Contiki: A Lightweight and Flexible Operating
System for Tiny Networked Sensors

Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded
Systems

Contiki
The Open Source OS for the Internet of Things I I l ly S

SensorWare

Nemesis Exokernel

Contiki

Open source operating system for the Internet of
Things

Contiki

Event Driven Kernel

Requires State Machines

Problems with Long Running Computations
Preemptive Multithreading on Top of Event
Driven Kernel

Implemented Using Protothreads
Loadable Programs, Services

Core vs Programs
Power Save Mode

Uses Event Queue

Contiki Operating Node Management
System =
> S
g 2 8
© =
< ||« || = = s 2 £
5 5 g 5 Z 5 S
= = = (=] -9 O
8 8 8 5 2 5 5
-2 s s £ = B 2
22| = 3 3 3 C
Contiki Core
I ulP | | Loader | ProtoThreads |
Driver
| Radio I | CPU | | Sensors | | Oscillator | lers
Hardware
h 4 A h 4 N A
| Ragio || cPU || sensors || Oscillator || cmers |

ROM

Loaded program

SN

Communication service

Language run-time

System Partitioning Overview

RAM

O SR R AR SO SO

Program loader

Loaded program

A

A AL AR o

Communication service

Kernel

Kernel

Service Overview

Kernel

Application process

Service layer

Service interface

Service
interface
Function 1();7—| stub

P

Version number

Service process

Function 1 ptr

Function 2 ptr

/

Function 2()f

Function 3();

Function 3 ptr

Function 1 implementation

Function 3 implementation

Function 2 implementation

Contiki RAM Allocation

Module Code size | Code size RAM
(AVR) | (MSP430) usage

10 +

Kernel 1044 810 +4e + 2p
Service layer 128 110 0
Program loader - 658 8
Multi-threading 678 582 8+ s
Timer library 90 60 0
Replicator stub 182 98 4
Replicator 1752 1558 200
230 + 4e +

Total 3874 3876 +2p+s

Process Count (p) | Event Queue Size (e) | Thread Stack Size (s)

Contiki MSP430 Compiled

Replicator App
40.2%

Replicator Stub
2.5%

Timer Library
1.5%

810 (20.9%)

582 (15.0%)

Kernel

20.9%

Service Layer

2.8%

Program Loader

17.0%
Multi-threading

15.0%

Protothreads

Simplifying Event-Driven Programming of
Memory-Constrained Embedded Systems

Protothreads

Simplifies Implementation of Control-Flow State Machines
Allows Sequential Execution Without the Overhead of Allocating Multiple Stacks
Evaluation

State Count, Transition Count, Lines of Code of Reimplemented Functions

Events, Threads

protothreads

Stack size

tothreads.

Code Complexity Reduction and Overhead
States, | States, || Transitions, | Transitions, Lines of Lines of | Reduction,
Program before after before after || code, before | code, after | percentage
XNP 25 - 20 - 222 152 32%
TinyDB 23 - 24 - 374 285 24%
Mantis CC1000 driver 15 - 19 - 164 127 23%
SOS CC1000 driver 26 9 32 14 413 348 16%
Contiki TR1001 driver 12 3 32 3 152 77 49%
ulP SMTP client 10 - 10 - 223 122 45%
Contiki code propagation 6 4 11 3 204 144 29%
Table 1. The number of explicit states, explicit state transitions, and lines of code before and after rewriting with
protothreads. State | Proto-
Code size, | Code size, machine | thread | Thread
before after Contiki TR1001 driver 1 2 18
Program (bytes) (bytes) | Increase Contiki code propagation 1 2 34
XNP 031 1051 13% Table 3. Memory overhead in bytes for the Contiki
TinyDB DBBufferC 2361 2663 13% TR1001 driver and the Contiki code propagation on
Mantis CC1000 994 1170 18% the MSP430, implemented with a state machine, a pro-
SOS CC1000 1912 2165 13% tothread, and a thread.
Contiki TR1001 823 836 2% State | Proto- Y1eld1ng
ulP SMTP 1106 1901 2% machine | thread | protothread
Contiki code prop. 1848 1.4.26 . -23% MSP430 9 12 7
Table 2. Code size before and after rewriting with pro- AVR 23 34 45

Table 4. Machine code instructions overhead for a state
machine, a protothread, and a yielding protothread.

