variant

Fall 2024 CS 3130 Final, Page 1 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

Name:

Write your name and computing ID above. Write your computing ID at the top of each page in
case pages get separated. Sign the honor pledge below.

Generally, we will not answer questions about the exam during the exam time. If you think a
question is unclear and requires additional information to answer, please explain how in your
answer. For multiple choice questions, write a * next to the relevant option(s) along with your
explanation.

On my honor as a student I have neither given nor received aid on this exam.

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 2 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

. (12 points) Consider a program that is built in a combination of a custom programming language and
C. To support the custom programming language, the program’s source code includes a compiler for
that programming language. To build the program requires building that compiler, then using that
compiler to build an object file, then linking that object file with others to build the final program.

To build everything from scratch uses the following commands:

clang -c compiler.c

clang -c main.c

clang -o compiler compiler.o
./compiler -c functions.customlang
clang -o program main.o functions.o

Fill in the blanks to complete the following Makefile to automate rebuilding the program. (You may
not need all lines.)

all: program

main.o: main.c
clang -c main.c

compiler.o: compiler.c
clang -c compiler.c

clang -o program main.o functions.o

.PHONY: all

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 3 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

2. Consider the following C program that uses the POSIX API. (Assume all needed header files are
included.)

1 pid_t p;

2 int g = 0;

3 void handler(int ignored) {

4 printf("%d:%d:%d\n", (int) p, (int) getpid(), g);
5 g +=1;

6 1}

7

8 int main() {

9 struct sigaction sa;

10 memset (&sa, 0, sizeof(sa));
11 sa.sa_handler = handler;

12 sa.sa_flags = SA_RESTART;
13 sigaction(SIGUSR1, &sa, NULL);
14 p = getpid();

15 pid_t q = fork();

16 if (q == 0) {

17 kill(SIGUSR1, p);

18 while (1) pause();

19 } else {

20 kill(SIGUSR1, q);

21 pid_t r = fork(Q);

22 if (r == 0) {

23 while (1) pause();
24 } else {

25 kill(SIGUSR1, r);
26 exit(0);

27 }

28 }

29 }

(SA_RESTART makes it so signal handlers that interrupt a system call restart that system call when
they finish.)

(a) (8 points) Which of the following is a possible output of the above program? Select all that apply.

100:100:0 100:101:0 100:101:0 100:100:0
[1 100:101:0 [0 100:102:0 [0 100:100:0 1 100:100:1
100:102:1 100:100:0 100:102:1 100:100:2

3. (6 points) Consider the following C snippet that uses the POSIX API:

printf ("Enter letter: ");

char ¢ = getchar();

FILE *fh = fopen("dir/out.txt", "w");
if (!fh) handle_error();

fwrite(fh, &c, 1);

fclose(fh);

Suppose the program gets a permission denied error when it tries to open out.txt. Which of the
following changes might fix this issue? Select all that apply.

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 4 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

O adding a new signal handler (and registering it with sigaction())

O

adding an appropriate entry to the access control list of the directory dir

[0 adding an appropriate entry to the access control list of a file called out.txt, if one exists in
dir

0 adding an appropriate entry to the access control list of the program’s executable

O changing the program to open for reading and writing (like with "w+") instead of just for

writing

[0 making the program dynamically linked instead of statically linked

rev. 20241211a

Fall 2024 CS 3130 Final, Page 5 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

variant

4. Consider a system with:

(a)

16384 (214) -byte pages, with 2-level page tables, where page tables at each level contain 2048
(211) entries of 8 bytes each

an 8-way, 64-entry TLB

36-bit virtual addresses

48-bit physical addresses

a 4-way 4096 (212) byte L1 data cache with 128 (27)—byte blocks that uses physical addresses, an
LRU replacement policy, and write-back and write-allocate policies

a 2-way 4096 (212) byte L1 instruction cache with 128-byte block that uses physical addresses and
an LRU replacement policy

an 8-way 1048576 (220) byte L2 cache, with 128-byte blocks shared between instructions and data,
that uses physical address, and has an LRU replacement policy, and write-back and write-allocate
policies

(4 points) How many bits are TLB tags? You may leave your answer as an unsimplified arithmetic
expression.

(b) (6 points) Fill in the blanks. You may leave your answers as unsimplified arithmetic expressions.

When performing a page table lookup for virtual address 0x0 A123 4567, if the first-level page table
starts at 0x40 0000 and the second-level page table starts at physical address 0x50 0000.

Then, to find the address of the second-level page table entry, we would take

bits

of the virtual address

(counting the least significant bit as bit 0) and

(4 points) How much storage does the L2 cache use for tags? You may write your answer as an
unsimplified arithmetic expression.

rev. 20241211a

Fall 2024 CS 3130 Final, Page 6 of 12 UHShU.lCﬂﬁ&ﬂputmg ID:

variant

(d) (6 points) Give an example of two different memory addresses that would be stored in the same set in
the L1 data cache but not in the L1 instruction cache, or if this is not possible write ‘impossible’ and

explain briefly (at most one sentence).

If you write addresses, you may write them as unsimplified arithmetic expressions if you prefer.

(e) (6 points) Suppose the L1 data cache is initially empty, then the following operations are performed.
Complete the following table, identifying how much is read/written from the L2 cache during each

access. (The first row is done for you.)

address

operation type | tag set index offset | L2 read bytes L2 write bytes
read 1 byte 0x2345 0x5 0x02 | 128 0

write 1 byte 0x2345 0x5 0x03

write 4 byte 0x1234 0x4 0x44

read 1 byte 0x1234 0x4 0x48

read 8 byte 0x1043 0x4 0x00

read 4 byte 0x1044 O0x4 0x04

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 7 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

. (4 points) Alice and Bob have a TCP connection they use to send messages to each other. One of
their messages was dropped somewhere along the way and was resent. This all happened without the
TCP transport layer ever behaving differently or noticing by failing to see an acknowledgment. Which
of the following happened?

O Alice is connected to the internet through Wi-Fi and this link layer dropped the message,
but noticed it and resent the message very quickly

At the application layer, Bob’s browser saw the dropped message and resent the message
very quickly

O

O At the IP network layer, the packet was dropped since it was sent with the wrong destination
port and was automatically detected and resent by IP with the corrected port

O

The packet could have been dropped and resent at any layer since TCP never notices or
changes behavior when packets are dropped.

. (12 points) Suppose we run a chat program similar to the signals lab on a shared, single-core system.
In this design, two instances of the program run at the same time. They use shared memory to
communicate message contents. Whenever a message is sent, one program sends a signal to the other.
Then the other outputs that message, then modifies the shared memory region to indicate that it has
received the message.

Suppose two instances of this program are running and ‘connected’ to each other. Then, one message
is sent from one program to the other.

As part of sending this message, list the exceptions with their causes that must occur. Assume that
initially the shared memory region is setup (such that no exceptions will occur because of it being
accessed), the program sending the message has requested and but not received input, and some third
program is active on the processor.

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 8 of 12 UHShUlCﬂﬁ;dmmg ID:

7. Consider the following assembly snippet:

addq %r9, %ri10
addq %r9, %ri1
xorq %r9, %ril2
xorq %ri0, %ri1
xorq %ril, %ri2

g W N -

(a) (8 points) Suppose we executed the above code on a six-stage pipelined processor which is like the
five-stage processor we discussed in lecture, but the execute stage is split into two stages. The operands
for arithmetic operations are needed near the beginning of the first execute stage, and the results are
available for forwarding only near the end of the second execute stage.

If the addq is fetched during cycle number 1, then the final xorq would complete its writeback during
cycle

(b) (12 points) Suppose an out-of-order processor has 2 pipelined ALUs, each of which take 2 cycles for
every operation but can accept a new operation each cycle. (Ignore time to load the instructions into
the instruction queue, writeback their results or commit, and Assume that the result of an operation
is available for forwarding immediately after it completes. that operations cannot start until after all
operands are available, and that the initial values of registers are available in advance.) Fill in the
table, using the instructions numbers (1-5) above, with how this instruction might be most quickly
executed on the ALUs.

cycle # 1 2 3 4 5 6

ALU1 stagel

ALU1 stage2

ALU2 stagel

ALU2 stage2

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 9 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

. (6 points) Consider the following C code (where ... represents missing code):

unsigned int secret_array[4000];

unsigned int mystery;

void MysteryFunction() {
secret_array[mystery] += 1;

3

void ProbeFunction() {
unsigned char probe_array[65536] ;
for (int i = 0; i < array; ++i) {
probe_array[i] += 1;
}
MysteryFunction() ;
... /* code to time accesses to probe_array */

}

Suppose we run this on a system:

o with a 64KByte (216 byte) 2-way data cache with 32-byte cache blocks and an LRU replacement
policy and a write-back, write-allocate policy,

o where both secret_array and probe_array start an address which is a multiple of the cache
size, and

e where virtual memory is not in use

e where chars are 1 byte and ints are 4 bytes

By timing acessing to probe_array in ProbeFunction where ... is placed, we can obtain information
about the value of mystery.

Fill in the blanks below. You may use an unsimplified arithmetic expression for any numbers.

If the value of mystery is 102, we would expect accesses to probe_array index to be

than accesses to most elements of probe_array (when this would not be the case for a

majority of other possible values of mystery).

rev. 20241211a

10.

variant

Fall 2024 CS 3130 Final, Page 10 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

Acme Corp receives orders from their wholesale customers using (unwisely) system with custom cryp-
tography (instead of something with standard TLS and the like).

In this system, each of their customer’s has access to Acme’s public keys for encryption and digital
signatures, and Acme has access to each of their customer’s public keys for encryption and digital
signatures.

To make an order, a customer sends a message with the following parts:

o a submessage #1, individually encrypted to Acme’s public key, containing
— an unique identifier for the order
— the number of items in the order
e a digital signature, made using the customer’s private key, for submessage #1
o for each item, a submessage individually encrypted to Acme’s public key, containing the name of
the item

Acme Corp replies to the order with an shipping and cost information, with the following parts:

e a submessage #1, individually encrypted to the customer’s public key, containing
— the customer’s identifier for the order
— the total cost for the order
e a digital signature, made using Acme’s private key, for submessage #1
e for each item, a submessage individually encrypted to the customer’s public key, containing the
that item’s shipping tracking number

(5 points) Which of the following can an active machine-in-the-middle attacker do by intercepting,
changing, or injecting messages without Acme being able to detect it from the messages they receive?
Select all that apply.
[0 change which items the customer ordered in an order
[0 when a customer submits 4 consecutive orders, making it appear that the customer only
submitted the first, second, and fourth of those orders
[0 when a customer submits exactly one order, making it appear that they submitted two
different orders, but requesting the same list of items
[0 when a customer submits 2 consecutive orders, the first for items A, B, and C, and the second
for items D, E, and F, making it appear that they submitted two orders, the first for items
A, B, and C, and the second for items A, B, and E.
[learn the order identifier the customer chose, even if the customer selected it randomly from
a large set of possibilities

(4 points) Assuming they know each order’s identifier (perhaps because the customer uses idenitfier 1,
then 2, then 3, etc.) and the items ordered, which of the following can an active machine-in-the-middle
attacker do by intercepting, changing, or injecting messages without customer being able to detect it
from the messages they receive? Select all that apply.

change the total cost the customer’s receives to something that Acme did not send
change the total cost the customer’s receives to the cost of an earlier order
learn the shipping tracking numbers for the customer’s items

OooOod

change the shipping tracking numbers the customer receives to something that Acme did not
send

Consider the following C code:

pthread_mutex_t lock;
int count;
pthread_cond_t count_increase_cv; pthread_cond_t count_decrease_cv;

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 11 of 12 U_IlShU_lCﬂﬁﬁLutmg ID:

void WaitForCountAndAdd(int start_count, int add_to_count) {
pthread_mutex_lock(&lock) ;
while (count !'= start_count) {
while (count < start_count) {
pthread_cond_wait (&count_increase_cv, &lock);
}
while (count > start_count) {
pthread_cond_wait (&count_decrease_cv, &lock);
}
}
count += add_to_count;
if (add_to_count > 0) {
pthread_cond_broadcast (&count_increase_cv) ;
} else {
pthread_cond_broadcast (&count_decrease_cv) ;
}
pthread_mutex_unlock(&lock);

rev. 20241211a

variant

Fall 2024 CS 3130 Final, Page 12 of 12 U_IlShU_ﬂ:k%ﬁLuting ID:

(10 points) Suppose the count is 0, and then:

e thread A calls WaitForCountAndAdd (2, 1)

e thread B calls WaitForCountAndAdd (3, -1)

e thread C calls WaitForCountAndAdd (0, 3)
It is possible for thread A to end up calling pthread_ cond_ wait for both count_increase_cv and
count_decrease_cv. Complete the following timeline to show an example of how that could happen,
indicating the line numbers of each call to pthread functions and including all pthread function calls
until the WaitForCountAndAdd calls return. (You may not need all lines. We include the name of the
function being run, but you do not need to do this.)

thread A thread B thread C

5 (lock) — —

8 (wait) — -

lock) —

5 (
— 8 (wait) —

- — 5 (lock)

— — 16 (broadcast)

— 20 (unlock)

(b) (6 points) Suppose 5 threads call WaitForCountAndAdd(x, 1), each using a different value of x ranging

from 0 through 4 inclusive, and the initial value of count is 0.
Fill in the blanks. (You may leave your answers as unsimplified arithmetic expressions.)

If there are no spurious wakeups, then the the minimum number of pthread_cond_wait calls is
and the maximum is

rev. 20241211a

