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Sensor networks have a significant potential in diverse applications some of which are already be-
ginning to be deployed in areas such as environmental monitoring. As the application logic becomes
more complex, programming difficulties are becoming a barrier to adoption of these networks. The
difficulty in programming sensor networks is not only due to their inherently distributed nature
but also the need for mechanisms to address their harsh operating conditions such as unreliable
communications, faulty nodes, and extremely constrained resources. Researchers have proposed
different programming models to overcome these difficulties with the ultimate goal of making pro-
gramming easy while making full use of available resources. In this article, we first explore the
requirements for programming models for sensor networks. Then we present a taxonomy of the
programming models, classified according to the level of abstractions they provide. We present an
evaluation of various programming models for their responsiveness to the requirements. Our re-
sults point to promising efforts in the area and a discussion of the future directions of research in
this area.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming; D.3.m [Programming Languages]: Miscellaneous

General Terms: Design, Languages
Additional Key Words and Phrases: Programming models and languages, survey, taxonomy

ACM Reference Format:

Sugihara, R. and Gupta, R. K. 2008. Programming models for sensor networks: A survey. ACM
Trans. Sens. Netw. 4, 2, Article 8 (March 2008), 29 pages. DOI = 10.1145/1340771.1340774
http://doi.acm.org/10.1145/1340771.1340774

1. INTRODUCTION

Sensor networks and wireless sensor networks are a rapidly emerging research
field because of their enormous application potential. Advances in MEMS and

R. Sugihara was supported by IBM Tokyo Research Laboratory. The authors acknowledge support
from a DMEA subcontract, UCSD/LANL Engineering Institute, and from RUNES project under
EU Framework Six programme.

Authors’ address: Department of Computer Science and Engineering, University of California, San
Diego, 9500 Gilman Drive, La Jolla, CA 92093-0404; email: {ryo,rgupta}@ucsd.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
© 2008 ACM 1550-4859/2008/03-ART8 $5.00 DOI = 10.1145/1340771.1340774 http://doi.acm.org/
10.1145/1340771.1340774

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 8, Publication date: March 2008.



8:2 . R. Sugihara and R. K. Gupta

microelectronic circuits have made it possible to build extremely small nodes
with wireless communications, decent computational power, and various sens-
ing capabilities.

A network of sensor nodes can be viewed as a distributed system. Compared
to conventional distributed systems, however, there are important differences.
The nodes and network are intrinsically less reliable and/or less available than
in conventional distributed systems. Even under a normal operation, links may
become degraded or unavailable depending upon the state of the wireless net-
work or the dynamically changing radio environment in which a node is embed-
ded. Resource constraints are an important part of the sensor networks. These
networks frequently use batteries, making energy a scarce resource. Similarly,
the availability of network bandwidth can also be an issue depending on how
much data needs to be communicated and the operating environment for the
network.

All these facts have forced the application programmers of sensor networks
to deal with too many implementation-level details besides the application logic
that they normally focus on. Out of necessity and to maximize efficiency, the
application developers design software in a rather unstructured way where
the application logic is woven deep into the underlying fabric of sensor net-
work. However, this approach is not feasible for more complex applications be-
cause of the growing interdependencies of performance, functionality aspects,
and the inherent nonscalability of such programming. Furthermore, equipping
subsidiary (but often required) features such as failure-resilience and repro-
grammability incurs additional complexity. A poor debugging environment (e.g.,
relying on LEDs on a sensor node) makes matters worse. As a result, pro-
gramming sensor network applications are exceedingly difficult even for expe-
rienced programmers, let alone end users of such networks. This motivates us
to explore sophisticated models and methods for designing and programming
sensor network applications. For now, we just refer to these as programming
models.

In this article, we survey prominent programming models for sensor
networks. This survey builds upon earlier reviews [Romer 2004; Hadim and
Mohamed 2006], taking a broader view of the sensor networks in an attempt
to build a useful taxonomy and comparison of different approaches. We first
identify the requirements for sensor network programming by determining the
problem space and analyzing the actual applications. Then we categorize the
programming models according to the level of abstraction and evaluate each
approach in terms of the requirements. Finally, we discuss trends in applica-
tions and sensor networks and their implications for programming models for
future.

2. SENSOR NETWORK PROGRAMMING

Before going into the details of each programming model, let us first examine
the challenges associated with the sensor network as a computing and pro-
gramming environment.
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Fig. 1. Problem space of sensor networks.

2.1 The Problem Space

As a computing environment, a sensor network is different in various aspects
from traditional computing and it is the primary reason for diversity in the
programming models. To help structure and navigate the myriad combinations
of devices and their programming methods, as shown in Figure 1, we divide
these along three characteristics that attempt to group devices and networks
according to their capabilities presented to the end application:

(1) Node class. Grouping by power consumption, which provides a first-order
indication of their capabilities.

(2) Node observables. Data+Address (DA), DA+Time (DAT), DAT+Space
(DATS). These provide an approximation of the reasoning capabilities and
validation requirements that the end application can use.

(3) Size of network. An order-of-magnitude indication of the number of nodes
deployed, from a few nodes to hundreds and thousands of nodes.

Node class identifies the hardware platforms that each computing envi-
ronment assumes. PCs, workstations, and servers are classified as W-order,
portable devices mostly driven by battery are mW-order, and ultrasmall devices
that usually harvest energy from external energy sources (e.g., sunlight, elec-
tromagnetic field) are classified as uW-order. Along this axis, sensor network
spans broadly, ranging from W-order nodes such as line-powered surveillance
cameras to uW-order nodes like RFID. While W-order nodes have been subject
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of extensive research in desktop computing, and whereas uW-order nodes tend
to be dominated by issues related to the design of sensors, mW-order nodes
are the most interesting for the diversity of sensing/actuation, computing, and
communications used. An example of a mW-order node is the mote from Cross-
bow Technology Inc.! and Moteiv Corporation.? Such nodes feature comput-
ing capabilities that are modest enough to support nontrivial programming
and runtime environments, and the ability to communicate to form ad hoc
networks.

Node observables are the concepts that a computing environment is aware
of and uses in building application programs. General-purpose programming
builds upon manipulation of memory contents; thus Data and Address are the
traditional node observables. In some distributed programming models, com-
munication is exposed to improve performance. Increased interaction of sensor
network programs with the physical world is likely to lead to additional ob-
servables that the programming model may be aware of. Chief among these
is the concept of time, which is already used in most embedded systems with
specified accuracy and precision to meet timeliness requirements in such pro-
grams. Going further, in the emerging sensor network applications, space is
beginning to be recognized as an important observable for building new appli-
cations. In these applications, program behavior often depends on where the
executing node is and computations at different places often have different
meanings.

The size of network axis shows the number of computing units each com-
puting environment typically assumes. There is a great diversity in the size of
sensor network that a typical sensor network application assumes depending
upon application needs, costs, and other considerations. However, sensor net-
work applications tend to cluster around similar magnitude of node scalability
concerns that have a direct impact on how these are programmed.

Given the importance of physical constraints and an expanded set of node ob-
servables, sensor networks are different from traditional computing and their
programming environments. At the same time, however, the problem space
of sensor networks is not completely isolated and there are some overlap-
ping regions with several computing environments such as mobile robotics and
location-aware ubiquitous computing.

2.2 Examples of Applications

Next we look into typical sensor network applications to see how the unique
problem space identified above is populated, and to identify their requirements.
Figure 2 is a closer view of the diagram shown in Figure 1, with the applications
mapped on it.

Habitat monitoring is one of the earliest applications of sensor networks.
On Great Duck Island [Szewczyk et al. 2004], researchers monitored the be-
havior of petrels, especially how they use burrows both in short-term and long-
term periods. They also monitored the environmental parameters inside and

1http ://www.xbow.com/.
2http://www.moteiv.com/.
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Fig. 2. Mapping of sensor network applications.

outside of burrows. The ZebraNet project [Juang et al. 2002] monitored the be-
havior of zebras including long-range migration, interspecies interactions, and
nocturnal behavior using tracking collars. This type of application typically
has very low duty cycle operation of the sensor network to maximize battery
life.

Environmental monitoring is another frequent application of sensor net-
works. Some examples include meteorological and hydrologic processes at high
altitudes [Lundquist et al. 2003], long-term glacial movement [Martinez et al.
2004], and temperature and humidity in the forest [Batalin et al. 2004; Tolle
et al. 2005].

Structural health monitoring [Xu et al. 2004] seeks to collect and analyze
structural responses to ambient or forced excitation by using an accelerometer
and strain gauges. Compared to other applications, it usually requires better
network performance. Data rate is more than 1 kb/s per each sensor, latency
must be low in order to allow real-time analysis, and also time synchronization
is necessary in the level of milliseconds.

There is a class of “tracking-type” applications. The basic idea is to localize a
target by trilateration and other techniques using multiple sensors capable of
measuring distance or bearing angle of the target. Tracking-type applications
are unique because they intrinsically necessitate collaborative information pro-
cessing among sensors. There has some theoretical work to improve the per-
formance and efficiency in tracking, for example, Chu et al. [2002] and Pattem
et al. [2003]. VigilNet [He et al. 2004] is a surveillance application, which can
be seen as an instance of tracking-type applications. The objective is to acquire
and verify information about enemy capabilities and positions of hostile tar-
gets, and magnetic sensors are used for sensing proximity to the target. The
Countersniper System [Simon et al. 2004] is another example of this type. It
locates shooters by estimating the source of muzzle blast. Each sensor node has
an acoustic sensor and measures time of arrival.

These emerging classes of applications of sensor networks provide an early
indication of their maturity and allow us to reason about their common
requirements.
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2.3 Requirements for Sensor Network Programming

Based on the problem space and applications focus, we identify four important
requirements for sensor network applications as follows:

—energy-efficiency;
—scalability;
—failure-resilience;
—collaboration.

The first two requirements are mostly due to the problem space chosen and the
latter two are due to the application needs.

Energy-efficiency is the common requirement for almost all wireless sen-
sor network applications. For example, in habitat and environmental moni-
toring applications, each sensor node needs to be alive for months. Even for
W-order nodes, energy-efficiency is important because of increasing scalabil-
ity of such nodes. The power consumption of mW-order nodes often displays a
wide dynamic range of power consumption levels depending upon node activi-
ties, sometimes by three to four orders of magnitude variation. Since wireless
communication is a major energy consumer in mW-order nodes, it is important
to reduce unnecessary data transmission as much as possible. Programming
models should help programmers in a way that they can implement applica-
tions that achieve a decent level of energy-efficiency without spending too much
effort. At the same time, it is preferable that programming models allow fine-
grained control of energy-efficiency to satisfy the required conditions of each
specific application.

Scalability is important because many of the sensor network applications run
on tens or hundreds of sensor nodes. The scalability concerns are exacerbated
by the bandwidth constraints, compared say to the Internet-scale distributed
systems. For example, IEEE 802.15.4, a popular wireless PHY/MAC protocol
for sensor nodes, provides a maximum bandwidth of 250 kb/s. Therefore, the
primary concern on the scalability of sensor networks is about reducing the
amount of communication to efficiently use the scarce bandwidth. Programming
models should help programmers to write scalable (i.e., bandwidth-efficient)
programs and should be accompanied by runtime mechanisms that achieve
bandwidth-efficiency whenever possible.

Failure-resilience is also important for applications to run over a long pe-
riod. Applications should be able to remain functional even in the face of un-
reliable communications, dead nodes, and other unexpected failures. Making
applications resilient to failure and adaptive to the change of environments
necessitates support from programming models, since it is too complicated to
write error-handling logic for every failure and is still not enough to deal with
unexpected failures.

Last, collaboration is an increasingly important characteristic of sensor net-
work applications. Based on the analysis of applications, we can categorize
them into data collection type and collaborative information processing type.
In data collection applications, the main task is to send data to a central server.
Many monitoring applications (habitat, environmental, structural) fall within
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this type. On the other hand, tracking-type applications are regarded as col-
laborative information processing applications that try to extract higher-level
information by processing data from multiple sensors.

Collaboration can be a very challenging requirement for programming sensor
network applications by needing attention to other requirements. The energy-
efficiency requirement implies that collaboration needs to happen inside the
network instead of at the central server to reduce data transmission. It pro-
motes the use of localized algorithms where “sensors only interact with other
sensors in a restricted vicinity, but nevertheless collectively achieve a desired
global objective” [Estrin et al. 1999, p. 263]. However, in general it is difficult to
devise such algorithms. Furthermore, the failure-resilience requirement forces
the sensor network to keep working even after communication and node fail-
ures. Programming models need to provide an easy way of describing the appli-
cation logic with least additional complexity that originates from the distributed
and unreliable nature of the problem.

Note that data collection applications also become collaborative information
processing by employing in-network processing. In fact, in-network processing
is often necessary in these applications. To achieve energy-efficiency, they need
to reduce the amount of data transmission by way of summarizing and com-
pressing the data inside the network. Applications that collect high-bandwidth
data (e.g., structural health monitoring) would also require in-network process-
ing due to bandwidth limitations.

There are certainly other application requirements that we have not cov-
ered so far. Some of the examples are computational-efficiency, low-latency,
nonintrusiveness to the monitored environments, autonomy, time synchroniza-
tion, and sensor localization. On the programming aspect, ease of programming
and ease of (re)configuration are important requirements. While we touch on
these briefly, the focus of this article is on the four requirements presented
earlier.

3. TAXONOMY OF PROGRAMMING MODELS

We classify the approaches to programming sensor networks into low-level
programming models and high-level programming models. Low-level program-
ming models are focused on abstracting hardware and allowing flexible control
of nodes. TinyOS [Hill et al. 2000] with nesC [Gay et al. 2003] is one of the earli-
est examples in this class and has been the de facto standard software platform
for sensor network programming. An interesting approach in this class is to
run a virtual machine on each node. A virtual machine provides an execution
environment for scripts that are much smaller than binary codes for TinyOS.
Thus it is appropriate for the situations where the code on each node needs to
be dynamically reprogrammed after deployment via a wireless channel.
High-level programming models take an application-centric view instead of
the platform-centric view and address how easily application logics can be pro-
grammed, as opposed to, say, providing flexibility in optimizing the system’s
performance. More specifically, they mainly focus on facilitating collaboration
among sensors, a major category of sensor network applications and also one

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 8, Publication date: March 2008.



8:8 . R. Sugihara and R. K. Gupta

[ Programming models ]

Low-level
“Platform-centric”

Node-level

0OS/ Node-level Virtual Machine
Programming Language / Middleware

High-level

“Application-centric”

Group-level Network-level

Neighborhood-based
Group

Logical Group ][ Database ] [ Macroprogramming ]

Language

nesC/TinyOS Maté/ASVM Abstract Regions EnviroTrack Cougar Regiment

—_— Melete Hood SPIDEY TinyDB Kairos
TinyGALS VMStar SINA —
SOs . . MIiLAN Spatial Programming
CoMOS Impala State-centric Programming DSWare SpatialViews
e —— SensorWare DRN
SNACK _— E—
T2 TML Semantic Streams
Software Sensors

OosM t-kernel
Fiber

Mantis OS

TinyThread

Contiki + Protothreads
Y-Threads

Fig. 3. A taxonomy of programming models for sensor networks.

of the most difficult challenges for sensor network programming. One of the
typical approaches is to provide a set of operations for a group defined by sev-
eral criteria. These operations include data sharing and aggregation so that
programmers can describe collaborative data processing using them. Another
approach is to provide communication abstraction by using a simple addressing
scheme like variable access (e.g., d1@n1 to access data d1 at remote node nl in
Kairos [Gummadi et al. 2005]).

High-level programming models are further divided into two types: group-
level abstraction and network-level abstraction. Group-level abstractions pro-
vide a set of programming primitives to handle a group of nodes as a sin-
gle entity. These define APIs for intragroup communications and thus make
it easier for the programmers to describe collaborative algorithms. Network-
level abstractions, or equivalently macroprogramming, share the approach
with group-level abstractions, but go further by treating the whole network
as a single abstract machine. The sensor database approach, which allows
users to query sensor data by declarative SQL-like languages, falls within this
category.

For classifying programming models into the types described above, we con-
sider the highest level of abstraction they provide to their programmers or up-
per components. This approach of classification is motivated by the observation
that high-level programming models are often proposed, with lower-level com-
ponents serving as a runtime environment that allows them to run on actual
hardware platforms.

Figure 3 shows the entire taxonomy of programming models for sensor net-
works. Node-level programming models are discussed in Section 4. High-level
programming models, specifically group-level abstractions and network-level
abstractions, are discussed in Sections 5 and 6, respectively. In Section 7, we
evaluate each programming model in terms of the requirements for sensor net-
work programming, identified in the previous section.
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(from Gay et al. [2003], modified).

4. NODE-LEVEL PROGRAMMING MODEL

4.1 Operating System/Node-Level Programming Language

TinyOS [Hill et al. 2000] is one of the most widely used operating systems for
wireless sensor networks. TinyOS is written in nesC [Gay et al. 2003], a pro-
gramming language based on C, and is a component-based OS, allowing modu-
lar programming. Interactions between components are realized by command
(to lower level) and event (to higher level). There are two types of components:
module and configuration, where the latter is used to wire other components
together, connecting interfaces used by components to interfaces provided by
others. An application is also described as a configuration.

Figure 4 shows examples of nesC code. The top figure is the specification
of the TimerM module, a part of the TinyOS timer service. The TimerM module
provides StdControl and Timer interfaces and uses the Clock interface. The
bottom figure shows an example of configuration. TimerC configuration is built
by wiring the TimerM and HWClock modules, and provides two interfaces to upper
modules.

nesC has many advantages in programming sensor nodes. Its flexibility al-
lows to tune every parameter for special application needs such as energy-
efficiency. Encapsulation by modules provides a unified interface that frees
programmers from being conscious about whether some functionality is imple-
mented by hardware or software. On the other hand, as the level of abstraction
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is very low, it is often difficult to implement even simple programs. In addition,
rigorously event-based style and exclusion of blocking operations are often the
sources of complexity.

There are roughly three ways to tackle the complexity. The first group of
work uses asynchronous message passing to increase the independence be-
tween each functional component and thus simplifies the development process.
TinyGALS [Cheong et al. 2003] applies the GALS (globally asynchronous, lo-
cally synchronous) model to sensor network programming. It is a hybrid of the
synchronous event-driven model and asynchronous message passing model.
Module in TinyGALS is a language construct that contains multiple TinyOS
components inside. A module works as a constituent of system, which corre-
sponds to configuration in TinyOS. Synchronous method calls are used inside
modules so that the sequentiality of basic components is maintained. Modules
are connected via an asynchronous FIFO queue. SOS [Han et al. 2005] is an-
other operating system that uses message passing, but implements a priority
queue instead of FIFO queue. CoMOS [Han et al. 2006] also uses message
passing, but message handling is preemptive.

The second approach is more software engineering oriented and revises the
way of abstraction either by adding more layers or extending the event model.
SNACK [Greenstein et al. 2004] is a system designed for building a set of
reusable service libraries, thus allowing programmers to make applications
by combining services. Services in SNACK are analogous to configurations in
nesC, but they are parameterizable and thus more reusable, whereas nesC
configurations can only specify connections between the modules. T2 [Levis
et al. 2005b], a new version of TinyOS, follows the same philosophy as SNACK
and provides a new abstraction boundary for application programming. An-
other improvement of T2 over TinyOS is telescoping abstraction. It is a hybrid
of horizontal decomposition (for the lower level to support different kinds of
hardware devices) and vertical decomposition (for the higher level to support
platform-independent functionality), and makes it easier to support new hard-
ware platforms. The Object State Model (OSM) [Kasten and Romer 2005] is
an extension of the event-driven model. The authors claim event-driven pro-
gramming has difficulties due to its static association of events to actions and
implicit handling of program state, resulting in a clumsy programming style
and inefficiency. In OSM, they extend the event paradigm with state and tran-
sitions, making actions a function of both the event and the program state. They
also support parallel composition to make use of concurrency, and hierarchical
composition to allow refinement of a program.

Last, the third approach to deal with the complexity of the event-driven
model is to use thread abstraction. In the operating systems community,
there is a long-standing argument over the event-driven model versus the
thread model.> One major constraint for thread abstraction in sensor network
programming is due to limited hardware resources. Statically allocating
per-thread stack is often too expensive in terms of memory space. In addition,

3For example, see Ousterhout [1996] and von Behren et al. [2003]. Bhatti et al. [2005] has an
extensive discussion on this issue in the context of sensor networks.
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the event-driven model is more suitable for letting the microcontroller sleep
as much as possible, thereby achieving energy-efficiency. On the other hand,
by having blocking execution contexts, thread abstraction often simplifies
the programs significantly. Fiber [Welsh and Mainland 2004] is an early
work in the threading approach. Fiber is a lightweight concurrency model for
TinyOS and allows a single blocking execution context along with TinyOS’s
event-driven concurrency model. Mantis OS [Bhatti et al. 2005] is at the other
end of spectrum: it provides preemptive, time-sliced multithreading on MICA2
motes. TinyThread [McCartney and Sridhar 2006], Protothreads [Dunkels
et al. 2006b], and Y-Threads [Nitta et al. 2006] are in the intermediate level
between Fiber and Mantis OS. TinyThread is a multithread library for TinyOS.
It implements cooperative multithreading, in which an execution context is
yielded explicitly by calling yield() or implicitly by waiting on a blocking I/O
routine. TinyThread has a stack estimation tool for efficient per-thread stack
allocation. Protothreads are a multithreading library for Contiki [Dunkels
et al. 2004], which is an event-based operating system. Protothreads are
similar to TinyThread in that they also adopt the cooperative multithreading.
However, for the sake of efficiency, Protothreads take a stackless approach
and do not store execution contexts. Y-Threads are conceptually similar to
Fiber, but realize preemptive multithreading. They capture applications as a
combination of computation and control behaviors, and have a shared stack
for the nonblocking computations and multiple separate stacks for the control
behaviors that are blocking. The underlying observation is that the control
behaviors require only a small stack space, and they achieve better memory
utilization compared to pure preemptive multithreading.

4.2 Virtual Machine/Middleware

Virtual machines are widely used in high-end servers as well as consumer PCs
for various purposes such as platform independence and isolation. In sensor
network programming, however, the focus is on reprogrammability, that is, the
capability of injecting new codes into each node on site dynamically.

First class of work is interpreter-based virtual machines. Maté [Levis and
Culler 2002] and ASVM [Levis et al. 2005a] are stack-oriented virtual machines
implemented on top of TinyOS. Their idea is to provide an application-specific
virtual machine, which is designed for a particular application domain and
provides the needed flexibility, so that it can support a safe and efficient pro-
gramming environment. The motivation for being application specific is based
on the observation that sensor networks are usually deployed for a certain ap-
plication purpose, and thus do not need to be general. By providing a limited
number of instructions necessary for a specific application, Maté/ASVM can
reduce the size of the assembly code to be transmitted to each node, and thus
reduce the amount of communication. Melete [Yu et al. 2006] extends Maté and
supports multiple concurrent applications. VMStar [Koshy and Pandey 2005] is
another framework for building application-specific virtual machines. VMStar
allows the dynamic update of the system software such as VM itself, as well as
the application code.

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 8, Publication date: March 2008.



8:12 . R. Sugihara and R. K. Gupta

Due to the rising necessity, some operating systems have started to feature
a dynamic reprogramming capability. Deluge [Hui and Culler 2004], a dissem-
ination protocol, with TOSBoot bootloader enables an in situ code update for
TinyOS. Mantis OS [Bhatti et al. 2005], Contiki [Dunkels et al. 2004, 2006a],
and SOS [Han et al. 2005] also support dynamic update in finer resolution such
as module and thread for more efficiency.

The reprogrammability feature is sometimes realized in middleware. Some
examples are Impala [Liu and Martonosi 2003] and SensorWare [Boulis et al.
2003]. Impala is a middleware designed for the ZebraNet project [Juang et al.
2002] and its goal is to enable application modularity, adaptability to dy-
namic environments, and repairability. Its modular design allows easy and
efficient on-the-fly reprogramming via wireless channel. SensorWare supports
Tcl-based control scripts for the language used for reprogramming. Compared
to Maté/ASVM, SensorWare is designed for a richer hardware platform such as
iPAQ. SensorWare also supports multiple concurrent users.

Finally, we note use of virtual machines in sensor networks with different
objectives. Instead of reprogrammability, they provide platform-independent
execution models on which developers can write their programs. Newton et al.
[2005] proposed an intermediate language called TML (Token Machine Lan-
guage), which assumes distributed token machine (DTM) as the execution
model. In the DTM model, each node sends and receives tokens to/from other
nodes and the associated token handler is executed upon receiving a token.
TML provides some basic operators that programmers can use for describing
token handlers. A TML program is compiled into nesC code that is distributed
to and run on each node. By employing the DTM execution model, TML makes
it easier to implement higher-level programming constructs that are semanti-
cally far from low-level programming languages such as nesC. t-kernel [Gu and
Stankovic 2006]* is an operating system kernel focused on improving reliabil-
ity. It provides features such as OS protection and virtual memory, which are
not directly supported by hardware, by code modification (“naturalization”) at
load time. We classify t-kernel as a virtual machine; it is close to this type of
virtual machine in terms of objective and approach.

5. GROUP-LEVEL ABSTRACTION

The basic idea of group-level abstraction is to provide a language construct that
handles multiple nodes collectively and a set of operations on it so that people
can program the behavior of a group. We can classify this approach into the
following two types depending on what types of groups are allowed:

—neighborhood-based groups;
—Ilogical groups.

Neighborhood-based groups are defined by physical closeness, and logical
groups consist of nodes sharing some logical properties such as node type and

4This is separate work from T-Kernel, a TRON-based realtime operating system kernel for embed-
ded systems (http://www.t-engine.org/).
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/* Discover region */
result_t Region.formRegion(<region specific args>, int timeout);
result_t Region.sync(int timeout);

/* Data sharing */

result_t SharedVar.put(sv_key_t key, sv_value_t val);

result_t SharedVar.get(sv_key_t key, addr_t node, sv_value_t *val, int timeout);
result_t SharedVar.sync(int timeout);

/* Reduction */

result_t Reduce.reduceToOne(op-t operator, sv_key_t value, sv_key_t result,
float *yield, int timeout);

result_t Reduce.reduceToAll(op-t operator, sv_key_t value, sv_key_t result,
float *yield, int timeout);

result_t Reduce.sync(int timeout);

Fig. 5. Programming interface of Abstract Regions (from Welsh and Mainland [2004], modified).

sensor reading. By hiding the detail of communication, group-level abstrac-
tions facilitate the collaboration among nodes. For example, neighborhood-
based groups are useful in implementing “localized algorithms” [Estrin et al.
1999], mentioned earlier, in which a sensor node only interacts with its neigh-
borhood sensors.

5.1 Neighborhood-Based Group

A neighborhood-based group is defined locally, consisting of a node and its neigh-
bors. This definition of group captures the nature of local collaboration, which
often appears in sensor network applications. In addition, the notion of neigh-
borhood fits well with the broadcasting nature of wireless communication and
enables efficient communication within the group.

Abstract Regions [Welsh and Mainland 2004] and Hood [Whitehouse et al.
2004] provide similar programming primitives based on neighborhood. The un-
derlying motivation is that the algorithms used in sensor network applica-
tions are often based on local data processing within a neighborhood. Figure 5
shows the programming interface of Abstract Regions. It provides neighbor-
hood discovery, variable sharing via a Linda-like tuple space, and also MPI-like
reduction operations. In Abstract Regions, groups are defined either topologi-
cally (e.g., N-radio hop), geographically (e.g., k-nearest neighbor), or by their
combinations.? Hood defines similar set of operations as Abstract Regions, but
uses a one-hop neighbor as the sole option for group definition. Abstract Re-
gions also provides a way to tune the tradeoff between resource consumption
and accuracy in its runtime component.

Technically speaking, using network topology for group definition (e.g., one-
hop neighbor) has little to do with pure application logics, because they are
usually independent from the underlying network structure that is unknown
at the time of development. It originates from the system’s convenience for ef-
ficiently implementing communication inside groups. Nevertheless, since the

5In Abstract Regions, there are also approximate planar mesh and spanning tree to define a group
for the whole network.
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definition is intuitive, it provides a good compromise between ease of program-
ming and efficiency.

5.2 Logical Group

A logical group is a definition of group according to logical properties. Since a
neighborhood-based group could also be a logical group in this definition, here
we take a narrower definition and introduce group-level abstractions that use
higher-level logical properties than the physical closeness. Examples of such
high-level logical properties include the type of nodes and dynamic input from
the environment. Volatility of membership can be another criteria to differ-
entiate logical groups from neighborhood-based groups. While neighborhood-
based groups are mostly static, logical groups are more dynamic as the
group membership is often determined by dynamic properties such as sensor
input.

EnviroTrack [Abdelzaher et al. 2004] is a programming abstraction specif-
ically for target-tracking applications. One characteristic feature in Enviro-
Track is that the addresses are assigned to physical events in the environment.
A group is defined as the set of sensors that detected the same event. As well as
Abstract Regions and Hood, EnviroTrack provides the data sharing and aggre-
gation facilities. However, as the situation is more dynamic, EnviroTrack has
a sophisticated distributed group management protocol.

Mottola and Picco [2006] proposed the notion of logical neighborhood in their
SPIDEY language. A node is represented as a logical node that has several
exported attributes. These attributes include both static (e.g., node type) and
dynamic properties (e.g., sensor readings). A node can define its logical neigh-
borhood by using a predicate that conditions these attributes. SPIDEY provides
communication APIs within the logical neighborhood and also an efficient rout-
ing mechanism.

5.3 Other Group-Level Abstractions

Liu et al. [2003] proposed a state-centric programming abstraction mainly
to alleviate the complexity in programming collaborative signal and informa-
tion processing (CSIP) applications. They employed the notion of collaboration
group: programmers can specify its scope to define the members and its struc-
ture to define the roles each member plays in the group. They provided ways to
create various generic patterns of groups including both neighborhood-based
group and logical group. Since their focus was more on flexibility, they chose
not to provide a rich set of communication operations as in Abstract Regions
and Hood. However, their framework provides sufficient expressiveness that
allows it to work as a building block for higher-level abstractions, including
other group-level abstractions.

6. NETWORK-LEVEL ABSTRACTION

In network-level abstractions, a sensor network is treated as a whole and is
regarded as a single abstract machine. The term macroprogramming is often
used to mean the same approach, and we will use both network-level abstraction
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SELECT AVG(volume) ,room FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG(volume) > threshold
SAMPLE PERIOD 30s

Fig. 6. Example of SQL-like query in TinyDB (from Madden et al. [2003]). The scenario is to
monitor the occupancy of the conference rooms on the sixth floor of a building by using micro-
phone sensors. The query reports all rooms where the average volume is over a specified threshold.
Updates are delivered every 30 s.

and macroprogramming interchangeably. There are two major approaches in
network-level abstractions. One is database abstraction. Since sensor networks
are often used for collecting sensing data, the database is an intuitive metaphor,
though there are crucial differences that make the “sensor databases” approach
difficult. The other approach is to provide new macroprogramming languages
that have broader coverage of applications than the database approach. The
goal of macroprogramming languages is to realize programming from a macro-
scopic viewpoint that every node and data can be accessed without considering
low-level communications among nodes.

6.1 Database

The database is one of the earliest examples of high-level abstractions for sen-
sor network programming. Cougar [Bonnet et al. 2000] and TinyDB [Madden
et al. 2003] fall within this category. As shown in Figure 6, they allow users to
issue queries in a declarative SQL-like language. To achieve energy-efficiency,
Cougar pushes selection operations to the sensor nodes so that they can reduce
the amount of data to be collected. For the same objective, TinyDB focuses on ac-
quisitional issues: where, when, and how often to sample and deliver the data.
TinyDB also optimizes the routing tree for disseminating a query and collecting
the results. Similarly, SINA [Srisathapornphat et al. 2000] provides a database
interface that users can query by SQL, but also allows more explicit tasking. In
SINA, users can embed scripts written in an imperative language called SQTL
(Sensor Querying and Tasking Language) [Jaikaeo et al. 2000] in an SQL query.
By this hybrid approach, they can perform more complex collaborative tasks
than those SQL can describe.

MiLAN [Heinzelman et al. 2004] provides a data service that features QoS
support. In MiLAN, an application submits a query with a QoS requirement.
QoS is defined by the level of certainty about an attribute, based on the as-
sumption that each sensor can measure some basic attributes with predefined
reliability. In response to a query, MiLAN creates an execution plan, which
specifies the source nodes and the routing tree, such that it satisfies the QoS
requirement while maximizing energy efficiency. DSWare [Li et al. 2003] is an-
other QoS-aware data service specialized for event detection. Users describe
their interests in SQL and register them to DSWare. Similarly to QoS support
in MiLAN, DSWare has a notion of confidence about event detection. Confi-
dence is defined on a compound event, which has multiple atomic events as its
subevents. The presence/absence of these subevents determines the confidence

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 8, Publication date: March 2008.



8:16 . R. Sugihara and R. K. Gupta

let aboveThresh (p,x) = p > threshold
read node =
(read sensor PROXIMITY node,
get location node)
in centroid (afilter aboveThresh
(amap read world))

Fig. 7. Example of a program for tracking application written in Regiment (from Newton and
Welsh [2004]). The program estimates the location of a target by computing the centroid of the
nodes whose proximity sensor measured over a certain threshold value.

of a compound event. DSWare also supports real-time semantics where users
can specify the time constraint about the latency until getting a notification
after detecting an event.

Database abstraction provides a simple and easy-to-use interface. However,
it is suitable only for describing query operations to a sensor network. Although
Cougar and TinyDB extend SQL so that users can express continuous sensing
tasks, they are still not expressive enough to cover all sorts of sensor network
applications, particularly those that require significant amounts of fine-grained
control flow.

6.2 Macroprogramming Language

Database abstraction is well designed, providing an intuitive way to access the
sensor information, but limits the range of applications. Macroprogramming
languages are a complementary approach and are intended to provide more
flexibility. There are two major research topics in this approach. One is to pro-
vide programming languages suitable for describing global behavior. Ideally,
a program that describes global behavior is compiled into node-level binary
code. Another major topic is resource naming. When viewing the whole net-
work as a single entity, specifying a node or a group of nodes is essential for
programming. There should be a sophisticated resource-naming scheme that
encapsulates low-level unreliable infrastructure and realizes other features
that applications require.

6.2.1 Description of Global Behavior. Regiment [Newton and Welsh 2004;
Newton et al. 2007] is a functional language specially designed for macropro-
gramming sensor networks and has a syntax similar to Haskell. Figure 7 is
an example of the Regiment program for a tracking application. One of the
motivations for using a functional language is to hide the direct manipulation
of program states from the programmers. This makes it easier for the com-
piler to extract parallelism, because it can freely decide how and where the
program states are stored. Regiment is capable of expressing groups of nodes
with geographical, logical, and topological relationships. Regiment programs
are compiled into TML [Newton et al. 2005], an intermediate language, and
then to nesC code. The main reason for using TML is the big semantic gap
between Regiment and nesC/TinyOS.

Kairos [Gummadi et al. 2005] is another programming abstraction that al-
lows macroprogramming. Unlike Regiment, Kairos is language independent so
that it can be implemented as an extension to existing programming languages.
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(a) spatialview svl

= Camera @ CampusB 7 100;
(b) Rectangle CampusB

= new Rectangle(...);
(¢) visiteach x : svi {

Picture p=x.getPicture();

}

Fig. 8. SpatialViews language (from Ni et al. [2005], modified). (a) Definition of a spatialview.
Type of sensor, space, and space granularity is specified. (b) Definition of space. (c) Iterators can be
applied to a spatialview.

Another difference is that Kairos focuses on providing a small set of constructs,
containing only abstractions for nodes, one-hop neighbors, and remote data ac-
cess, whereas Regiment defines many more data types and operations. Remote
data access, which is realized simply by “var@node,” provides shared memory
abstraction across nodes. To reduce communication overhead, Kairos employs
a weak consistency model called eventual consistency.

6.2.2 Resource Naming. Spatial Programming [Borcea et al. 2004] is a
space-aware programming model that allows resources to be referenced by
physical location and other properties. For example, it allows notation like
“Hilll:camera[0]” for addressing a camera node on “Hill1l,” which is a predefined
spatial region. Spatial programming realizes transparent access to network re-
sources in this way using Smart Messages, which are similar to mobile agents.
A Smart Message consists of code, data, and execution state and migrates to
nodes of interest and then executes the computation.

Similarly, SpatialViews [Ni et al. 2005] is a high-level language that allows
specification of a “spatialview” with the nodes having properties of interest. A
spatialview is a first-class abstraction that is defined to be a network of nodes
explicitly named by the services and locations. Each spatialview is instantiated
dynamically across time and thus realizes dynamic binding, whereas Spatial
Programming only uses static binding. Figure 8 shows an example of Spa-
tialViews program. In this way, programmers can define a subset of sensors as
a group and perform operations on it.

Intanagonwiwat et al. [2005] proposed a declarative resource naming (DRN)
scheme for macroprogramming. It is more flexible compared to both Spatial
Programming and SpatialViews. In DRN, a set of resources can be specified
not only in an imperative way but also in a declarative way by indicating de-
sired properties by Boolean expressions. DRN supports both dynamic and static
resource binding, and allows sequential and parallel access to the specified re-
source for better handling of concurrency.

6.3 Other Network-Level Abstractions

Semantic Streams [Whitehouse et al. 2006] is a framework that allows declar-
ative queries over semantic interpretations of sensor data. Semantic interpre-
tation is made possible by composing inference units, which infer semantic
information (e.g., “detect a vehicle”) from incoming events (e.g., “magnetometer
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reading exceeded the threshold”). Users can issue queries directly over seman-
tic interpretations, instead of querying for the sensor data and interpreting
the result by themselves. The Prolog-based implementation enables automatic
composition of sensors and inference units.

Software Sensor [Lin 2004] is another programming model that originates
from a software engineering perspective. The basic idea is to provide an ab-
straction of each sensor hardware by a Software Sensor, which is a service
in the context of service-oriented architecture. By composing multiple Soft-
ware Sensors, programmers can define a variety of large-scale collaborations
in a flexible way. The Software Sensor model is supported by their Sensor-
Jini middleware, which is implemented on top of Jini, a Java-based network
architecture designed for distributed systems. Sensordini provides a lookup
service so that an application can find and bind to the Software Sensors of
interest.

7. EVALUATION

Figure 9 summarizes how each of the programming models addresses the re-
quirements we have identified earlier. For the rest of the section, we highlight
important findings, focusing on the typical strategies to satisfy each require-
ment. Note that the requirements are not independent to each other, and thus a
single feature of programming models can work in favor of (or against) multiple
requirements. For instance, reducing the amount of communication improves
energy-efficiency and also scalability, but may reduce failure-resilience.

7.1 Energy-Efficiency

These are three primary mechanisms to improve energy-efficiency through pro-
gramming:

(1) efficient runtime mechanisms: caching, routing, in-network summariza-
tion;

(2) control tradeoff with “quality”;

(3) (in the extended definition) efficient code update.

Energy-efficiency is often realized by the runtime mechanisms that accom-
pany the programming models. Caching reduces the communication and thus
helps save the energy. Caching is employed in a number of programming mod-
els including Abstract Regions [Welsh and Mainland 2004], Hood [Whitehouse
et al. 2004], EnviroTrack [Abdelzaher et al. 2004], and Kairos [Gummadi et al.
2005] on data sharing. For sharing data within logical groups, SPIDEY [Mottola
and Picco 2006] has an efficient routing mechanism. In-network summarization
is intensively used in most database approaches.

A complementary approach for energy-efficiency is to let programmers and
users control the tradeoff between efficiency and various kinds of quality. An
example of this tradeoff is between the data sampling rate and the amount
of communication: lower sampling rate induces larger latency from event oc-
currence and thus lower quality, but requires less amount of communica-
tion. Abstract Region takes this approach by exposing the low-level control
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Fig. 9. Evaluation of programming models for sensor networks.
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knobs such as “number of retransmission.” As a higher-level approach, BBQ
[Deshpande et al. 2004], an extension of TinyDB [Madden et al. 2003], al-
lows query with quality specification and replies with an answer satisfying
the specification. Semantic Streams [Whitehouse et al. 2006] allows an energy-
constrained query as well, which restricts the amount of energy consumed for
resolving the query. A similar idea is implemented also in TinyDB as an acqui-
sitional query processor, which adaptively changes the sampling rate so that
the battery lasts until the specified lifetime.

When we extend the scope of energy-efficiency to the whole lifecycle of sensor
networks, code update in the VM-based approach needs to be done efficiently.
Maté [Levis and Culler 2002] and Melete [Yu et al. 2006] realize this by using
a compact intermediate code. Reprogramming per module is another way to
achieve efficiency by eliminating duplicate components to be transmitted over
the network. It is implemented in VMStar [Koshy and Pandey 2005], Impala
[Liu and Martonosi 2003], Mantis OS [Bhatti et al. 2005], and SOS [Han et al.
2005].

7.2 Scalability

The primary approach to achieving scalability is to reduce data by in-network
summarization. Especially in a data collection-type application, a key to scala-
bility is to reduce the data that is sent all the way to the center. Otherwise, even
if the amount of data is small at the edge of the network, it quickly fills up the
scarce bandwidth as it approaches the center because of the aggregation over
nodes. Thus reducing the communication is beneficial both in terms of energy
and in terms of scalability.

This issue of scalability has been recognized since the early days. Cougar
[Bonnet et al. 2000], one of the earliest works in the database approach, pushes
a query to the nodes so that selections are performed at the edge and thus the
data transmission is reduced. Other database approaches including TinyDB
[Madden et al. 2003] also have a similar mechanism.

Other than runtime support, explicitly writing a program for reducing data
within the network helps increasing scalability. The MPI-like aggregation op-
eration equipped in group-level abstractions and some macroprogramming lan-
guages is a good tool for this purpose.

7.3 Failure-Resilience

There are four measures taken in programming models to improve failure-
resilience:

(1) redundancy: addressing by roles;
(2) caching;
(38) dynamic binding;
(4) incorporate “failure” in quality/confidence assessment.
Redundancy is a standard way to improve the reliability of a function, and

addressing by roles instead of node names fits well with redundant deployment.
When duplicating a function to multiple nodes, it can be awkward to address
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these nodes by their unique names. Therefore the idea is to assign a role to the
group of nodes and use the name of the role. This allows a flexible deployment
because it does not matter what degree of redundancy is chosen. State-centric
programming [Liu et al. 2003] has this mechanism.

Caching is effective for energy-efficiency, as we have already discussed, but
also for failure-resilience, as it alleviates communication failures by substitut-
ing the data with old cached data. However, in this case, the old data may or
may not be useful, depending on the application’s purpose.

Dynamic binding is useful to cope with node failures. Unlike statically bind-
ing to nodes, it enumerates the available set of nodes when we need to access
them. SpatialViews [Ni et al. 2005] and DRN [Intanagonwiwat et al. 2005] have
dynamic binding mechanisms.

A unique approach to deal with failures is to view them in a more quantitative
way. In many application scenarios, the availability of each node and the data
affect the quality of monitoring. For instance, the error of location estimation is
likely to be smaller when there are more proximity sensor nodes available. In
some QoS-aware programming models such as MiLAN [Heinzelman et al. 2004]
and DSWare [Li et al. 2003], failures are treated as quality degradation or added
uncertainty. Based on the quantitative evaluations, we can take appropriate
actions to alleviate the failures.

7.4 Collaboration

Collaboration is a unique and important requirement in sensor networks. As
represented by target localization by triangulation/trilateration, there are cer-
tain types of information that are not determined by a single sensor but only
by a multiple of them. There are three primary mechanisms in programming
models to support collaboration among nodes:

(1) group definition/operations for group;
(2) declarative query;
(3) resources as variables.

Group definition and operations for group make it easier to describe collab-
orative behavior among nodes. They allow programmers to define a group by
multiple criteria. They also enable data sharing within a group either explicitly
or implicitly as in shared address space. Group-level abstractions are designed
primarily for facilitating data sharing and some macroprogramming languages
such as Spatial Programming [Borcea et al. 2004], SpatialViews [Ni et al. 2005],
and DRN [Intanagonwiwat et al. 2005] also have this feature. Other than data
sharing, the operations on group include enumeration using iterator and MPI-
like reduction.

Declarative query in the database approach is a different way to realize
collaboration. Instead of explicitly defining a group and operations on it, users
only describe the data they need. The corresponding execution plan is devised
by each query processor’s runtime mechanism. The execution plan may employ
a localized algorithm when possible, but it is not under control of either users or
programmers, with a few exceptions like SINA [Srisathapornphat et al. 20001,
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in which users can embed imperative descriptions of collaborative tasks into
an SQL-like query.

Last, some macroprogramming languages enable programmers to describe
a resource access as a variable access. A collaboration among multiple nodes
is more easily programmed by manipulations of multiple variables. Kairos
[Gummadi et al. 2005] implements this in a form of “data@node.” Spatial
Programming, SpatialViews, and DRN combine this approach with group
definition.

7.5 Other Evaluation Metrics

As discussed in the end of Section 2, sensor network applications have various
other requirements and the four evaluation criteria discussed above are by no
means complete. Among the criteria not discussed so far, ease of programming
is a very important one that is most directly related to programming models.
Clearly there is a tradeoff between ease of programming and flexibility. In gen-
eral, low-level programming languages are more flexible but bring more com-
plexity into programming, while high-level programming models accommodate
more intuitive programming styles but are often difficult or unable to fine-tune
the performance. In sensor network programming, a similar argument holds.
Node-level programming languages such as nesC correspond to the low level
and network-level programming models such as TinyDB correspond to the high
level.

One crude way to evaluate ease of programming is by comparing the lines of
code for the same program in different programming languages, based on the
assumption that shorter code implies less programming effort required. Let’s
take an example of a target tracking application that calculates the centroid
of nodes that detected the target. The lines of code are 369 in nesC, 134 in Ab-
stract Regions with Fiber (both figures from Welsh and Mainland [2004]) and
six in Regiment [Newton and Welsh 2004]. Of course, this is just an example.
It is difficult to evaluate ease of programming in general since the criteria of
easiness is inherently subjective and the complexity of code largely depends on
each application. If an application requires very precise control, node-level pro-
gramming languages would be the only possible choice. On the other hand, if an
application is simple data collection and programmers prefer fast prototyping
rather than sophisticated, energy-efficient code, database or other network-
level programming models would fit the best.

8. FUTURE RESEARCH DIRECTIONS

In this section, we discuss possible future research directions in programming
models for sensor networks. Specifically, we identify the problems that will be
necessary and important in this area from the perspective of applications and
systems, and discuss their implications for programming models.

8.1 Heterogeneity

Recent trends in sensor network applications exhibit more heterogeneity in
hardware platform than early mote-based systems. Some of the deployed

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 8, Publication date: March 2008.



Programming Models for Sensor Networks: A Survey . 8:23

systems [Martinez et al. 2004; Whitehouse et al. 2006] include multiple dif-
ferent types of sensors, which is a basic form of heterogeneity. Hierarchical
architecture is also often the case, in which the upper-tier devices are more
computationally powerful than the lower ones and usually with more energy
and network resources. These upper-tier devices may even have a continuous
power supply and wired network, and it is shown that a small number of these
powerful nodes have a significant impact on performance as a whole [Yarvis
et al. 2005]. Sensor-actuator networks are an emerging area and another ma-
jor example of heterogeneous setting. Many of the traditional problem settings
in sensor networks do not apply to these cases. From the viewpoint of program-
ming, how to use heterogeneous devices effectively and how to program the
whole system including these devices remain nontrivial problems.

Some recent work addresses the heterogeneity. Tenet [Gnawali et al. 2006]
is an architecture for tiered embedded networks. Tenet explicitly assumes a
tiered network that consists of 32-bit platform nodes in the upper tier and
motes in the lower tier. Further, there is a clear separation of work between
two tiers: the motes only perform simple tasks whereas other complex tasks
such as multisensor fusion only happen at the upper-tier nodes. The upper-
tier nodes host the applications and assign tasks to the lower-tier motes. Tenet
simplifies application development by imposing these constraints on the net-
work architecture. CoMOS [Han et al. 2006] is an operating system designed
for mPlatform [Lymberopoulos et al. 2007], which is a sensornet platform that
has multiple heterogeneous processors.

As well as the physical heterogeneity discussed so far, it is often the case that
each sensor node needs to behave differently to achieve the coordinated action
specified by the applications. This can be referred to as logical heterogeneity.
One common example is clustering, where each node sends information to the
clusterhead assigned to each cluster. The clusterhead summarizes the data to
reduce the communication to the base station. One possible approach for pro-
gramming such logically heterogeneous nodes is to decompose the whole process
into role assignment and programming. Liu et al. [2003] proposed the notion
of role, but mainly as an indirection with which node failure can be accom-
modated. Frank and Romer [2005] proposed a generic role assignment scheme
where roles and rules for their assignment are specified by using a declarative
configuration language. They devised an efficient algorithm for assigning roles
to sensor nodes in a manner such that the configuration specified by users is
satisfied. Their scheme is focused on assigning roles to nodes and not on the
subsequent programming part. A comprehensive framework that incorporates
both of them would be beneficial.

8.2 Strict QoS Support

Quality of service (QoS) is prevalent in sensor networks due to the fact that it
is often too inefficient to collect high-quality data. There is a tradeoff between
energy and various kinds of quality such as accuracy, latency, and error rates.
People often need to balance them so that they can efficiently get the data with
sufficient quality.
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QoS is sometimes considered “nice-to-have” in other computer systems, but
is often an integral element in sensor network applications. This is because
the ultimate objective of using sensor networks is not the sensing per se,
but taking actions that are either implicitly or explicitly determined accord-
ing to the result of sensing. It can hardly be valuable if the information ob-
tained from sensor networks has low quality insufficient for the subsequent
actions. For example, when detecting a wildfire, too many false-positive and
false-negative errors would ruin the application. Also, when detecting and
tracking seismic waves to issue an emergency alert, too large a latency would
make the application useless. In many sensor network applications, includ-
ing these examples, various types of QoS such as accuracy and latency are
essential.

Some programming models have supports for QoS. Abstract Regions [Welsh
and Mainland 2004 ] exposes some low-level tuning knobs that affect the quality
of results, so that programmers can indirectly control the tradeoff between
quality and efficiency. However, this way of QoS control does not directly help
users obtain the data that satisfies the designated level of quality, though it is
probably useful for evaluating the post facto quality. MiLAN [Heinzelman et al.
2004], DSWare [Li et al. 2003], and Semantic Streams [Whitehouse et al. 2006]
have explicit QoS support, but their definitions are rather subjective and/or
qualitative. For example, in MiLAN, QoS is determined by reliability between
0.0 and 1.0. Each sensor has a predefined reliability of measuring a certain
attribute. For example, a blood pressure sensor has reliability of less than 1.0
on heart rate, since it can only indirectly measure the heart rate. However, it
is difficult to determine reasonable reliability values.

When we consider the importance of QoS in the context of sensor net-
works, it is necessary to have support for QoS in a more strict way. In other
words, users should be able to take total control over the quality-efficiency
tradeoff at the application level and also to know the quality of data they
collect. Programming models should export such interfaces to users as well
as have an underlying runtime mechanism that realizes precise control of
quality.

There is some work that allows users to control the accuracy and exploit the
quality-efficiency tradeoff. BBQ [Deshpande et al. 2004] is a model-based query
processor that can be used along with TinyDB. It gives a statistical guarantee
about the accuracy of the data described using confidence levels, but based on
the assumption that the sensor data follows a multivariate Gaussian distri-
bution. Compressive Wireless Sensing [Bajwa et al. 2006] is an efficient field
estimation technique that guarantees the accuracy of data. It requires no prior
knowledge about data properties but assumes Gaussian noise. Sugihara and
Chien [2005, 2006] have proposed an energy-efficient algorithm to satisfy a
user-specified accuracy requirement in the data-gathering application. This al-
gorithm does not need any assumption on the data and noise, and works more
efficiently when data has stronger spatial correlation. This strong guarantee
is appropriate for detecting the outliers, which is often important in sensor
network applications such as wildfire detection.
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9. SUMMARY AND CONCLUSIONS

Sensor networks’ capabilities open exciting possibilities for their applications.
These applications often push the conceptual limits to traditional program-
ming environments, because of the physical constraints in which they operate.
This article takes a systematic look at these growing requirements on the pro-
gramming models for sensor networks. While this survey extensively covers
the most prominent programming approaches for sensor networks, it is by no
means complete. Indeed, to limit our scope, we defined a class of nodes (scoped
as W-, mW-, and uW-order nodes) and focused our attention on mW-order nodes
that seek to balance computing, communications, and sensing capabilities. We
built a simple but useful taxonomy that classifies the programming models into
three classes based on their levels of abstraction. We evaluated each of these
programming models in terms of the requirements imposed by the application.

While this article seeks to provide a framework to reason about the evolving
programming models for sensor network applications, we have left the issue of
suitable programming language(s) unaddressed. Clearly, programming mod-
els have an influence upon the choice or design of a suitable programming
languages, while shifts in programming languages are rather infrequent and,
more importantly, not often predictable. These are often driven by pragmatic
issues such as availability of diverse array of programming language tools, de-
buggers, libraries, etc. Based on our understanding of the sensor network ap-
plications programming, dominant among these is the need to keep application
logic separate and independent of the myriad application-level constraints that
a particular platform may impose. This largely reflects the tradeoff between
programming ease and implementation efficiency that several programming
models, discussed in this article, have made.
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