
Spring 2024 3130 Final REFERENCE SHEET

1 page table lookup

11 0101 01 00 1011 00 00 1101 1111

×

PTE
size

0x10000

page table
base register

+

data or instruction cache

1101 0011 111st PTE
addr.

valid, etc?

split
PTE
parts

cause fault?

×

page
size

+

phys
page

#
phys
addr

2nd PTE
addr.

×

PTE
size

split
PTE
parts

valid, etc?

cause fault?

TLB

00 1101 1111
physical address

page # page offsetvirtual address

2 cache organization

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

way 0 way 1
10011 1

index

=

=

tag

AND

AND

set

OR is hit? (1)

offset

data
(B5)

3 networking layers
application HTTP, SSH,

SMTP, …
URLs, … … application-defined meanings

transport TCP, UDP, … port numbers, … segments,
datagrams

reach correct program, reliablity/streams

network IPv4, IPv6, … IP addresses, … packets reach correct machine (across networks)
link Ethernet,

Wi-Fi, …
MAC addresses, … frames coordinate shared wire/radio

physical … … … encode bits for wire/radio

Spring 2024 3130 Final REFERENCE SHEET

4 pipelined processor

PC I$

+ instr
len

register
file

math

D$

read

write

fetch
decode

execute memory

writeback

5 OOO processor

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

6 selected POSIX functions
• give lock is a pthread_mutex_t and cv is pthread_cond_t

– mutex lock/unlock: pthread_mutex_lock(&lock); pthread_mutex_unlock(&lock);
– pthread_cond_wait(&cv, &lock) — unlock lock + wait on cv’s queue; when woken up, relock

lock and return; can be woken up early by ‘spurious wakeup’
– pthread_cond_signal(&cv) — wake up one waiting thread from cv’s queue
– pthread_cond_broadcast(&cv) — wake up all waiting threads from cv’s queue
– create new process copying current: fork() — return new pid in parent (old), 0 in child (new)
– pipe(fds) — create a pipe, set fds[0] to the file descriptor for the read end, fds[1] for the write

end
– write(fd, buffer, size) write size bytes from buffer to the file descriptor fd
– read(fd, buffer, size) read up to size bytes from buffer to the file descriptor fd, return

total bytes read or 0 on end-of-file
– waitpid(pid, 0, NULL) wait for the child process with ID pid to terminate
– kill(pid, signal_number) — send signal signal_number to process pid
– sigaction(signal_number, &act_struct, NULL) — configure signal handler for the specified

signal based on the information in act_struct

7 assembly
• OPq %r8, %r9: perform OP (example: add) on %r8 and %r9, put a resulting number (if any) in %r9
• movq X, Y: move 64-bit value from X to Y
• %r8, %rax, etc. — 64-bit register
• (%r8) — the value in memory at an address equal to the value of %r8

