power failures or treated them as rare catastrophic events. In
this section, we describe the Mayfly language and runtime’s place
in the literature, and demonstrate the novelty of our approach.

Preserving Forward Progress: Checkpointing systems like Me-
mentos [26], Hibernus [1], QuickRecall [15], and others[3, 4, 14,
23, 31] have emerged to keep forward progress on intermittently-
powered systems. Other solutions, like DINO [19], show that even
with checkpointing, memory consistency is not guaranteed. None
of these solutions consider how the loss of timekeeping affects

SenSys’17, November 6–8, 2017, Delft, The Netherlands J. Hester, K. Storer, and J. Sorber

the duty cycle, and how the utility of sensed and computed data
changes over time. The proposedMayfly runtime builds off of DINO
and previous checkpointing and scheduling libraries to preserve
forward progress and manage the temporal aspect of sensing tasks.

Operating Systems & Runtimes Most operating systems for
wireless sensor networks have assumed a stable power supply, and
were not built for intermittent programs. However, recent advances
with computational RFID have pushed for batteryless task manage-
ment. Dewdrop[5], an energy-aware runtime for Computational
RFID tags like the WISP, delays a tag’s computation in order to
increase the likelihood that the task will complete. DEOS[34] sched-
ules tasks in response to changing energy-harvesting conditions
in order to avoid power failures. QuarkOS[33] is a low overhead
operating system that divides every communication, sensing, and
computation task into tiny fragments. It then sleeps between execu-
tion of these fragments to recharge. BY doing this, QuarkOS allows
tasks to be executed on extremely small energy budgets. EnOS[30]
is a kernel for energy-neutral systems. Energy-neutral systems rely
on battery backups but function almost exclusively off harvested
energy. EnOS allows for tasks to be organized into different criti-
cality levels, helping manage blackouts. However, EnOS assumes
a mostly stable supply, and does not consider the effects of time.
In fact, none of the operating systems and runtimes mentioned
consider the temporal aspects of sensor data.

LanguagesMayfly is the first language designed for batteryless sen-
sors that captures the temporal constraints associated with sensor
data. Numerous languages have been adoptedfor wireless embed-
ded sensors [10, 18, 21, 24], most are closely related to or built on
top of TinyOS and NeSC [11], which assumes a stable power supply.
Synchronous programming languages like Lustre [12], Esterel [2],
and Signal [16], are generally used for embedded control systems.
This class of languages share Mayfly’s consideration of time as
critically important to proper function of a program. Mayfly’s fo-
cus on energy harvesting, intermittent operation, and tracking of
data across power failures, separates Mayfly from synchronous
languages. However, the well studied mathematical foundations of
synchronous languages could greatly inform modeling, specifying,
and validating Mayfly programs.

Eon[29] was the first programming language for sensors that was
built to be energy-aware. Eon is based on Flux [7], andMayfly draws
inspiration in syntax and purpose from both. Eon programmers
used a declarative coordination graph to sequence and categorize
tasks in terms of energy states. Tasks are executed based on avail-
able energy and dependencies of the task, the goal of avoiding
power failures while maximizing performance. Mayfly’s design is
inspired by Eon—both use declarative coordination graphs and both
deal with harvested energy—but Eon assumes a sufficiently large
battery and near-term reliable power. Eon is designed to avoid
power failures. Mayfly is designed to get work done in spite of
power failures. Eon ignores the relationship between data and time,
while that relationship is central to Mayfly’s design.

7 DISCUSSION AND FUTUREWORK
Mayfly is a first step towards making batteryless sensing main-
stream. We envision future work investigating more intelligent,

and dynamic task scheduling with time sensitive data streams,
generalized hardware platforms for many applications, and more
sophisticated tooling to aid the amateur and expert developers of
batteryless applications. In this section we discuss the limitations of
the Mayfly language and runtime, and outline potential for future
work.

Applicability to Energy-Neutral Systems:Mayfly is focused on
enabling long running, timely applications for tiny, batteryless,
energy harvesting systems, which can lose power many times a
second. However, the language is easily applied to other larger
classes of sensing systems that deal with less frequent, or longer-
term interruptions, such as energy-neutral sensing systems [22].
These sensors may have much more compute resources, larger
energy harvesters, and be carefully profiled so as to fail rarely.
Mayfly describes time—specifically regarding data collection—as a
first-order concern. If supported by external remanence timekeepers
that can time longer failures (on the order of hours and days) larger
energy harvesting sensing systems could more easily manage their
timely sensor data collection reliably with Mayfly.

Task Atomicity: A limitation of all languages for intermittently
powered sensors stems from task size mismatch to energy availabil-
ity. If a user task takes a long time and conducts multiple operations,
it has a higher chance of failing to complete. Re executing wastes
energy, and completion is not guaranteed. Determining if a task
is too large is difficult, as externally connected components can
influence task time. Exploring compiler and tooling techniques that
leverage knowledge about the deployment environment, the pre-
dicted available energy, and profiles of the device itself to bound
task times and is an interesting and necessary area of future work.

Triggered Tasks: Tasks execute if they have no unsatisfied task
dependencies. Providing a more expressive way to trigger tasks
is an interesting area of future work. Tasks could, for example, be
triggered by changes in environmental conditions (such as sunlight),
average energy availability, or even a user interface item like a touch
sensor or button.

Dynamic Scheduling: Currently the runtime schedule of tasks
is generated at compile time. While this achieves a low overhead
and quick runtime functions, it is imagined that the scheduling
could integrate contextual information about the energy state of
the sensor, the previous energy costs of the current task, and other
information to make better scheduling decisions on the fly.

8 CONCLUSIONS
The Mayfly language and runtime was created to provide the de-
veloper with a intuitive mechanism to create timely, sophisticated
batteryless sensing application. With a graph based declarative lan-
guage, and a scheduler that maintains time across power failures,
Mayfly makes programming these tiny devices more straightfor-
ward, without sacrificing flexibility. We validated Mayfly through
multiple applications and a user study. Batteryless sensors are an
indispensable part of the future of the Internet-of-Things. These
devices promise to revolutionize sensing, and even computing. We
view Mayfly as a positive step towards the manifestation of this
vision.

Timely Batteryless Sensors SenSys’17, November 6–8, 2017, Delft, The Netherlands

ACKNOWLEDGMENTS
The authors would like to thank: Chris Datko and Siara Fabbri for
initial work on Mayfly; Alexei Colin and Brandon Lucia for provid-
ing resources for comparison with Chain; our shepherd, Gian Pietro
Picco, and our anonymous reviewers, for their helpful comments.
This research is based upon work supported by the National Sci-
ence Foundation under grant CNS-1453607. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation

REFERENCES
[1] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi,

Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining computation
during intermittent supply for energy-harvesting systems. Embedded Systems
Letters, IEEE 7, 1 (2015), 15–18.

[2] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming
language: Design, semantics, implementation. Science of computer programming
19, 2 (1992), 87–152.

[3] Naveed Bhatti and Luca Mottola. 2016. Efficient State Retention for Transiently-
powered Embedded Sensing. In Proceedings of the 13th ACM International Confer-
ence on Embedded Wireless Systems and Networks (EWSN) Graz (Austria).

[4] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instru-
mentation for Transiently-powered Embedded Sensing. In Proceedings of the 16th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN ’17). ACM, New York, NY, USA, 209–219. https://doi.org/10.1145/3055031.
3055082

[5] Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dewdrop: An
Energy-Aware Task Scheduler for Computational RFID. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation.

[6] Michael Buettner, Richa Prasad, Matthai Philipose, and David Wetherall. 2009.
Recognizing daily activities with RFID-based sensors. In Proceedings of the 11th
international conference on Ubiquitous computing. ACM, 51–60.

[7] Brendan Burns, Kevin Grimaldi, Alexander Kostadinov, Emery D Berger, and
Mark D Corner. 2006. Flux: A Language for Programming High-Performance
Servers. In In Proceedings of USENIX Annual Technical Conference.

[8] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. 2016. An
Energy-interference-free Hardware-Software Debugger for Intermittent Energy-
harvesting Systems. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’16). ACM, New York, NY, USA, 577–589. https://doi.org/10.1145/2872362.2872409

[9] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 514–530. https://doi.org/10.1145/
2983990.2983995

[10] Roland Flury and Roger Wattenhofer. 2010. Slotted Programming for Sensor
Networks. In Proceedings of the 9th ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks (IPSN ’10). ACM, New York, NY, USA, 24–34.
https://doi.org/10.1145/1791212.1791216

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. 2003. The
nesC Language: A Holistic Approach to Networked Embedded Systems. In Proc.
ACM SIGPLAN 2003 Conf. Programming Language Design and Implementation
(PLDI’03). ACM, San Diego, CA, USA, 1–11.

[12] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The
synchronous data flow programming language LUSTRE. Proc. IEEE 79, 9 (1991),
1305–1320.

[13] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb,
Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Persistent Clocks for
Batteryless Sensing Devices. ACM Trans. Embed. Comput. Syst. 15, 4, Article 77
(Aug. 2016), 28 pages. https://doi.org/10.1145/2903140

[14] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent Computa-
tion. In Proceedings of the 44th Annual International Symposium on Computer
Architecture. ACM, 228–240.

[15] Harishankar Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall:
A low overhead HW/SW approach for enabling computations across power cycles
in transiently powered computers. In VLSI Design and 2014 13th International

Conference on Embedded Systems, 2014 27th International Conference on. IEEE,
330–335.

[16] Paul LeGuernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire. 1991.
Programming real-time applications with SIGNAL. Proc. IEEE 79, 9 (1991), 1321–
1336.

[17] Logic-less templates. 2017. Mustache Logic-less templates. http://mustache.
github.io/. (2017). Last Viewed March 22, 2017.

[18] Konrad Lorincz, Bor-rong Chen, Jason Waterman, Geoff Werner-Allen, and Matt
Welsh. 2008. Resource Aware Programming in the Pixie OS. In Proceedings of
the 6th ACM Conference on Embedded Network Sensor Systems (SenSys ’08). ACM,
New York, NY, USA, 211–224. https://doi.org/10.1145/1460412.1460434

[19] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2015). ACM, New York, NY, USA, 575–585. https://doi.org/10.1145/2737924.
2737978

[20] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’15). ACM, New York, NY, USA, 575–585. https://doi.org/10.1145/2737924.2737978

[21] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. 2008. Flask: Staged func-
tional programming for sensor networks. In ACM Sigplan Notices, Vol. 43. ACM,
335–346.

[22] Geoff V Merrett and Bashir M Al-Hashimi. 2017. Energy-driven computing:
Rethinking the design of energy harvesting systems. In 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 960–965.

[23] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. 2013. Auto-
mated checkpointing for enabling intensive applications on energy harvesting
devices. In Proceedings of the 2013 International Symposium on Low Power Elec-
tronics and Design. IEEE Press, 27–32.

[24] Luca Mottola and Gian Pietro Picco. 2011. Programming Wireless Sensor Net-
works: Fundamental Concepts and State of the Art. ACM Comput. Surv. 43, 3,
Article 19 (April 2011), 51 pages. https://doi.org/10.1145/1922649.1922656

[25] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne P.
Burleson, and Kevin Fu. 2012. TARDIS: Time and Remanence Decay in SRAM to
Implement Secure Protocols on Embedded Devices without Clocks. In Presented
as part of the 21st USENIX Security Symposium (USENIX Security 12). USENIX,
Bellevue, WA, 221–236. https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/rahmati

[26] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support
for Long-Running Computation on RFID-Scale Devices.. In Proceedings of the
16th Intl. Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[27] A. Rodriguez, D. Balsamo, Z. Luo, S. P. Beeby, G. V. Merrett, and A. S. Weddel.
2017. Intermittently-powered energy harvesting step counter for fitness tracking.
In 2017 IEEE Sensors Applications Symposium (SAS). 1–6. https://doi.org/10.1109/
SAS.2017.7894114

[28] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. 2008.
Design of an RFID-Based Battery-Free Programmable Sensing Platform. IEEE
Trans. Instrumentation and Measurement 57, 11 (Nov. 2008), 2608–2615.

[29] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D.
Corner, and Emery D. Berger. 2007. Eon: A Language and Runtime System for
Perpetual Systems. In Proceedings of ACM Conference on Embedded Networked
Sensor Systems (SenSys).

[30] Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, and Volkmar Sieh.
2016. A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities.
(2016).

[31] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation with-
out Hardware Support or Programmer Intervention. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX Associa-
tion, GA, 17–32. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/vanderwoude

[32] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo:
A Batteryless Computational RFID and Sensing Platform. Technical Report UM-
CS-2011-020. UMass Amherst Department of Computer Science.

[33] Pengyu Zhang, Deepak Ganesan, and Boyan Lu. 2013. QuarkOS: Pushing the
Operating Limits of Micro-powered Sensors. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems (HotOS’13). USENIX Association,
Berkeley, CA, USA, 7–7. http://dl.acm.org/citation.cfm?id=2490483.2490490

[34] Ting Zhu, Abedelaziz Mohaisen, Yi Ping, and Don Towsley. 2012. DEOS: Dy-
namic energy-oriented scheduling for sustainable wireless sensor networks. In
INFOCOM, 2012 Proceedings IEEE. IEEE, 2363–2371.

https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/2872362.2872409
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/1791212.1791216
https://doi.org/10.1145/2903140
http://mustache.github.io/
http://mustache.github.io/
https://doi.org/10.1145/1460412.1460434
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/1922649.1922656
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rahmati
https://doi.org/10.1109/SAS.2017.7894114
https://doi.org/10.1109/SAS.2017.7894114
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
http://dl.acm.org/citation.cfm?id=2490483.2490490

	Abstract
	1 Introduction
	2 Batteryless Sensing
	2.1 Intermittent Operation
	2.2 Complexity of Timekeeping

	3 Mayfly Language
	3.1 Language Overview
	3.2 Tasks and Flows
	3.3 Timely Data Constraints
	3.4 Ancillary Language Details

	4 Implementation
	4.1 Code Generation
	4.2 Mayfly Runtime
	4.3 Applications

	5 Evaluation
	5.1 Experimental Setup
	5.2 Data Utility
	5.3 Memory Usage
	5.4 Developer Effort and Usability
	5.5 Overhead
	5.6 User Study

	6 Related Work
	7 Discussion and Future Work
	8 Conclusions
	Acknowledgments
	References

