
1

last time
hazards in pipelines

hazard = extra work needed to make instruction run correctly in pipeline
data hazard = …reading value with pending update
control hazard = …can’t compute next instruction to fetch

stalling (pause instructions until ready) to resolve hazards
forwarding — take pending value from later in pipeline

MUX to select versus value from register
compare register numbers to see if forwarding needed
can combine with stalling

branch prediction — guess what jump will do
if wrong; undo guess when actual outcome known

2

anonymous feedback (1)
pipeline assignment — deadline move?

I know we didn’t completely cover branch prediction
think assignment text is enough + no quiz due next Tuesday
past experience: assignment is quicker to do than typical assignment

pipeline assignment — how partial credit?
rubric categories checking for things like:
one instruction per stage per cycle
instructions pass through stages in order + never skip stages
identifies when misprediction occurs
instruction X fetched after instruction Y
correctly identifies data hazard requiring stalling
…

3

on upcoming quiz
next quiz due Tuesday after Thanksgiving

will release tomorrow (so you can start early if you want)

4

jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags
compute if jump goes to LABEL

use computed result

5

jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags

compute if jump goes to LABEL

use computed result

5

jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags

compute if jump goes to LABEL

use computed result

5

jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags
compute if jump goes to LABEL

use computed result

5

making guesses
cmpq %r8, %r9
jne LABEL
xorq %r10, %r11
movq %r11, 0(%r12)
...

LABEL: addq %r8, %r9
imul %r13, %r14
...

speculate (guess): jne won’t go to LABEL
right: 2 cycles faster!; wrong: undo guess before too late

6

jXX: speculating right (1)

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL
xorq %r10, %r11
movq %r11, 0(%r12)
...

LABEL: addq %r8, %r9
imul %r13, %r14
...

7

jXX: speculating wrong
cycle # 0 1 2 3 4 5 6 7 8

cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
xorq %r10, %r11 F D
(inserted nop) E M W
movq %r11, 0(%r12) F
(inserted nop) D E M W
LABEL: addq %r8, %r9 F D E M W
imul %r13, %r14 F D E M W
…

instruction “squashed”

instruction “squashed”

8

jXX: speculating wrong
cycle # 0 1 2 3 4 5 6 7 8

cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
xorq %r10, %r11 F D
(inserted nop) E M W
movq %r11, 0(%r12) F
(inserted nop) D E M W
LABEL: addq %r8, %r9 F D E M W
imul %r13, %r14 F D E M W
…

instruction “squashed”

instruction “squashed”

8

“squashed” instructions
on misprediction need to undo partially executed instructions

mostly: remove from pipeline registers

more complicated pipelines: replace written values in
cache/registers/etc.

9

performance

kind portion
cycles

(predict
not-taken)

cycles
(stall)

taken jXX 3% 3 3
non-taken jXX 5% 1 3

others 92% 1* 1*

hypothetical instruction mix

predict: 3 × .03 + 1 × .05 + 1 × .92 =
1.06 cycles/instr.

stall: 3 × .03 + 3 × .05 + 1 × .92 =
1.16 cylces/instr. (1.19 ÷

1.09 ≈ 1.09x faster)

* — ignoring data hazards 10

performance

kind portion
cycles

(predict
not-taken)

cycles
(stall)

taken jXX 3% 3 3
non-taken jXX 5% 1 3

others 92% 1* 1*

hypothetical instruction mix

predict: 3 × .03 + 1 × .05 + 1 × .92 =
1.06 cycles/instr.

stall: 3 × .03 + 3 × .05 + 1 × .92 =
1.16 cylces/instr. (1.19 ÷

1.09 ≈ 1.09x faster)
* — ignoring data hazards 11

exercise: predict+forward (1)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r7, %r8 F D E M W
jle foo (taken) F D E M W
…
…
…
foo: andq %r9, %r8 F D E M W
if jle is correctly predicted :

in andq, %r9 is addq.
in andq, %r8 is subq.
A: not forwarded from [assume read while writing requires forwarding]
B-D: forwarded to decode from {execute,memory,writeback} stage of

12

exercise: predict+forward (1)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r7, %r8 F D E M W
jle foo (taken) F D E M W
…
…
…
foo: andq %r9, %r8 F D E M W
if jle is correctly predicted :

in andq, %r9 is addq.
in andq, %r8 is subq.
A: not forwarded from [assume read while writing requires forwarding]
B-D: forwarded to decode from {execute,memory,writeback} stage of

12

exercise: predict+forward (2)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r7, %r8 F D E M W
jle foo (taken) F D E M W
… F D E M W
… F D E M W
…
foo: andq %r9, %r8 F D E M W

if jle is mispredicted + resolved after jle’s execute:
in andq, %r9 is addq.
in andq, %r9 is subq.
A: not forwarded from [assume read while writing requires forwarding]
B-D: forwarded to decode from {execute,memory,writeback} stage of 13

exercise: predict+forward (2)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r7, %r8 F D E M W
jle foo (taken) F D E M W
(mispredicted) F D E M W
(mispredicted) F D E M W
…
foo: andq %r9, %r8 F D E M W

if jle is mispredicted + resolved after jle’s execute:
in andq, %r9 is addq.
in andq, %r9 is subq.
A: not forwarded from [assume read while writing requires forwarding]
B-D: forwarded to decode from {execute,memory,writeback} stage of 13

other pipelines?
showed fetch / decode / execute / memory / writeback

very common early pipeline design

not only option!

14

hazards versus dependencies
dependency — X needs result of instruction Y?

has potential for being messed up by pipeline
(since part of X may run before Y finishes)

hazard — will it not work in some pipeline?
before extra work is done to “resolve” hazards
multiple kinds: so far, data hazards

15

ex.: dependencies and hazards (1)
addq %rax, %rbx

subq %rax, %rcx

movq $100, %rcx

addq %rcx, %r10

addq %rbx, %r10

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

16

ex.: dependencies and hazards (1)
addq %rax, %rbx

subq %rax, %rcx

movq $100, %rcx

addq %rcx, %r10

addq %rbx, %r10

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

16

ex.: dependencies and hazards (1)
addq %rax, %rbx

subq %rax, %rcx

movq $100, %rcx

addq %rcx, %r10

addq %rbx, %r10

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

16

ex.: dependencies and hazards (1)
addq %rax, %rbx

subq %rax, %rcx

movq $100, %rcx

addq %rcx, %r10

addq %rbx, %r10

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

16

pipeline with different hazards
example: 4-stage pipeline:
fetch/decode/execute+memory/writeback

// 4 stage // 5 stage
addq %rax, %r8 // // W
subq %rax, %r9 // W // M
xorq %rax, %r10 // EM // E
andq %r8, %r11 // D // D

addq/andq is hazard with 5-stage pipeline

addq/andq is not a hazard with 4-stage pipeline

more hazards with more pipeline stages

17

pipeline with different hazards
example: 4-stage pipeline:
fetch/decode/execute+memory/writeback

// 4 stage // 5 stage
addq %rax, %r8 // // W
subq %rax, %r9 // W // M
xorq %rax, %r10 // EM // E
andq %r8, %r11 // D // D

addq/andq is hazard with 5-stage pipeline

addq/andq is not a hazard with 4-stage pipeline

more hazards with more pipeline stages

17

pipeline with different hazards
example: 4-stage pipeline:
fetch/decode/execute+memory/writeback

// 4 stage // 5 stage
addq %rax, %r8 // // W
subq %rax, %r9 // W // M
xorq %rax, %r10 // EM // E
andq %r8, %r11 // D // D

addq/andq is hazard with 5-stage pipeline

addq/andq is not a hazard with 4-stage pipeline

more hazards with more pipeline stages
17

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

result only available near end of second execute stage

where does forwarding, stalls occur?
cycle # 0 1 2 3 4 5 6 7 8

(1) addq %rcx, %r9 F D E1 E2 M W
(2) addq %r9, %rbx F D D E1 E2 M W
(3) addq %rax, %r9 F F D E1 E2 M W
(4) movq %r9, (%rbx) F D E1 E2 M W
(5) movq %rcx, %r9 F D E1 E2 M W

18

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

cycle # 0 1 2 3 4 5 6 7 8
addq %rcx, %r9 F D E1 E2 M W
addq %r9, %rbx F D E1 E2 M W
addq %r9, %rbx F D D E1 E2 M W
addq %rax, %r9 F D E1 E2 M W
addq %rax, %r9 F F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %rcx, %r9 F D E1 E2 M W

r9 not available yet — can’t forward here
so try stalling in addq’s decode…
after stalling once, now we can forward

19

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

cycle # 0 1 2 3 4 5 6 7 8
addq %rcx, %r9 F D E1 E2 M W
addq %r9, %rbx F D E1 E2 M W
addq %r9, %rbx F D D E1 E2 M W
addq %rax, %r9 F D E1 E2 M W
addq %rax, %r9 F F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %rcx, %r9 F D E1 E2 M W

r9 not available yet — can’t forward here
so try stalling in addq’s decode…

after stalling once, now we can forward

19

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

cycle # 0 1 2 3 4 5 6 7 8
addq %rcx, %r9 F D E1 E2 M W
addq %r9, %rbx F D E1 E2 M W
addq %r9, %rbx F D D E1 E2 M W
addq %rax, %r9 F D E1 E2 M W
addq %rax, %r9 F F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %rcx, %r9 F D E1 E2 M W

r9 not available yet — can’t forward here
so try stalling in addq’s decode…

after stalling once, now we can forward

19

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

cycle # 0 1 2 3 4 5 6 7 8
addq %rcx, %r9 F D E1 E2 M W
addq %r9, %rbx F D E1 E2 M W
addq %r9, %rbx F D D E1 E2 M W
addq %rax, %r9 F D E1 E2 M W
addq %rax, %r9 F F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %rcx, %r9 F D E1 E2 M W

r9 not available yet — can’t forward here
so try stalling in addq’s decode…
after stalling once, now we can forward

19

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

cycle # 0 1 2 3 4 5 6 7 8
addq %rcx, %r9 F D E1 E2 M W
addq %r9, %rbx F D E1 E2 M W
addq %r9, %rbx F D D E1 E2 M W
addq %rax, %r9 F D E1 E2 M W
addq %rax, %r9 F F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %r9, (%rbx) F D E1 E2 M W
movq %rcx, %r9 F D E1 E2 M W

r9 not available yet — can’t forward here
so try stalling in addq’s decode…
after stalling once, now we can forward

19

static branch prediction
forward (target > PC) not taken; backward taken

intuition: loops:
LOOP: ...

...
je LOOP

LOOP: ...
jne SKIP_LOOP
...
jmp LOOP

SKIP_LOOP:

20

exercise: static prediction
.global foo
foo:

xor %eax, %eax // eax <- 0
foo_loop_top:

test $0x1, %edi
je foo_loop_bottom // if (edi & 1 == 0) goto for_loop_bottom
add %edi, %eax

foo_loop_bottom:
dec %edi // edi = edi - 1
jg for_loop_top // if (edi > 0) goto for_loop_top
ret

suppose %edi = 3 (initially)
and using forward-not-taken, backwards-taken strategy:
how many mispreditions for je? for jg?

21

backup slides

22

connecting things
how to (in hardware) connect A and B?

A B

one wire carrying binary signals?

collision?one-way communication only?
called simplex…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things
how to (in hardware) connect A and B?

A B
one wire carrying binary signals?

collision?one-way communication only?
called simplex…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things
how to (in hardware) connect A and B?

A B

one wire carrying binary signals?

collision?

one-way communication only?
called simplex…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things
how to (in hardware) connect A and B?

A B

one wire carrying binary signals?

collision?

one-way communication only?
called simplex

…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things
how to (in hardware) connect A and B?

A B

one wire carrying binary signals?

collision?one-way communication only?
called simplex

…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things
how to (in hardware) connect A and B?

A B

one wire carrying binary signals?

collision?one-way communication only?
called simplex…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things
how to (in hardware) connect A and B?

A B

one wire carrying binary signals?

collision?one-way communication only?
called simplex…and later

A B

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

taking turns, but one-way
called half-duplex
challenge: how to agree who’s turn?

both ways at the same time
called full duplex (or duplex)

here: duplex via multiple wires (simplest scheme)
can achieve effect electrically/etc. via one wire
example: cable Internet
(how is topic for ECE class)

23

connecting things

A

B

C

D

E

F
how to connect?

all-to-allshared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

23

connecting things

A

B

C

D

E

F

how to connect?

all-to-all

shared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

24

connecting things

A

B

C

D

E

F

how to connect?all-to-all

shared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

25

connecting things

A

B

C

D

E

F

how to connect?all-to-all

shared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

25

shared bus, really?
common for parts of internals of computers (topic later)

model for wifi
radio “channel” kinda similar to shared wire

how the early versions of Ethernet worked
“vampire taps” physically attached to shared cable

26

shared bus, messages for who?
messages needs a ‘header’ to tell
who it’s to/from

everyone needs to filter out messages
that aren’t theirs

Figure from Digital, Intel, and Xerox, “The Ethernet: A Local Area Network: Data Link Layer and Physical Layer Specification”, Version 2.0 (1982) 27

taking turns on shared bus?
token ring

one machine has a ‘token’ = can send
send special message to pass to another machine

free-for-all: collision detection + retry
detect if you’re transmitting when someone else is
wait (usually randomized amount of time) and retry

coordinating machine transmits timeslots
part of common cellphone design (TDMA: time division multiple access)

make bus support multiple transmitters?
requires understanding how interference works
another part of common cell phone design

28

connecting things

A

B

C

D

E

F

how to connect?all-to-allshared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

29

what does the hub do?
simple version:

imitate shared bus: copy messages to everyone else
something to handle two messages sent at once

less simple:
read “header” on message + send to destination only
requires some way to figure out destinations
queue of messages waiting to be sent

30

connecting things

A

B

C

D

E

F

how to connect?all-to-allshared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

31

more complicated designs
hierarchies

networks of networks
“internetworks”

so far still have single points of failure

32

connecting things

A

B

C

D

E

F

how to connect?all-to-allshared bus

shared wire(s)
need some way to take turns

hub/
switch

router/
switch

router/
switch

33

individual computers are networks
individual computers are (kinda) networks of…

processors
memories
I/O devices

so what topology (layout) do those networks have?

34

the “bus”

core

core

core memory
controller

USB
controller

graphics
controller

disk
controller

memory

memory

memory

keyboard mouse

35

example: 80386 signal pins
name purpose
CLK2 clock for bus timing
W/R# write or read?

metadataD/C# data or control?
M/IO# memory or I/O?
INTR interrupt request
… other metadata signals
BE0#-BE3# (4) byte enable addressA2-A31 (30) address bits
DO-D31 (32) data signals data

adapted from the Intel 80386 Hardware Reference Manual (1986) 36

example: AMD EPYC (1 socket)

Figure from Burd et al,
“ ‘Zepllin’: An SoC for Multichip Architectures” (IEEE JSSC Vol 54, No 1) 37

example: Intel Skylake-SP

Figure from Tam et al, “SkyLake-SP: A 14nm 28-Core Xeon® Processor” (ISSCC 2018) 38

extra trips to CPU

core

core

core memory
controller

USB
controller

graphics
controller

disk
controller

memory

memory

memory

keyboard mouse

39

extra trips to CPU

core

core

core memory
controller

USB
controller

graphics
controller

disk
controller

memory

memory

memory

keyboard mouse

39

DMA

core

core

core memory
controller

USB
controller

graphics
controller

disk
controller

memory

memory

memory

keyboard mouse

“place data at 0xABCD”

“write to 0xABCD”

“direct memory access”
controller communicates with memory itself

40

DMA

core

core

core memory
controller

USB
controller

graphics
controller

disk
controller

memory

memory

memory

keyboard mouse

“place data at 0xABCD”

“write to 0xABCD”

“direct memory access”
controller communicates with memory itself

40

DMA

core

core

core memory
controller

USB
controller

graphics
controller

disk
controller

memory

memory

memory

keyboard mouse

“place data at 0xABCD”

“write to 0xABCD”

“direct memory access”
controller communicates with memory itself

40

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addressesway to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

41

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addressesway to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

41

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addressesway to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

41

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

41

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

41

	idea: branch prediction
	why so good?
	and forwarding
	aside: other pipelines
	dependency v hazard
	with different pipeline?

	branch prediction strategies, briefly
	static prediction
	exercise: static prediction

	backup slides
	half v full duplex
	topologies
	in the computer
	external devices, memory-mapped I/O
	direct memory access
	extra trip to the CPU?
	direct memory access trick

