
1

last time
page table permission bits (read/write/user-mode/…)

checked like valid bit (except depends why PTE used)

copy-on-write

POSIX process API
fork — create new process

copies current process
returns twice — once in old process (parent), once in new process
(child)

exec — make current process start running different program
when successful, doesn’t return

2

next week lab logistics
pagetable code review
next Wednesday
submission due just before

you should have working code for code review

groups of 3
yes, feedback on:

code organization + style

not for debugging, writing code for others, etc.
final pagetable submission shortly after

suggest doing README, licenses, etc earlier
3

late policy and pagetable2/lab
pagetable2 submissions due BEFORE first lab time

normal late policy does not apply

normal late policy will apply to pagetable3 (week from Fri)

code review lab in-person only

if you can’t/shouldn’t be there, let me know
can make ad-hoc alternate arrangements

4

anonymous feedback (1)
“I would really appreciate some sort of formula or process overview for
calculating sizes of page tables. I find it hard to follow what you say in class
when it is just specific examples and not a general formula.”

usually, we’ve given the size of page tables
as in “page tables take up one page”

I think confusion is:
unit conversion (pages, bytes, entries)
relating size to virtual page number part size

5

page table sizes and VPN sizes
N byte page table

if page table entries E bytes long…

N/E entry page table

log2(N/E) bits to index into page table

if a page table is 1 page in size (like assignment), then
N = 2POBITS

if multiple levels, need to bits to index into each level
6

anonymous feedback (2)
“Could we have some started code for the assignments? That would make it easier
for us to do the coding as the write up is sometimes very vague.”

intentional that we don’t supply more than function prototypes
often multiple good implementation strategies
I’m not sure where the lack of clarity is that ‘started code’ would fix
(If something is actually vague, I want it documented in writeup +
examples, not template code)

“ Is it possible to not have a quiz over fall break in order for us to relax and/or
catch up on other work like page tables…”

it’s due on Thursday, so full day after break before it
less quizzes means quizzes worth more
trying to avoid mega-quiz covering 3 lectures of stuff

7

quiz Q1
64 = 26 bytes → 6 bit page offset

32 = 25 entries = 5 bits per VPN part

0xABCD: [10101][01111][001101]

PTE address = base address + index × size

= 0x3300 (PTBR) + 10101 × 2 = 0x332a

8

quiz Q2
1st level page table 2nd level page table

(points to up to 32 × 64 = 2048 bytes)

2nd level page table
(points to up to 32 × 64 = 2048 bytes)

2nd level page table
(points to up to 32 × 64 = 2048 bytes)

2nd level page table
(points to up to 32 × 64 = 2048 bytes)

2048 · 3 < 6400
2048 · 4 ≥ 6400
3 2nd-level tables
= 5 · 64 bytes
1 1st-level table
= 64 bytes
total of 5 · 64 = 320 bytes

9

quiz Q3
executable bit = executing code from that page?

(not for %rcx access)

10

quiz Q6
after both write — changes made so write worked

means both have independent copies

11

licenses.txt
part 3 of assignment

LICENSE / license.txt
want you to understand — “free” code has conditions
not a law class — I’m not qualified to say what conditions are legally
enforceable, etc.
understanding expectations authors have about how code should/should
not be used

many things I would do without legal requirements

12

selected other part 3 things
README

deallocate
implement something or
tell us why it would be non-trivial or impractical to do so

13

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

14

typical pattern
parent

fork

waitpid

child process

exec

exit()

15

typical pattern (alt)
parent

fork

waitpid

child process

exec

exit()

16

typical pattern (detail)

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

main() {
…

}

17

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

18

exercise (1)
int main() {

pid_t pids[2]; const char *args[] = {"echo", "ARG", NULL};
const char *extra[] = {"L1", "L2"};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) {

args[1] = extra[i];
execv("/bin/echo", args);

}
}
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}

}

Assuming fork and execv do not fail, which are possible outputs?
A. L1 (newline) L2 D. A and B
B. L1 (newline) L2 (newline) L2 E. A and C
C. L2 (newline) L1 F. all of the above

G. something else
19

exercise (2)
int main() {

pid_t pids[2]; const char *args[] = {"echo", "0", NULL};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) { execv("/bin/echo", args); }

}
printf("1\n"); fflush(stdout);
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}
printf("2\n"); fflush(stdout);

}

Assuming fork and execv do not fail, which are possible outputs?
A. 0 (newline) 0 (newline) 1 (newline) 2 E. A, B, and C
B. 0 (newline) 1 (newline) 0 (newline) 2 F. C and D
C. 1 (newline) 0 (newline) 0 (newline) 2 G. all of the above
D. 1 (newline) 0 (newline) 2 (newline) 0 H. something else

20

exercise (2)
int main() {

pid_t pids[2]; const char *args[] = {"echo", "0", NULL};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) { execv("/bin/echo", args); }

}
printf("1\n"); fflush(stdout);
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}
printf("2\n"); fflush(stdout);

}

Assuming fork and execv do not fail, which are possible outputs?
A. 0 (newline) 0 (newline) 1 (newline) 2 E. A, B, and C
B. 0 (newline) 1 (newline) 0 (newline) 2 F. C and D
C. 1 (newline) 0 (newline) 0 (newline) 2 G. all of the above
D. 1 (newline) 0 (newline) 2 (newline) 0 H. something else

20

some POSIX command-line features
searching for programs

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

21

some POSIX command-line features
searching for programs

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

22

some POSIX command-line features
searching for programs

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

23

file descriptors
struct process_info { /* <-- in the kernel somewhere */

...
struct open_file_description *files[SIZE};
...

};
...
process−>files[file_descriptor]

Unix: every process has
array (or similar) of open file descriptions
“open file”: terminal · socket · regular file · pipe

file descriptor = index into array
usually what’s used with system calls
stdio.h FILE*s usually have file descriptor + buffer

24

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

25

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

25

getting file descriptors
int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2", O_WRONLY | ...);
int rdwr_fd = open("file3", O_RDWR);

used internally by fopen(), etc.

also for files without normal filenames…:
int fd = shm_open("/shared_memory", O_RDWR, 0666); // shared memory
int socket_fd = socket(AF_INET, SOCK_STREAM, 0); // TCP socket
int term_fd = posix_openpt(O_RDWR); // pseudo-terminal
int pipe_fds[2]; pipe(pipefds); // "pipes" (later)
...

26

close
int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors
that refer to same “open file description”
(e.g. in fork()ed child or created via (later) dup2)

if last file descriptor for open file description, resources deallocated

returns 0 on success
returns -1 on error

e.g. ran out of disk space while finishing saving file
27

shell redirection
./my_program ... < input.txt:

run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo > output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

28

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

pagetable
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
redirection/etc.:

setup stdin/stdout before exec

old memory
discarded

29

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

page table

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

pagetable

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

30

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

page table

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

pagetable

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

30

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

page table

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

pagetable

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)30

typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}

31

redirecting with exec
standard output/error/input are files

(C stdout/stderr/stdin; C++ cout/cerr/cin)

(probably after forking) open files to redirect

…and make them be standard output/error/input
using dup2() library call

then exec, preserving new standard output/etc.

32

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

33

reassigning and file table
// something like this in OS code
struct process_info {

...
struct open_file_description *files[SIZE];
....

};
...
process−>files[STDOUT_FILENO] = process−>files[opened−fd];

syscall: dup2(opened-fd, STDOUT_FILENO);

34

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused
35

dup2 example
redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This will be sent to output.txt.\n"); 36

open/dup/close/etc. and fd array
// something like this in OS code
struct process_info {
...
struct open_file_description *files[NUM];

};

open: files[new_fd] = ...;

dup2(from, to): files[to] = files[from];

close: files[fd] = NULL;

fork:
for (int i = ...)

child−>files[i] = parent−>files[i];

(plus extra work to avoid leaking memory)
37

exercise
int fd = open("output.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666);
write(fd, "A", 1);
dup2(STDOUT_FILENO, 100);
dup2(fd, STDOUT_FILENO);
write(STDOUT_FILENO, "B", 1);
write(fd, "C", 1);
close(fd);
write(STDOUT_FILENO, "D", 1);
write(100, "E", 1);

Assume fd 100 is not what open returns. What is written to
output.txt?
A. ABCDE C. ABC E. something else
B. ABCD D. ACD

38

pipes
special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines

39

pipe()
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);

40

pipe and pipelines
ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
close(pipe_fd[0]); close(pipe_fd[1]);
/* wait for processes, etc. */

41

example execution
parent

pipe() — fds 3 [read], 4 [write]

child 1

4→ stdout

close 3,4

exec ls

child 2

3→ stdin

close 3,4

exec grep
close 3,4

42

Unix API summary
spawn and wait for program: fork (copy), then

in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1

43

2004 CPU

Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

2004 CPU
Registers

L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

2004 CPU
Registers
L1 cache

L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

2004 CPU
Registers
L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

2004 CPU
Registers
L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

2004 CPU
Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

2004 CPU
Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 44

the place of cache

CPU Cache

RAM
or

another
cache

read 0xABCD?
read 0x1234?

0xABCD is 1000
0x1234 is 4000

read 0xABCD?

0xABCD is 1000

45

memory hierarchy goals
performance of the fastest (smallest) memory

hide 100x latency difference? 99+% hit (= value found in cache) rate

capacity of the largest (slowest) memory

46

backup slides

47

exit statuses
int main() {

return 0; /* or exit(0); */
}

48

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

49

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

49

shell
allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

50

aside: shell forms
POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?

51

searching for programs
POSIX convention: PATH environment variable

example: /home/cr4bd/bin:/usr/bin:/bin
list of directories to check in order

environment variables = key/value pairs stored with process
by default, left unchanged on execve, fork, etc.

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}

52

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

53

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

53

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

53

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

53

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

53

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

53

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

54

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

54

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

54

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

54

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

54

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

55

layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

56

why the extra layer
better (but more complex to implement) interface:

read line
formatted input (scanf, cin into integer, etc.)
formatted output

less system calls (bigger reads/writes) sometimes faster
buffering can combine multiple in/out library calls into one system call

more portable interface
cin, printf, etc. defined by C and C++ standards

57

pipe() and blocking
BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?

58

pattern with multiple?
parent

fork

fork

waitpid(first,…)

first child process

second child process
exec

exit()

exec
exit()

waitpid(second,…) 59

this class: focus on Unix
Unix-like OSes will be our focus

we have source code

used to from 2150, etc.?

have been around for a while

xv6 imitates Unix

60

Unix history

OpenServer
6.x

UnixWare
7.x

(System V
R5)

HP-UX
11i+

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

Open Source

Mixed/Shared Source

Closed Source

No future releases

HP-UX
1.0 to 1.2

OpenSolaris
& derivatives

(illumos, etc.)

System III

System V
R1 to R2

OpenServer
5.0.5 to 5.0.7

OpenServer
5.0 to 5.04

SCO Unix
3.2.4

SCO Xenix
V/386

SCO Xenix
V/386

SCO Xenix
V/286

SCO Xenix

Xenix
3.0

Xenix
1.0 to 2.3

PWB/Unix

AIX
1.0

AIX
3.0-7.2

OpenBSD
2.3-6.1

OpenBSD
1.0 to 2.2

SunOS
1.2 to 3.0

SunOS
1 to 1.1

Unix/32V

Unix
Version 1 to 4

Unix
Version 5 to 6

Unix
Version 7

Unnamed PDP-7 operating system

BSD
1.0 to 2.0

BSD
3.0 to 4.1

BSD 4.2

Unix
Version 8

Unix
9 and 10

(last versions
from

Bell Labs)

NexTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

Mac OS X,
OS X,

macOS
10.0 to 10.12

(Darwin
1.2.1 to 17)

Minix
1.x

Minix
2.x

Minix
3.1.0-3.4.0

Linux
2.x

Linux
0.95 to 1.2.x

Linux 0.0.1

BSD
4.4 to

4.4 lite2

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.3-7.1

FreeBSD
1.0 to
2.2.x

386BSD

BSD NET/2

Solaris
10

Solaris
11.0-11.3

System V
R4

Solaris
2.1 to 9

BSD 4.3

SunOS
4

HP-UX
2.0 to 3.0

HP-UX
6 to 11

System V
R3

UnixWare
1.x to 2.x
(System V

R4.2)

BSD 4.3
Tahoe

BSD 4.3
Reno

FreeBSD
3.0 to 3.2

FreeBSD
3.3-11.x

Linux
3.x

Linux
4.x OpenServer

10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

DragonFly
BSD

1.0 to 4.8

image: Wikpedia/Eraserhead1+Infinity0+Sav_vas 61

POSIX: standardized Unix
Portable Operating System Interface (POSIX)

“standard for Unix”

current version online:
https://pubs.opengroup.org/onlinepubs/9699919799/

(almost) followed by most current Unix-like OSes

…but OSes add extra features

…and POSIX doesn’t specify everything

62

what POSIX defines
POSIX specifies the library and shell interface

source code compatibility

doesn’t care what is/is not a system call…

doesn’t specify binary formats…

idea: write applications for POSIX, recompile and run on all
implementations

this was a very important goal in the 80s/90s
at the time, no dominant Unix-like OS (Linux was very immature)

63

getpid
pid_t my_pid = getpid();
printf("my pid is %ld\n", (long) my_pid);

64

process ids in ps
cr4bd@machine:~$ ps

PID TTY TIME CMD
14777 pts/3 00:00:00 bash
14798 pts/3 00:00:00 ps

65

read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

67

read’ing one byte at a time
string s;
ssize_t amount_read;
char c;
/* cast to void * not needed in C */
while ((amount_read = read(STDIN_FILENO, (void*) &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}
68

write example
/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello, World!\n", 14);

69

aside: environment variables (1)
key=value pairs associated with every process:
$ printenv
MODULE_VERSION_STACK=3.2.10
MANPATH=:/opt/puppetlabs/puppet/share/man
XDG_SESSION_ID=754
HOSTNAME=labsrv01
SELINUX_ROLE_REQUESTED=
TERM=screen
SHELL=/bin/bash
HISTSIZE=1000
SSH_CLIENT=128.143.67.91 58432 22
SELINUX_USE_CURRENT_RANGE=
QTDIR=/usr/lib64/qt-3.3
OLDPWD=/zf14/cr4bd
QTINC=/usr/lib64/qt-3.3/include
SSH_TTY=/dev/pts/0
QT_GRAPHICSSYSTEM_CHECKED=1
USER=cr4bd
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:
MODULE_VERSION=3.2.10
MAIL=/var/spool/mail/cr4bd
PATH=/zf14/cr4bd/.cargo/bin:/zf14/cr4bd/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/puppetlabs/bin:/usr/cs/contrib/bin:.
PWD=/zf14/cr4bd
LANG=en_US.UTF-8
MODULEPATH=/sw/centos/Modules/modulefiles:/sw/linux-any/Modules/modulefiles
LOADEDMODULES=
KDEDIRS=/usr
…
_=/usr/bin/printenv

70

aside: environment variables (2)
environment variable library functions:

getenv("KEY") → value
putenv("KEY=value") (sets KEY to value)
setenv("KEY", "value") (sets KEY to value)

int execve(char *path, char **argv, char **envp)

char *envp[] = { "KEY1=value1", "KEY2=value2", NULL };
char *argv[] = { "somecommand", "some arg", NULL };
execve("/path/to/somecommand", argv, envp);

normal exec versions — keep same environment variables

71

aside: environment variables (3)
interpretation up to programs, but common ones…

PATH=/bin:/usr/bin
to run a program ‘foo’, look for an executable in /bin/foo, then
/usr/bin/foo

HOME=/zf14/cr4bd
current user’s home directory is ‘/zf14/cr4bd’

TERM=screen-256color
your output goes to a ‘screen-256color’-style terminal

…
72

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}
73

waiting for all children
#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}

74

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}

75

‘waiting’ without waiting
#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}

76

parent and child processes
every process (but process id 1) has a parent process
(getppid())
this is the process that can wait for it
creates tree of processes (Linux pstree command):

77

parent and child questions…
what if parent process exits before child?

child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()s (or equivalent) for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

78

read’ing a fixed amount
ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0);

79

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

80

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

80

write example (with error checking)
const char *ptr = "Hello, World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
} 81

partial writes
usually only happen on error or interruption

but can request “non-blocking”
(interruption: via signal)

usually : write waits until it completes
= until remaining part fits in buffer in kernel
does not mean data was sent on network, shown to user yet, etc.

82

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

83

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

83

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

83

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

83

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

83

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

83

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

84

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

84

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

84

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

84

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

84

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

85

filesystem abstraction
regular files — named collection of bytes

also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

86

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

87

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
path = filename
e.g. "/foo/bar/file.txt"

file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

88

open: file descriptors
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files

89

POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

90

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {

close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {
char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {

printf("%c", buffer[i]);
}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 91

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {

close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {
char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {

printf("%c", buffer[i]);
}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 92

empirical evidence
8 0

374 01
210 012
30 0123
12 01234
3 012345
1 0123456
2 01234567
1 012345678

359 0123456789

94

partial reads
read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

95

pipe: closing?
if all write ends of pipe are closed

can get end-of-file (read() returning 0) on read end
exit()ing closes them

→ close write end when not using

generally: limited number of file descriptors per process

→ good habit to close file descriptors not being used

(but probably didn’t matter for read end of pipes in example)

96

dup2 exercise
recall: dup2(old_fd, new_fd)
int fd = open("output.txt", O_WRONLY | O_CREAT, 0666);
write(STDOUT_FILENO, "A", 1);
dup2(fd, STDOUT_FILENO);
pid_t pid = fork();
if (pid == 0) { /* child: */

dup2(STDOUT_FILENO, fd); write(fd, "B", 1);
} else {

write(STDOUT_FILENO, "C", 1);
}

Which outputs are possible?
A. stdout: ABC ; output.txt: empty D. stdout: A ; output.txt: BC
B. stdout: AC ; output.txt: B E. more?
C. stdout: A ; output.txt: CB

97

	process creation and management
	summary diagram
	exercises (fork+exec+wait)

	shell features
	fd management
	I/O redirection: syntax, method preview
	pipelines

	files in POSIX, part 1
	interlude: file descriptors
	getting file descriptors
	close
	Shell: redirection
	dup2: redirection mechanism
	open/close/dup/fork and fd array
	exercise (read/write/dup2)

	pipelines
	pipe
	pipe and pipelines

	POSIX api summary
	caching
	memory hierarchy intro

	backup slides
	wait statuses

	shells
	shells, the concept
	searching for programs
	kernel buffering
	layers of file interfaces
	pipe blocking
	waiting for more than one?
	POSIX and Unix
	getpid
	read, write
	aside: environment variables
	wait for mutliple
	wait for all
	wait for all (alt)
	waitpid WNOHANG
	parent and child

	partial reads and writes
	partial reads and read error checking
	partial writes and write error checking
	kernel buffering
	open
	Unix: everything is a file

	pipe exercise (partial reads)
	pipe: closing?
	dup2 exercise

