

last time
course intro / logistics
building C programs (cc = clang/gcc, etc.)

cc -c file.c (makes file.o) — compile+assemble
reads file.c and all the files it #includes

cc filel.o file2.0 .. —o executable — link
reads .o files + some system files
..—Lpath -1lname — libraries:

static (Libname. a): included in executable itself

dynamic (libname.so): found + loaded at program start — one
copy on system

runtime search paths for dynamic libraries

anonymous feedback (1)

Holding class in Mcleod is very hard for most of this class as | know at least DMT2, which
a lot of us are in , is all the way in gilmer and is a more than 15 min to get here. | ask to
please consider holding class somewhere else on grounds or starting class a few minutes

later every day so that everyone has ample time to get here and be prepared to learn.

I'm pretty sure there's not an alternative room (I didn't volunteer for a

long walk from Rice...)

disappointed to lose some lecture time, ...

quiz demo

anonymous feedback (2)

| was hoping you could do some introductions to some concepts before diving into the
slides. | think it would help clarify things for us before we learn new content due to the
large gap we have had since last talking about this subject. Also if you could continue some

in class exercises and add examples to the slides that would be very helpful.

Is there a way we could get a C refresher. Are there any good resources to learn memory

allocation etc? We did not have good practice with that in csol

warmup assignment

C exercise

int array[4] = {10,20,30,40};

int *p;

p = &array[0];

p += 23

p[1l] += 1;

array =

A. compile or runtime error B. {10,20,30,41}
C. {10,20,32,41} D. {10,21,30,40}
E. {12,21,30,40} F. none of these

some avenues for review

review CSO1 stuff

labs 9-12 (of last Spring)
https://www.cs.virginia.edu/~jh2jf/courses/
€s2130/spring2023/

exercises we've used in the past:

implement strsep library function
implement conversion from dynamic array to linked list

https://www.cs.virginia.edu/~jh2jf/courses/cs2130/spring2023/
https://www.cs.virginia.edu/~jh2jf/courses/cs2130/spring2023/

some pointer stuff int array[3]={0x12,0x45,0x67};
0x040 int single = 0x78;
0x038 int *ptr;

0x030
Ox028
0x020
Ox018
Ox010
Ox008
OxXO000

some pointer stuff int array[3]={0x12,0x45,0x67};

0x040 int single = 0x78;
int *ptr;

Ox038 array[2]: Ox67
array[1l]: Ox45
Ox030 array[0]: Ox12

0x028 single: 0Ox78

ptr = 2727
Ox020
Ox018
Ox010
Ox008
OxXO000

some pointer stuff int array[3]={0x12,0x45,0x67};

0x040 int single = 0x78;
0x038 array[2]: Ox67 nt =ptr;

0x030 2::2%%% 8ﬁg *p = B; compile error
0x028 ngfi:;?:g

0x020

Ox018

0x010

Ox008

OxXO000

some pointer stuff int array[3]={0x12,0x45,0x67};
0x040 int single = 0x78;

int *ptr;
Ox038 array[2]: Ox67 P ’

array[1l]: Ox45
O0X030 [rray[e]: ox12 ptr = &single;

ox028 L_STngle: 0X78 | ot = (ntx) OX28; adir of singe

ptr: 0x28
Ox020
Ox018
Ox010
Ox008
OxXO000

some pointer stuff int array[3]={0x12,0x45,0x67};
0x040 int single = 0x78;
int xptr;
0x038 array[2]: Ox67 PLrs
array[1l]: Ox45
0x030 array[0]: 0x12 | ptr = &single;
single: 0Ox78 ptr

Ox028 = (-int*) 0X28; addr. of single
ptr: 0x28

9x020 ptr 83 compile error

Ox018

tr = (3 ingle;
0x010 M

pointer to unknown place
0x008

OxXO000

some pointer stuff int array[3]={0x12,0x45,0x67};
0x040 int single = 0x78;

int *ptr;

ptr = &single;

Ox038 array[2]: Ox67
array[1l]: Ox45
Ox030 arrjay[o]: Ox12
0x028 single: OxFF *ptr = OXFF;
ptr: 0x28

0x020
0x018
0x010
Ox008
OxXO000

some pointer stuff .

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x2C

nt
int
int

ptr
ptr
ptr

array[3]={0x12,0x45,0x67};
single = 0x78;
*ptr;

= array;
&array[0];
(int*x) 0x2C;

some pointer stuff .

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x2C

nt array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

ptr = array;
ptr = &array[0];
ptr = (intx) 0x2C;

ptr = O]; compile error

M

pointer to unknown place

some pointer stuff

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: OxFF

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x2C

int array[3]={0x12,0x45,0x67};

int single =
int *ptr;
ptr = &array[0];

OX78;

ptr[2] = OxFF;
*(ptr + 2) = OxFF;

int xtempl; templ
*templ = OxFF;

int *temp2; temp2
*temp2 = OxFF;

ptr + 2;

&ptr[2];

some pointer stuff

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: ..

ptr: 0x2C

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

void change_arg(int *x) {

*Xx = compute_some_value();

}

change_arg(&single);

make
make — Unix program for “making” things...

..by running commands based on what's changed

what commands? based on rules in makefile

10

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)
after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

11

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)
after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

11

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

11

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)
after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

11

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)
after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

11

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)
after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

11

make rules

main.o: main.c main.h extra.h
> clang -c main.c

before colon: target(s) (file(s) generated/updated)
after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

..after making sure prerequisites up to date

11

make rule chains

program: main.o extra.o
> clang -o program main.o extra.o

extra.o: extra.c extra.h
> clang -c extra.c

main.o: main.c main.h extra.h
> clang -c main.c

to make program, first...

update main.o and extra.o if they aren’t

12

running make

“make target”

look in Makefile in current directory for rules
check if target is up-to-date
if not, rebuild it (and dependencies, if needed) so it is

“‘make targetl target2”

check if both targetl and target2 are up-to-date
if not, rebuild it as needed so they are

“make”

if “firstTarget" is the first rule in Makefile,
same as ‘make firstTarget”

13

exercise: what will run?

W: XY W modified 1 minute ago
> buildw X modified 3 hours ago
X: Q Y does not exist

> buildX Z modified 1 hour ago
Y: X Z Q modified 2 hours ago
> buildyY

exercise: “make W" will run what commands?

A. none B. buildY only C. buildW then buildyY
D. buildY then buildW E. buildX then buildY then buildWw
F. buildX then buildW G. something else

14

explanation
W (1 min old)

Y

A

X (3 h old)

Y

Q (2 h old)

Y (not existant)

Y

Z (3 h old)

first: to make W, need X, Y up to date

to make X up to date:
need Q up to date v’

then build X if less recent than Q (yes) v/

to make Y up to date: need X up to date v

need Z up to date v/

then build Y if less recent than X (yes) or Z (yes) v/

16

explanation
W (1 min old)

Y

X (3hold) |«

Y

Q (2 h old)

Y (not existant)

Y

Z (3 h old)

first: to make W, need X, Y up to date

to make X up to date:
need Q up to date v’

then build X if less recent than Q (yes) v/

to make Y up to date: need X up to date v

need Z up to date v/

then build Y if less recent than X (yes) or Z (yes) v/

16

explanation

W (1 min old)
X (3hold) [« Y (not existant)
* Y
Q (2 h old) Z (3 h old)

first: to make W, need X, Y up to date
to make X up to date:
need Q up to date v’
then build X if less recent than Q (yes) v/

to make Y up to date: need X up to date v/
need Z up to date v/
then build Y if less recent than X (yes) or Z (yes) v/

16

explanation
W (1 min old)

Y

X (just updated) |«

Y

Q (2 h old)

Y (not existant)

Y

Z (3 h old)

first: to make W, need X, Y up to date

to make X up to date:
need Q up to date v’

then build X if less recent than Q (yes) v/

to make Y up to date: need X up to date v

need Z up to date v/

then build Y if less recent than X (yes) or Z (yes) v/

16

explanation
W (1 min old)

Y

X (just updated) |«

Y

Q (2 h old)

Y (just updated)

Y

Z (3 h old)

first: to make W, need X, Y up to date

to make X up to date:
need Q up to date v’

then build X if less recent than Q (yes) v/

to make Y up to date: need X up to date v

need Z up to date v/

then build Y if less recent than X (yes) or Z (yes) v/

16

‘phony’ targets (1)

common to have Makefile targets that aren't files
all: programl program2 Llibfoo.a

“‘make all” effectively shorthand for “make programl
program2 libfoo.a”

no actual file called “all”

17

‘phony’ targets (2)
sometimes want targets that don't actually build file

example: “make clean” to remove generated files

clean:
> rm ——-force main.o extra.o

18

but what if | create...

clean:
> rm ——-force main.o extra.o

all: programl program2 Llibfoo.a
Q: if | make a file called “all” and then “make all” what happens?

Q: same with “clean” and “make clean”?

19

marking phony targets

clean:
> rm ——-force main.o extra.o

all: programl program2 libfoo.a

.PHONY: all clean
special .PHONY rule says

all' and ‘clean’ not real files”

(not required by POSIX, but in every make version | know)

20

conventional targets

common convention:

target name
(default), all
install
test

clean

purpose

build everything

install to standard location
run tests

remove generated files

21

redundancy (1)

program: main.o extra.o
> clang -o program main.o extra.o

extra.o: extra.c extra.h
> clang -o extra.o -c extra.c
main.o: main.c main.h extra.h

> clang -o main.o -c main.c
what if | want to run clang with -Wa'll?

what if | want to change to gcc?

22

variables/macros (1)

CC = gcc

CFLAGS = -Wall -pedantic -std=cll -fsanitize=address
LDFLAGS = -Wall -pedantic -fsanitize=address

LDLIBS = -1m

program: main.o extra.o
> $(CC) $(LDFLAGS) -o program main.o extra.o $(LDLIBS)

extra.o: extra.c extra.h
> $(CC) $(CFLAGS) -o extra.o -c extra.c

main.o: main.c main.h extra.h
> $(CC) $(CFLAGS) -o main.o -c main.c

23

variables/macros (2)
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall
LDLIBS = -1lm

program: main.o extra.o
> $(CC) $(LDFLAGS) -0 $@ $* $(LDLIBS)

extra.o: extra.c extra.h
> $(CC) $(CFLAGS) -0 $@ -c s<

main.o: main.c main.h extra.h
> $(CC) S$S(CFLAGS) -0 $@ -c s<

suffix rules
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall

program: main.o extra.o
> $(CC) $(LDFLAGS) -0 S$@ $A

.C.0.
> $(CC) $(CFLAGS) -0 $@ -c s<

extra.o: extra.c extra.h
main.o: main.c main.h extra.h

aside: $” works on GNU make (usual on Linux), but not portable.

25

pattern rules
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall
LDLIBS = -1lm

program: main.o extra.o
> $(CC) $(LDFLAGS) -0 $@ $* $(LDLIBS)

[0 74 (074
/0.0: /0-C

> $(CC) $(CFLAGS) -0 $@ -c $<

extra.o: extra.c extra.h
main.o: main.c main.h extra.h %

built-in rules

‘make’ has the ‘make .o from .c’ rule built-in already, so:
CC = gcc

CFLAGS = -Wall

LDFLAGS = -Wall

LDLIBS = -1lm

program: main.o extra.o
> $(CC) $(LDFLAGS) -0 $@ $* $(LDLIBS)

extra.o: extra.c extra.h
main.o: main.c main.h extra.h
(don’t actually need to write supplied rule!)

27

writing Makefiles?

error-prone to automatically all .h dependencies

—M option to gcc or clang

outputs Make rule
ways of having make run this

Makefile generators
other programs that write Makefiles

28

other build systems

alternatives to writing Makefiles:
other make-ish build systems
ninja, scons, bazel, maven, xcodebuild, msbuild, ..

tools that generate inputs for make-ish build systems
cmake, autotools, gmake, ...

29

	make
	basics
	exercise: what will be run
	phony targets
	conventional targets
	variables, macro rules

	other build system stuff

