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ABSTRACT
As the number of Internet of Things (IoT) devices continues to
increase, energy-harvesting (EH) devices eliminate the need to re-
place batteries or find outlets for sensors in indoor environments.
This comes at a cost, however, as these energy-harvesting devices
introduce new failure modes not present in traditional IoT devices:
extended periods of no harvestable energy cause them to go dor-
mant, their often simple wireless protocols are unreliable, and their
limited energy reserves prohibit many diagnostic features. While
energy-harvesting sensors promise easy-to-setup and maintenance-
free deployments, their limitations hinder robust, long-term data
collection.

To continuously monitor and maintain a network of energy-
harvesting devices in buildings, we propose the EH-HouseKeeper.
EH-HouseKeeper is a data-driven system that monitors EH device
compliance and predicts healthy signal zones in a building based
on the existing gateway location(s) and building profile for easier
device maintenance. EH-HouseKeeper does this by first filtering
excess event-triggered data points and applying representation
learning on building features that describe the path between the
gateways and the device.

We assessed EH-HouseKeeper by deploying 125 energy-harvesting
sensors of varying types in a 17,000 square foot research infras-
tructure, randomly masking a quarter of the sensors as the test set
for validation. The results of our 6-month data-collection period
demonstrate an average greater than 80% accuracy in predicting
the health status of the subset. Our results validate techniques for
assessing sensor health status across device types, for inferring
gateway status, and approaches to assist in identifying between
gateway, transmission, and sensor faults.
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1 INTRODUCTION
As buildings strive to be not just green but also healthy [1], so too
increases the need for indoor sensing of environmental conditions
and occupant activity. Studies focusing on energy consumption and
occupant comfort, performance, and well-being have demonstrated
that continuous environmental sensing can aid building automation
systems in adjusting the environmental settings to suit the needs
of users [2–6]. Since the needs of occupants are complex and multi-
faceted, there is increasing need for richer and more comprehensive
sensors to provide multiple modalities of information about the
user, and for this data to be accurate and consistent.

Increasing the number of sensorswhile insuring reliability presents
competing challenges. Increasing the density and quantity of sen-
sors suggests they should be smaller, cheaper, and easier to deploy.
But ensuring reliable data suggests that devices should be sophisti-
cated and hard-wired. The low power embedded sensing commu-
nity has largely focused on the first set of challenges, namely de-
veloping small, wireless sensors capable of instrumenting existing
buildings. As devices continue to reduce in size, they have started to
swap larger batteries for smaller energy-harvesting power supplies
[7]. Not only can harvesting out-perform batteries when devices
are smaller than a sugar cube [8], energy-harvesting increases the
range of location for sensing versus wall-powered devices, and
eliminates the periodic battery swaps needed for battery-powered
devices. These traits make them attractive for dense but aestheti-
cally pleasing retrofits in existing buildings.
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As energy-harvesting devices become more accessible [9], and
as such more used in buildings [10, 11], the set of challenges re-
lated to reliability and robustness become more pressing. While a
small, “stick-on”, and photovoltaic-powered sensor [12] is easy to
deploy and quickly generates useful data, these types of sensors
have three characteristics that are significant regressions from the
mains-powered and BACNET capable sensors commonly found in
buildings. First, they are dependent on the availability of harvestable
energy. If their energy source disappears, for example a room is dark
for an extended period of time, they will enter a hibernating state
and stop transmitting data. Second, to enable low-energy operation,
they typically use simple, unreliable wireless protocols. This means
data may not be received even if the sensor successfully samples
and sends its data. Third, intermittent energy availability and low-
cost hardware can result in less consistent operation. For example,
the sensor may have poor timekeeping and not sample at precise
intervals. Each of these hinders the reliability of the overall sensing
deployment, but together they present a significant challenge for
long-term monitoring, and worse, they all tend to manifest with
the same symptom: no data packets are received from the sensors.

To realize the upside of ubiquitous energy-harvesting sensors
while managing the uncertainties they present, we propose a com-
prehensive monitoring system specifically for networks of energy-
harvesting sensors and the unique challenges they present. Our sys-
tem, EH-HouseKeeper , is a diagnostic system for energy-harvesting
sensors that identifies faulty devices that require manual inter-
vention, and supports planning for more effective future device
placements to increase reliability.

To enable the monitoring, EH-HouseKeeper collects data from
every energy-harvesting sensor and automatically creates a unique
data-driven profile of expected behavior for each sensor. This is
necessary because devices can varywidely. First, some devices trans-
mit periodic readings, others only respond to events, and some are
event-based but also transmit periodically if no event has occurred
recently. Second, devices experience different harvesting conditions
and will have differing amounts of available energy. Third, devices
experience different RF environments and will successfully deliver
packets at different rates. And fourth, slight differences in sensor
hardware will cause otherwise identical sensors to behave slightly
differently. By using the device’s actual behavior EH-HouseKeeper
can compensate for these variabilities.

With the profile created, EH-HouseKeeper then provides a health
score for each sensor based on how well the sensor is performing
with respect to its expected behavior. This health score is then used
to identify sensors that have failed and need to be either repaired
or replaced, and not just devices that have been unable to harvest
or have had a few lost packets.

Because EH-HouseKeeper has profiles of devices in the sensing
deployment with a range of health scores, EH-HouseKeeper can
also be used to predict the health score of future energy-harvesting
devices installed in different locations in the same environment. EH-
HouseKeeper uses a predictive model to estimate where sensors will
perform well in the future. This can guide deployment managers on
where to place devices to optimize performance, or on what level
of redundancy or overprovisioning is required to obtain a certain
level of sensing performance.

To demonstrate the efficacy of EH-HouseKeeper , we test it us-
ing an in-building testbed with more than one hundred energy-
harvesting sensors of various operating modes and sensing modali-
ties. Due to the size of the testbed, there are several gateway devices
distributed throughout the space that collect the wireless packets
from the sensors, and each sensor may transmit to one or more
gateways. EH-HouseKeeper must consider this gateway deployment
as well, and must account for gateway failures when assigning
health scores to individual sensors.

We run EH-HouseKeeper during a six month study and observe
its performance. We find that:

• Significant data loss can occur even when both gateway and
the EH sensor are working correctly.

• It is possible to calculate a comparable signal health score
for a mixed periodic and event-triggered sensor using the
device’s Largest Heartbeat Interval (LHI).

• It is possible to automatically and accurately predict data
packet loss due to signal attenuation given the building plan.

• The prediction method can accommodate a variety of dif-
ferent device types with different heartbeat intervals and
event-trigger conditions.

• The average prediction accuracy for healthy signal zones is
greater than 80% across all investigated device types.

This paper is thus organized as follows: Section 2 describes dif-
ferent modes of fault detection and the specifics of the radio signal
attenuation literature. The methodology section introduces the lab
space where we conducted our study, the modifications we made
to previously applied methods to monitor data transmissions, and
how and why we applied feature representation learning on our
data. The feature preparation section describes specifically how we
extracted the gateway status and device-to-gateway path character-
istics from our database to use in our machine learning algorithm.
The experiment and data preparation section details our six month
study, describing the columns of our published dataset. The re-
sults section details the validation of our method, demonstrating
an above 80% accuracy in prediction future signal status across all
device types. The conclusion sections summarize our findings, ex-
panding on our assumptions and lessons learned during our sensor
deployment. Finally, in limitations and future works we provide
a description of parameters we did not account for, as well as our
future directions.

2 RELATEDWORK
Because of its lower cost during upfront installation and better
scalability of maintenance compared to battery and mains-powered
devices [13], an energy-harvesing (EH) sensor based architecture
was proposed as an ideal infrastructure for building monitoring and
event detection [14]. EH-HouseKeeper is built on top of this archi-
tecture, exploring new challenges on dependability for a network
of EH sensors.

Laprie provides a framework that we adap for describing depend-
able computing, including a nomenclature to help distinguishing
between fault, error, and failure [15]. Kavulya et al. extends on this
nomenclature and describes different diagnosis techniques, limi-
tations, and examples [16]. Notably, she explains how rule-based
techniques are human-interpretable and extensible but difficult to
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maintain at scale; statistical techniques require little expert knowl-
edge but might not distinguish legitimate changes in behavior; and
machine-learning techniques automatically learn profiles of system
behavior but can suffer from the curse of dimensionality when the
feature set is too large.

To further analyze the reliability of our sensors, we explored
works that modeled the effects of radio signal attenuation in an
indoor environment [17–20]. The literature points out a clear re-
lationship between radio signals and indoor factors such as dis-
tance, number of walls, wall-depth, and wall material. However,
the studies were mostly conducted in a static setting and for a
short time-period. This makes it difficult to adopt the findings to a
naturalistic setting, where the movement of people and furniture
could add noise into the system. The difficulty is further increased
when the status of the receivers are variable. Thus, we designed
EH-HouseKeeper so that it can detect receiver status changes and
account for them for future predictions.

We found a longitudinal study of radio signal attenuation for an
experiment recording moisture content in an outdoor environment
using battery-powered devices [21]. The study demonstrates a clear
relationship between the modeled signal attenuation and reduction
in periodic device transmission probability via silent rates. How-
ever, the devices used in the study are outdoor periodic sensors
transmitting every 10 minutes while the sensors used in our study
are a mixed event-triggered and periodic sensor. Additionally, the
experiment considers a scenario with only one receiving antenna.
Therefore, we propose a slight modification to the silent rate (signal
health score) to account for the hybrid sampling of our sensors.
Furthermore, we build on top of this signal health score to model
data loss in a multiple receiver scenario in an indoor setting.

3 METHODOLOGY
In order to investigate the feasibility to model data loss through
signal attenuation and extend the prediction to similar building
spaces, the methodology section is divided into subsections of se-
quential order. Section 3.1 describes the geometry of our testbed,
documenting the location and related specification of each of the
deployed sensors. Then, because our study deals with multiple di-
visions of time, section 3.2 defines the different divisions of time
we use, and details when and what gateways were installed on
the timeline. In section 3.3, we build upon the defined time defi-
nitions to derive a signal health score calculation that resists bias
caused by event-triggered sensing. Section 3.4 provides background
information on how signal attenuation is modeled for an indoor
environment, which is demonstrated to result in measurable data
packet loss [21], which we can now detect using the derived sig-
nal health score. Lastly, section 3.5 describe the details of how we
use feature-representation learning to predict future healthy signal
locations for the different aforementioned spatial and temporal
arrangements.

3.1 Testbed Overview
The testbed is embedded within a laboratory and office space com-
plex of approximately 17,000 square feet at a university and includes
occupant-based wearables, interactive mobile robots, and compre-
hensive environmental sensors. The testbed is designed to support

research on occupant behavior and new occupant-focused building
control techniques through the capture of data associated with sev-
eral dimensions of variability in human-building interactions.While
more than 250 different types sensors (wired, battery-powered, and
EH) have been deployed in the space to date, only the EH sensors
with location information are considered in this paper. The testbed
is supported by a generic gateway platform in a one-hop network
that stores the received data in a cloud-hosted time-series data-
base. Figure 1 documents the gateway location, device location, and
relevant device specifications. The gray circles drawn around the
gateways mark a 25 meter radius.

3.2 Time Definitions
Because there are three different subdivisions of time used in this
paper, we will clarify them here, from longest to shortest:

• Time range, wherewe describe the encompassing datetimes
for a specific gateway configuration. In our study this is
a variable, and further described in Table 1. For example,
during time range 𝑇0, only one gateway was installed.

• Time period, where we describe the division within a time
range, used for signal health calculations. In our study this
is a constant set to 24 hours.

• Time frame, where we describe the subdivisions within
a time period. In our case we use a constant equal to the
device’s corresponding Largest Heartbeat Interval (LHI), as
described in figure 1. For example, the time frame used for
light level sensor health score calculations is a constant equal
to 30 minutes.

Table 1 details the divisions of time as well as which gateways were
on during which time range. After 𝑇2, the space had close to zero
occupants due to COVID-19 restrictions.

Table 1: Time ranges and gateways configuration

Name Start and end Date Gateways online

T0 [2020-01-01 , 2020-02-25] 𝐺1 ={GW2}
T1 [2020-02-26 , 2020-03-18] 𝐺3 = {GW1,GW2,GW4}
T2 [2020-03-19 , 2020-04-28] 𝐺4 = {GW1,GW2,GW3,GW4}
T3 [2020-04-29 , 2020-07-01] 𝐺4 = {GW1,GW2,GW3,GW4}

3.3 Calculating Device Signal Health Scores
To account for variable heartbeat intervals when doing health score
calculations, we elect to use a device’s Largest Heartbeat Interval
(LHI), the largest interval of time after which a data point is ex-
pected. For instance, for the EnOcean Light Level sensor, which
heartbeats randomly between 20 to 30 minutes, we elect to use 30
minutes. We use the heartbeat interval as defined by each device’s
corresponding datasheet as their baseline. For our study, we did not
customize any configuration on our devices to sample at different
intervals.

To calculate whether or not a periodic sensor is transmitting
correctly for a time period, our basic approach is to divide the total
number of received data points by the total number of expected
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Device Prefix Units Transmission Radius Operation Time Largest Heartbeat Interval

Swarm Gateway [22] GW 4 N/A N/A None
EnOcean Light Level Sensor ELLSU-W-EO LL 40 25 meters 80 hours 30 minutes
Pressac Mini Temp Humidity Sensor (Discontinued) TH 37 30 meters 4 days 15 minutes
EnOcean Wireless Door/Window Sensor ExT-MDCCP DS 27 20 meters 5 days 25 minutes
Echoflex Dual Tech Ceiling Mount Sensor MOS-DT DTMS 17 24 meters 7 days 100 seconds
Pressac Wireless CO2 60.CO2 SLR TMP HUM CO 2 30 meters 5 hours 15 minutes
Illumra Motion Sensor E9T-OSW MS 2 25 meters 80 hours 30 minutes

Figure 1: Projected Device Plan and Descriptions

data points for every time frame in the time period to arrive at a
health score:

𝐻 =
1
𝑁

∑
𝑡

𝑟𝑡

𝑒𝑡

Where𝐻 is the overall health score for the time period, 𝑡 is the index
of the time framewithin that time period,𝑁 the number of total time
frames for the time period, 𝑟𝑡 the number of received data points
for that time frame, and 𝑒𝑡 the expected number of received data
points for the time frame. This basic method is straightforward, but
if 𝑒𝑡 is lower than the LHI and therefore zero, the score is undefined.
Similarly, if 𝑒 is not a multiple of the LHI, the subsequent rounding
results in loss of information.

To solve this, we subdivide the time period into time frames that
are equal to the device’s LHI. The expected number of received data
points 𝑒 is then always one, giving us:

𝐻 =
1
𝑁

∑
𝑡

𝑟𝑡

However, in the mixed sensing scenario where the sensor is both
periodic and event-triggered, and the event-triggered data point
resets the heartbeat interval, doing so could allow event-triggered
data points in one time frame to bias the entire time period (i.e. 𝑟

could be greater than one). As such, it is important to also cap the
transmission count for each LHI frame to arrive at:

𝐻 =
1
𝑁

∑
𝑡

𝑚𝑖𝑛(1, 𝑟𝑡 ) (1)

The silent rate of the time period for the device as described in [21]
is then just 1 − 𝐻 . It might be helpful to note that it is impossible
to completely disambiguate between heartbeat and event-triggered
data points for health score calculations in this scenario, since it is
theoretically possible for a sensor to be event-triggered at the start
of every heartbeat interval.

3.4 Radio Signal Attenuation
The Keegnan-Motley model of logarithmic signal loss 𝐿, as de-
scribed by [19], is:

𝐿(𝑑) = 𝐿𝐹𝑆 (𝑑) + 𝑛𝑤𝐿𝑤 + 𝑛𝑓 𝐿𝑓 (2)

With 𝐿𝐹𝑆 (𝑑) the theoretical loss in free space for an isotropically
radiating antenna, 𝑑 the distance between transmitter and receiver,
𝐿𝑤 attenuation per wall, 𝐿𝑓 attenuation per floor, 𝑛𝑤 number of
traversed walls, and 𝑛𝑓 number of traversed floors. This model has
further been shown to be adjustable to account for thickness of
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Figure 2: Fault Identification Flowchart

the wall [23]. While signal attenuation is then generally calculated
using a constant attenuation per unit path length 𝛼 , in our feature
preparation section (section 4.2) we detail our process in tracing
the discrete partitions and free space for each device-to-gateway
path.

3.5 Feature Representation Learning
Feature representation learning is commonly used for applications
such as natural language processing and one-shot image recognition
[24]. Once discriminative features have been learned, the predictive
power of the network can be applied to new data. In this paper, we
resort to a feedforward siamese network [25] to learn discriminative
features from the raw sensor-to-gateway path features in order
to predict the signal health status of future sensor locations. A
feedforward siamese model consists of 𝐿 feedforward layers each
with 𝑁𝑙 units. For the first 𝐿 − 1 layers, each is followed by a ReLU
activation layer. For the remaining layers, each is followed by a
sigmoid layer. Our model takes a pair of sensor data as inputs. Let
ℎ1,𝑙 represents the hidden vector in the 𝑙-th layer for the first twin
and ℎ2,𝑙 denotes the same for the second twin. A non-negative
function is deployed after each activation layer to restrain the
learned hidden vectors are non-negative. Hence, the operation at
the 𝑙-th layer takes the following form:

𝑎𝑘1,𝑚 = max(0, 𝜎 (𝑊𝑙ℎ1,𝑙 + 𝑏𝑙 ))

𝑎𝑘2,𝑚 = max(0, 𝜎 (𝑊𝑙ℎ2,𝑙 + 𝑏𝑙 ))

, where 𝜎 denotes the ReLU activation function,𝑊𝑙 and 𝑏𝑙 represent
weights and bias in the 𝑙-th layer respectively, 𝑙 ∈ {1, . . . , 𝐿 − 1}.

Once siamese twins,ℎ1,𝐿−1 andℎ2,𝐿−2 are outputted, the induced
distance metric is computed by the final layer. More specifically,
the prediction vector is given by:

𝑃 = 𝜎 (
𝑁𝐿∑
𝑗=1

𝛼 𝑗 |ℎ 𝑗1,𝐿−1 − ℎ
𝑗

2,𝐿−1 |) (3)

Here, 𝛼 denotes weights in the final layer ,and 𝛼 represents the
sigmoid activation function.

Let 𝑦 (𝑥1, 𝑥2) be the vector that contains the label for a pair of
data sample, where 𝑦 (𝑥1, 𝑥2) = 1 if 𝑥1 and 𝑥2 are from the same
class and 𝑦 (𝑥1, 𝑥2) = 0 otherwise. The network is optimized by
minibatch gradient descent to minimize the following loss:

𝐿(𝑥1, 𝑥2) = 𝑦 (𝑥1, 𝑥2) log 𝑃 (𝑥1, 𝑥2)+
(1 − 𝑦 (𝑥1, 𝑥2)) log(1 − 𝑃 (𝑥1, 𝑥2))

In this study, we aim to learn discriminative features to distin-
guish healthy sensors from unhealthy ones based on their geometric
information. The two classes in our case are healthy and unhealthy
sensors. The siamese network takes raw features, which will be
explained in the following section, of a sensor 𝑖 as inputs and out-
puts a feature vector ℎ𝑥𝑖 ,𝐿−1. Once the siamese network is trained,
we can apply it to generate features for sensors that are currently
not installed, which assists us in predicting the quality of newly
proposed sensor locations.

4 FEATURE PREPARATION
4.1 Gateway Status
Using the health score calculations, we defined the time period
to be uniformly 24 hours for each device to represent a realistic
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response time for us to investigate a device failure. We used the LHI
of each corresponding device as their time frame. Figure 2 shows a
flowchart for our fault identification process.

Because we did not explicitly store data points of the gateway
status, we assume that the gateway is down if for that time period,
no values were transmitted from that gateway by any sensor. By
extension, we assume that the network is down for the time period
if all gateways did not transmit data.While this could be sufficient in
a one gateway scenario, there is a minute possibility of incorrectly
classifying gateway down status in a multiple gateway scenario if
the data point was pushed to the database by another gateway for
the time frame for all of the devices in range. Figure 3 shows our
identification of a gateway powered by an occupancy-controlled
outlet through the health score of all the devices.

Figure 3: Occupancy-controlled-outlet plugged gateway 4 re-
lated transmission count per device type over time

4.2 Sensor to Gateway Path
Using the health score calculations, we sought out to explore a rela-
tionship between sensor health score, sensor-to-gateway distance,
and the wall profile between the sensor to wall.

Figure 4: Relationship between signal health score and dis-
tance to gateway for light level sensors during 𝑇0

Plotting the distance to health score relationships for the light
level sensors, shown in Figure 4, we observed a decline in signal
health score over distance. We observe a similar trend for the other

device types as well. This indicates that there is indeed a measurable
reduction of data transmissions across all types during the one gate-
way scenario𝐺1. We observed a similar trend when counting for
number of walls traversed, since generally the longer the distance
between the sensor to the gateway the more walls were traversed.

Having observed that data loss does occur, we further employed
ray-tracing on a plan from the sensor to the gateway. Codifying the
wall depth, material and air space using the traversed pixel colors,
figure 5 demonstrates the example wall waveform from point A to
point B. We counted only signals that exceed a threshold of 0.5 (i.e.
when the trace hits the corner of two materials). Once the features
are ready, we are able to represent them using a siamese network.
In the next section, we detail how we adopted this information

Figure 5: Example ray-trace with its corresponding wave-
form from A to B

into our machine learning model that accounts for all the different
device to gateway raytraces.

5 EXPERIMENT AND DATA PREPARATION
For this study, additional gateways were installed over time to ex-
plore whether or not we could improve the health scores of our
devices, starting with a single gateway. We used our assumptions
(see section 4.1) of the gateway status to evaluate whether or not
the gateway was on or off during that day, and when it was first
installed. In addition, during our light sensor installation, we in-
stalled LL4 and LL8 in a room with little access to daylight and their
harvesting surface pointed away from the artificial light source as a
test case for our detection system. Table 2 summarizes the columns
of the data frame with an example row.

The wall_arr column (Shown in Table 2) describe characteristics
of the building between the sensor and the gateway, where element
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Table 2: Data set column descriptions

Name Example value Description

date 2020-01-31 YYYY-MM-DD time de-
scription for the device

device_type LightLevel Array description of the de-
vice category

device_name LL1 Identifier of the device
g<n>_wall_arr [722, 156, 0, 5] Description of the build-

ing elements between the
gateway and the device in
[a,r,g,b] for gateway n

g<n>_count 0 Number of transmission to
gateway <n>

g<n>_dist 57.28 Distance to gateway<n> in
meters

health_score 0.7 Health score for the day for
the device

timing [2020-03-16T01:... Array detailing the specific
timings of each data point
for the day

g<n>_on True Whether or not the gate-
way <n> was on

0 is the count of the air pixels, element 1 the count of the red wall
pixels, element 2 the count of the green wall pixels, and element 3
the count of the blue wall pixels.

For our final feature set, we combined the elements of thewall_arr
for all four gateways (16 elements), and added 8 elements that is the
on off statues of each four of our gateways to arrive at a total of 24
features. For ease of comparison, we arbitrarily classify any sensor
with a threshold above a 70% signal health score as healthy. The
choice of this threshold for future experiments will likely depend
on the research question and the lab’s capacity for maintenance.

6 RESULTS
6.1 Aggregated Signal Health Monitoring
While we found that the proposed signal health score calculations
does mitigate the effects of event-triggered data points from biasing
the overall health score, we also found it important to note that the
score does not completely remove the effects of additional event-
triggers. For example, for magnetic contact sensors, the health
score could be amplified if the installed door is more frequently
used. The additional event-triggers make it more likely for the
transmission to register, even if the device is located in a more
attenuated zone. Therefore, categorizing the occupancy schedule of
the space, and studying the system during a period of time with no-
occupancy can provide a cleaner reading as to whether or not the
health score is due to artificial amplification. Additionally, while this
signal amplification can be readily isolated in occupant-triggered
devices, as seen in figure 6, the effects are harder to isolate for
sensors that are triggered by environmental conditions. To evaluate
the signals without event triggers from the temperature humidity
sensor, for example, will require a controlled environment of less
than 2% humidity and 0.6 degrees Celsius fluctuations. In order for

the event-driven amplification of the device signal health score to
impact the composite daily health-score, however, the threshold
for the device-trigger will need to be exceeded more than once per
time frame, across multiple time frames, and also be registered in
place of the signal that otherwise would not have been registered.

Figure 6: Overview of aggregated signal health score traces
per type, demonstrating a network-down period in late
April

6.2 Model Evaluation
To verify our process, for each device type, for each time range,
for each of 100 iterations we randomly masked 25% of the devices
rounded down as the testing set, using the remaining as the training
set. We then trained a representational encoder with the training
data to encode the test data features fed into another 100 indepen-
dently trained classifiers. Finally, we aggregated the classification
results using the encoded features to predict whether or not the
device location is considered healthy. Our results shown in figure 7
indicate a stabilization of an average of greater than 80% accuracy
when predicting health scores for the masked sensor locations over
100 runs. The results of all the runs using a 1 layer linear classifier
and a decision tree classifier are summarized in Table 3 and Table
4, respectively. For all of our following analysis, we elect to use the
decision tree classifier because it gives us a better score than the
one layer classifier overall.

Figure 7: Average accuracy over iterations per type for 𝑇1
over 100 runs
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Table 3: 100 Run Average Decision Tree Classifier Results

Time Range Device Prefix Accuracy Precision Recall

𝑇0 DS 0.87 0.85 0.85
LL 0.83 0.83 0.82
TH 0.89 0.83 0.84

𝑇1 DS 0.91 0.91 0.91
LL 0.86 0.85 0.83
TH 0.89 0.90 0.89

𝑇2 DS 0.88 0.87 0.86
LL 0.82 0.81 0.80
TH 0.79 0.76 0.72

𝑇3 DS 0.88 0.88 0.87
LL 0.94 0.94 0.94
TH 0.88 0.82 0.81

Table 4: 100 Run Average 1-Layer Linear Classifier Results

Time Range Device Prefix Accuracy Precision Recall

𝑇0 DS 0.81 0.77 0.77
LL 0.81 0.82 0.79
TH 0.89 0.81 0.79

𝑇1 DS 0.91 0.92 0.91
LL 0.84 0.83 0.81
TH 0.89 0.90 0.88

𝑇2 DS 0.88 0.87 0.86
LL 0.80 0.80 0.79
TH 0.76 0.73 0.71

𝑇3 DS 0.81 0.81 0.80
LL 0.91 0.91 0.91
TH 0.76 0.67 0.68

6.3 High Accuracy Versus Low Accuracy
Assessments

To assess the validity of our model as well as help us determine
where are the topographically similar areaswith better signal health,
we generate a value using the features at each pixel space for it’s
probability to be a healthy location. We demonstrate in figure 8 a
comparison between one of the highest performing sampling and
one the lowest performing sample for the light level sensors.

The masked sensors are marked in red, and the training sensors
are marked in green. The alpha of the red and green represents the
health score for the sensor, which is also labeled next to the sensor.
The blue background color represents the aggregated prediction
percentage for the pixel location. When the model is predicting
accurately, as shown in the left image of figure 8, then that means
that there are no misalignment between expected signals lost and
the actual signals loss. Large misalignment, as shown on the image
on the right, indicate that the poorly performing model requires
additional diagnosis to detect: 1) whether or not the low signal
health score sensor is occurring at the edge of the healthy zones,

and 2) whether the signal health is higher or lower than anticipated.
When a sensor signal is poor in an area where other sensor signals
are healthy, as in the red rectangle, then there is a larger likelihood
of abnormal transmission patterns and the sensor should be marked
for maintenance. The detected abnormal sensors match the test sen-
sors we initially installed (LL4, LL8, as described in section 5) when
they are not selected as part of the training set. The sensors marked
in the yellow rectangle areas, while performing sub-optimally, can
still be permissible since they are operating out of range of the
device specifications or at the edge of the attenuated zones.

7 DISCUSSION
The value of our current models relies on the assumption that most
of the EH devices are operating in stable harvesting conditions. For
example, the predicted healthy signal areas using𝑇3 likely included
data loss due to the reduced lighting schedule. Additionally, the
accuracy of the prediction also relies on the existence of similar
topographically placed sensor.

As seen in figure 9, during normal operations of the lab, even
when multiple gateways are within the transmission range of the
sensor, the topography of the space influences the overall received
signal and data can be loss. This influence is sometimes the differ-
ence between losing some of the data, and losing all of the data.

Furthermore, since the only way to check if the EH sensor is
operating in sufficient lighting once deployed in a dynamically lit
area is to check if there are still data transmissions after its operation
time (how long it can operate in darkness), disambiguating data
loss due to signal attenuation can help the administrator diagnose
between expected data loss and data loss that requires maintenance.
EH-HouseKeeper is demonstrated to capture this discrepancy for a
variety of gateway configurations and make indications for which
sensors actually require maintenance.

Accordingly, a more proactive strategy could have been to install
and sample the gateway and EH devices within the operation period
of the all the installed devices and sample in that time period to
eliminate unhealthy signals due to power issues. With more sensors
to be installed, however, the solution would be infeasible, especially
if further gateway location optimizations are being performed or
sensors being installed at different times. A workable solution, as in
our case, then, is to install the charged EH sensors and sample them
during normal operations of the building. Conceivably, another
solution to further disambiguate connection-related data loss from
power-related data loss would be to control the energy source (i.e.
lighting) of the space and see if increasing the source output alters
the device health score in the location.

While placing EH sensors in range of multiple energy sources (i.e.
in view of a window (s) and under artificial light(s)) would assist
in the longevity of data transmissions, the power supply of the
EH sensors is still variable. For example, for light EH sensors, the
consistency of the artificial lights are dependant on the chronotype
of the occupants for occupancy sensor triggers, the time periods
(i.e. holidays, weekends, workdays), and the weather. While one
might argue that a steady source of lighting is guaranteed because
it is only relevant to collect data while the occupant is present and
therefore the lights are on, it could be worthwhile to consider that
the lighting could be sub-optimal in a way that the degradation
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Figure 8: > 90% accuracy sampling during 𝑇3 (left) versus < 60% accuracy sampling during 𝑇0 (right), where the red circles
represents the masked test sensors and the green circles the training sensors. The yellow rectangle areas indicate additional
attention required, and the red rectangle areas indicate maintenance required.

Figure 9: Using 𝑇1 to predict healthy signal zones for 𝐺3 for
Temperature Humidity Sensors, showing the predicted sig-
nal healthy zone less than the prescribed radii.

of data transmission might only be noticeable after a few month’s
time. Additionally, the variability of the power source while the
occupant is absent could also affect the device’s transmissions when
they return. This is especially true if the time frame of interest lie
between the occupant’s arrival and the sensor’s charge up time, or
if abnormal behavior of the occupants increases the energy required
to detect the events. Further studies into EH sensors in sub-optimal
harvesting conditions is needed to better understand the severity
and relevance of this data loss.

Also relevant to future deployments, We mirror the findings of
Wagner et al. in chapter 6 regarding the importance of adhesives for
sensor installation [26]. Some adhesives we installed degraded over
the period of months, and took additional efforts from the residents
in the space to recover. We propose applying more adhesives than
considered necessary to reduce future maintenance efforts.

Finally, some outlets do not function as a consistent power source
and have their own power schedule (also noted by Hnat et al. [13]).
This information is harder to detect in a multiple gateway scenario,
because the drop in total received data corresponds with lowered
occupant activities. If possible, implementing a heartbeat logging
mechanism to track the gateway itself on the database can help
diagnose the cause of a sensor signal health score drop for future
deployments.

8 LIMITATIONS AND FUTUREWORK
8.1 Noise Introduced in a Naturalistic Setting
The distance and trace used in our calculations are projections
onto a 2D plane, so it does not encompass the complexities of the
3D environment. For instance, additional work needs to be done
to extend the system to encompass multiple floors. In addition,
EH-HouseKeeper does not account for any of the discrepancies
between the plan drawing and the real-world environment, nor
does it account for any signal attenuation due to the presence of
furniture or occupants. The timing of the data could also be further
filtered. For example, distinguishing between daytime and night
sensor behaviors could further improve our model.

More work can also be done to scrutinize the data value itself
(i.e. to identify non-fail-stop failures such as calibration drifting).
For example, do those event-triggered data points match the data
sheet described value thresholds? Is there a large unaccounted for
discrepancy between two data point values in the same proximity?
Even in the same zones, the orientation of the sensor device could
have a dramatic affect on how much light it receives from the
surrounding environment. While the location and orientation can
be further optimized by calculating metrics such as Useful Daylight
Illuminance for the vertical or horizontal surface that the sensors
resided, for our installation we mainly faced the energy harvesting
area towards sources of light (i.e. the window, artificial light source).

8.2 Trying Out New Locations
One future goal for EH-HouseKeeper is to start learning patterns for
wall typology that we can transfer the attenuation patterns for other
gateway locations in the same building, or different buildings. Doing
so potentially allows us to reduce the total number of gateways
used while increasing the signal health scores across the different
devices. In addition, if we can validate model for different spaces
using the same techniques, we can begin to optimize for gateway
and device location virtually before deploying the system into a
new environment.

8.3 Relating the Sensors to the Occupants
Since the number of sensors and gateways to deploy are limited,
considerations must be made about which space is more important
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to study, and therefore where is the optimal location for the devices
and what is an appropriate signal health score threshold. Simply
improving the overall coverage of the EH sensors by changing
device locations might not sufficiently collect data from true areas
of interest that serve the occupant community (e.g. which what
space an occupant feels the most creative, the most productive, and
why). Moving forward, we plan to conduct interviews with the
residents directly within the lab, to investigate what are the most
desired attributes within a space as judged by the residents, and to
investigate if there are any quantifiable patterns for these spaces.

While there is still more work be done on scrutinizing both the
quantity and quality of the data, ultimately, deploying a system like
EH-HouseKeeper that can continuously check for network, gateway,
and sensor compliance and notify the administrators of unexpected
faults seems to be a prerequisite to scaling up the number of EH
sensors installed, or even just to carry out longitudinal studies with
existing EH sensors.

9 CONCLUSION
Using energy-harvesting sensors in indoor environments is a promis-
ing technique for enabling data-driven and real-time optimization
in the millions of existing buildings already constructed. However,
these sensors add uncertainty to the data collection process due to
intermittent energy availability and unreliable wireless connectiv-
ity. To help building managers successfully adopt these emerging
sensors, we present EH-HouseKeeper to identify when a sensor has
actually failed and to help guide deployment upgrades over time.
The health score provided by EH-HouseKeeper enables building
managers to rapidly correct faulty devices without the overhead of
periodic inspections or unnecessary maintenance. We demonstrate
over the course of half a year in a sensor-rich environment that
EH-HouseKeeper is effective, and show how it can help guide fu-
ture deployments. EH-HouseKeeper is an important step in making
energy-harvesting sensors truly viable at the large scale needed to
reduce the energy consumption and increase the occupant utility
of the world’s buildings.
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