
1

changelog
8 Sep 2023: user ID: avoid reference to jargon term ‘domain’

8 Sep 2023: set-user-ID sudo: refer to other user IDs, give
psuedocode for sudo’s internal checks

2

last time (1)
exceptions reviewed

exceptions: way hardware runs OS

lots of things trigger hardware to do this
program request (system call), I/O device,
problematic event in program (bad memory access, etc.)

signal handling/safety/blocking

3

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

4

exception patterns with I/O (1)
input — available now:

exception: device says “I have input now”
handler: OS stores input for later
exception (syscall): program says “I want to read input”
handler: OS returns that input

input — not available now:
exception (syscall): program says “I want to read input”
handler: OS runs other things (context switch)
exception: device says “I have input now”
handler: OS retrieves input
handler: (possibly) OS switches back to program that wanted it

5

exception patterns with I/O (2)
output — ready now:

exception (syscall): program says “I want to output this’
handler: OS sends output to deive

output — not ready now
exception (syscall): program says “I want to output”
handler: OS realizes device can’t accept output yet
(other things happen)
exception: device says “I’m ready for output now”
handler: OS sends output requested earlier

6

slightly more on quiz
accepted some alternate interpretations for
whether “waiting” switches away from program

imagined: ask OS to wait, it switches away
but not crazy to think of checking something in a loop
(especially b/c of some chat labs from CSO1 I didn’t think about)

bunch of comments specifying “divide by zero” as likely
I guess I need to rethink using the word “likely”?

7

anonymous feedback (1)
“In regards to the quizzes, I would respectfully request that the content better reflect what
is taught in the lectures, slides, and readings. I’ve talked to numerous classmates and there
is general consensus that what is on the quizzes often requires knowledge of deeper nuances
not discussed or easily found in the previously mentioned resources. If there was a way for
the grading to be more lenient or for quiz corrections to be offered as well I think that
would help alleviate some anxiety that many of us feel towards this course as well as foster
an environment that allows for adequate learning of concepts rather than the confusion we
feel at the present moment.”

“The quizzes were quite challenging, as the questions seemed a bit confusing. It wasn’t
clear whether we were expected to find the answers in our readings or lecture slides. Despite
attending every class, I found it difficult to answer all the questions.”

8

last time (2)
signal handling

way OS calls program to handle “special” event
no handler — often default exits program
sigaction: register function to be called on signal
kill: trigger signal in specified program

signal unsafety — libraries not written to be interrupted+called again
malloc() → sighandler → malloc()

blocking signals
normally: signals ‘delivered’ (run handler, crash program, etc.)
while blocked, become ‘pending’ instead
can check for/remove pending signals (‘sigwait’)
or can unblock signal to let handler run

9

last time (2)
signal handling

way OS calls program to handle “special” event
no handler — often default exits program
sigaction: register function to be called on signal
kill: trigger signal in specified program

signal unsafety — libraries not written to be interrupted+called again
malloc() → sighandler → malloc()

blocking signals
normally: signals ‘delivered’ (run handler, crash program, etc.)
while blocked, become ‘pending’ instead
can check for/remove pending signals (‘sigwait’)
or can unblock signal to let handler run

9

sending signals (1)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000

10

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

11

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

11

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

11

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

11

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

11

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

11

on the lab
probably should supply pid-reading code next year

adding paragraph about scanf issue in PID section of lab was not
enough

issue: scanf a nubmer from “12(newline)” leaves “(newline)” so fgets works right
away, sends before everyone ready

wasn’t clear enough that munmap (‘detach’) was cleanup-code stuff

many issues re: segfaults, some options in general:
-g -fsanitize=address (get line number of bug, usually)
use debugger (automatic breakpoint at segfault+all other signals)

12

timing assignment
time how long each of these take:

empty function call
simple system call
running another program
starting signal handler
sending signal and back

13

a note on kill() timing
kill(THIS PROCESS, …) — signal handler runs before kill() returns

kill(OTHER PROCESS, …) — signal handler may/may not start
before kill() returns

14

anonymous feedback (2)
“The link to the Spring 2023 quizzes on the study materials tab of the course site is forbidden.
Are we supposed to have access to this?”

Yes, should be working now.
“I submitted the anonymous feedback about all but 3 TAs leaving, and I was talking about the
3:30 lab.”

will investigate what’s going on (and think about trying to make TA
help better organized in labs)

“Hi, I know you said that live examples aren’t practical, but they really help me and others learn where
we might make mistakes in our code. Also, as you explain them, I think we might understand the
structure and how things interact in our code better. Looking at examples in reading only is pretty
difficult to grasp.”

if I “just” do live examples, they’d probably be scripted so few mistakes
probably some sort of pacing issue

“Please go slower in lecture! I know we have limited time, but so
many people are still writing/typing as you go to the next slide.”

15

anonymous feedback (3)
“I would appreciate it if you could not assume we know everything and explain the concepts
to us. Assuming that we know a lot of this material is making us lost in lectures and
assignments because as you dive into complex topics, we are falling behind on the basics. If
you could be more explicit in your explanations and questions it would be highly
appreciated.”

“Charles, I just wanted to let you know that I don’t think a single person I’ve talked to
that’s enrolled in this class feels confident about what they know so far. I think you’re a
very smart professor, and you’re good at conveying information, but I feel like we are
moving really fast for the amount of new content being introduced. I really feel like
reviewing some of the content from the previous lecture would go a long way, maybe just a
question or two at the beginning of class. I’ve been ahead on the readings since the class
started and there are still points during lecture where I feel totally lost, followed by
assignments that sometimes cover things I feel like weren’t explained in depth in either the
readings or the lecture. I really appreciate the time you give for students to ask questions,
and I think you’re fairly good at answering them, but I feel like a lot of us end up so
confused we don’t even know what questions to ask.”

16

17

opening a file?
open("/u/creiss/private.txt", O_RDONLY)

say, private file on portal

on Linux: makes system call

kernel needs to decide if this should work or not

18

how does OS decide this?
argument: needs extra metadata

what would be wrong using…

system call arguments?

where the code calling open came from?

19

user IDs
most common way OSes identify “who” process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

20

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

21

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

21

POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

22

id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

23

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

24

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

24

POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

on directories, ‘execute’ means ‘search’ instead

25

permissions encoding
permissions encoded as 9-bit number, can write as octal: XYZ

octal divides into three 3-bit parts:
user permissions (X), group permissions (Y), other permission (Z)

each 3-bit part has a bit for ‘read’ (4), ‘write’ (2), ‘execute’ (1)

700 — user read+write+execute; group none; other none

451 — user read; group read+execute; other none

26

chmod — exact permissions
chmod 700 file
chmod u=rwx,og= file
user read write execute; group/others no accesss
chmod 451 file
chmod u=r,g=rx,o= file
user read; group read/execute; others no access

27

chmod — adjusting permissions
chmod u+rx foo
add user read and execute permissions
leave other settings unchanged
chmod o-rwx,u=rx foo
remove other read/write/execute permissions
set user permissions to read/execute
leave group settings unchanged

28

POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

29

POSIX ACL syntax
group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

30

POSIX ACLs on command line
getfacl file
setfacl -m 'user:tj1a:---' file
add line to ACL
setfacl -x 'user:tj1a' file
REMOVE line from acl
setfacl -M acl.txt file
add to acl, but read what to add from a file
setfacl -X acl.txt file
remove from acl, but read what to remove from a file

31

authorization checking on Unix
checked on system call entry

no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

32

keeping permissions?
which of the following would still be secure?

A. performing authorization checks in the standard library in
addition to system call handlers

B. performing authorization checks in the standard library instead
of system call handlers

C. making the user ID a system call argument rather than storing it
persistently in the OS’s memory

33

superuser
user ID 0 is special

superuser or root
(non-Unix) or Administrator or SYSTEM or …

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

34

superuser v kernel mode
superuser : OS :: kernel mode : hardware

programs running as superuser still in user mode
just change in how OS acts on system calls, etc.

35

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
36

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
37

Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

38

aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

39

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
40

changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

41

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

42

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID
“extra” user IDs track what original user was

sudo program: owned by root, marked set-user-ID
sudo’s code: if (original user allowed) ...; else print error

marking setuid: chmod u+s

43

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

44

set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if signals setup weirldy?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

45

privilege escalation
privilege escalation — vulnerabilities that allow more privileges

code execution/corruption in utilities that run with high privilege
e.g. buffer overflow, command injection

login, sudo, system services, …
bugs in system call implementations

logic errors in checking delegated operations

46

	accounts
	user ID idea
	group IDs

	permissions and access control lists
	file permissions

	enforcing permissions
	exercise: why not check

	superuser
	becoming superuser
	on boot, /bin/login
	set-user-ID/sudo
	a litany of silly setuid program issues

	privilege escalation

