
1

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.so loads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o ./program ...

2

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.so loads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o ./program ...

2

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.so loads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o ./program ...

2

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.so loads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o

./program ...

2

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.so loads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o

./program ...

2

files in building C programs [static linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(compiler files) libc.a

3

file extensions
 name
 .c C source code
 .h C header file
 .s (or .asm) assembly file
 .o (or .obj) object file (binary of assembly)
 (none) (or .exe) executable file
 .a (or .lib) statically linked library
 [collection of .o files]
 .so (or .dll or .dylib) dynamically linked library
 [‘shared object’]

4

static libraries
Unix-like static libraries: libfoo.a

internally: archive of .o files with index

create: ar rcs libfoo.a file1.o file2.o …
‘archive’ utility ar and not normal C compiler

use: cc … -o program -L/path/to/lib … -lfoo
no space between -l and library name
cc could be clang, gcc, clang++, g++, etc.
-L/path/to/lib not needed if in standard location

5

shared libraries
Linux shared libraries: libfoo.so

create:
compile .o files with -fPIC (position independent code)
then: cc -shared … -o libfoo.so

use: cc …-o program -L/path/to/lib …-lfoo
cc = C compiler (clang, gcc, etc.)

-L... sets path only when making executable

runtime path set separately

6

shared libraries
Linux shared libraries: libfoo.so

create:
compile .o files with -fPIC (position independent code)
then: cc -shared … -o libfoo.so

use: cc …-o program -L/path/to/lib …-lfoo
cc = C compiler (clang, gcc, etc.)

-L... sets path only when making executable

runtime path set separately
6

finding shared libraries (1)
$ ls
libexample.so main.c
$ clang -o main main.c -lexample
/usr/bin/ld: cannot find -lexample
clang: error: linker command failed with exit code 1 (use -v to see invocation)
$ clang -o main main.c -L. -lexample
$./main
./main: error while loading shared libraries:

 libexample.so: cannot open shared object file: No such
 file or directory

$ LD_LIBRARY_PATH=. ./main
or
$ export LD_LIBRARY_PATH=.
$./main
or
$ clang -o main main.c -L. -lexample -Wl,-rpath .
$./main

7

finding shared libraries (1)
$ ls
libexample.so main.c
$ clang -o main main.c -lexample
/usr/bin/ld: cannot find -lexample
clang: error: linker command failed with exit code 1 (use -v to see invocation)
$ clang -o main main.c -L. -lexample
$./main
./main: error while loading shared libraries:

 libexample.so: cannot open shared object file: No such
 file or directory

$ LD_LIBRARY_PATH=. ./main
or
$ export LD_LIBRARY_PATH=.
$./main
or
$ clang -o main main.c -L. -lexample -Wl,-rpath .
$./main 7

finding shared libraries (1)
cc …-o program -L/path/to/lib …-lfoo

on Linux: /path/to/lib only used to create program
program contains libfoo.so without full path

Linux default: libfoo.so expected to be in /usr/lib, /lib, and
other ‘standard’ locations

possible overrides:
LD_LIBRARY_PATH environment variable
paths specified with -Wl,-rpath=/path/to/lib when creating
executable

8

libraries and command line
when linking against libraries use:
clang -o executable foo.o bar.o -lName
rather than
clang -o executable -lName foo.o bar.o

by default, linker processes files in order

might only grab things that previous files needed from library
(especially for static libraries)

9

exercise (incremental compilation)
program built from main.c + extra.c

main.c, extra.c both include extra.h, stdio.h

clang -c main.c # command 1
clang -c extra.c # command 2
clang -o program main.o extra.o # command 3

What commands need to be rerun if…

Question A: …main.c changes?

Question B: …extra.h changes?

10

make
make — Unix program for “making” things…

…by running commands based on what’s changed

what commands? based on rules in makefile
(text file called makefile or Makefile (no extension))

11

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s) (also known as dependencies)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date
12

make rule chains
 program: main.o extra.o
 ▶ clang -Wall -o program main.o extra.o

 extra.o: extra.c extra.h
 ▶ clang -Wall -c extra.c

 main.o: main.c main.h extra.h
 ▶ clang -Wall -c main.c

to make program, first…

update main.o and extra.o if they aren’t

13

running make
“make target”

look in Makefile in current directory for rules
check if target is up-to-date
if not, rebuild it (and prerequisites, if needed) so it is

“make target1 target2”
check if both target1 and target2 are up-to-date
if not, rebuild it as needed so they are

“make”
if “firstTarget” is the first rule in Makefile,
same as ‘make firstTarget”

14

exercise: what will run?
 W: X Y
 ▶ buildW
 X: Q
 ▶ buildX
 Y: X Z
 ▶ buildY

 W modified 1 minute ago
 X modified 3 hours ago
 Y does not exist
 Z modified 1 hour ago
 Q modified 2 hours ago

exercise: “make W” will run what commands?

 A. none B. buildY only C. buildW then buildY
 D. buildY then buildW E. buildX then buildY then buildW
 F. buildX then buildW G. something else

15

explanation
W (1 min old)

X (3 h old) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
16

explanation
W (1 min old)

X (3 h old) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
16

explanation
W (1 min old)

X (3 h old) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
16

explanation
W (1 min old)

X (just updated) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
16

explanation
W (1 min old)

X (just updated) Y (just updated)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
16

‘phony’ targets (1)
common to have Makefile targets that aren’t files
 all: program1 program2 libfoo.a

“make all” effectively shorthand for “make program1
program2 libfoo.a”

no actual file called “all”

17

‘phony’ targets (2)
sometimes want targets that don’t actually build file

example: “make clean” to remove generated files
 clean:
 ▶ rm --force main.o extra.o

18

but what if I create…
 clean:
 ▶ rm --force main.o extra.o

 all: program1 program2 libfoo.a

Q: if I make a file called “all” and then “make all” what happens?

Q: same with “clean” and “make clean”?

19

marking phony targets
 clean:
 ▶ rm --force main.o extra.o

 all: program1 program2 libfoo.a

.PHONY: all clean

special .PHONY rule says “ ‘all’ and ‘clean’ not real files”

(not required by POSIX, but in every make version I know)

20

conventional targets
common convention:
 target name purpose
 (default), all build everything
 install install to standard location
 test run tests
 clean remove generated files

21

redundancy (1)
 program: main.o extra.o
 ▶ clang -Wall -o program main.o extra.o

 extra.o: extra.c extra.h
 ▶ clang -Wall -o extra.o -c extra.c
 main.o: main.c main.h extra.h

 ▶ clang -o main.o -c main.c

what if I want to run clang with -fsanitize=address
instead of -Wall?

what if I want to change clangto gcc?
22

variables/macros (1)
CC = gcc
CFLAGS = -Wall -pedantic -std=c11 -fsanitize=address
LDFLAGS = -Wall -pedantic -fsanitize=address
LDLIBS = -lm

 program: main.o extra.o
 ▶ $(CC) $(LDFLAGS) -o program main.o extra.o $(LDLIBS)

 extra.o: extra.c extra.h
 ▶ $(CC) $(CFLAGS) -o extra.o -c extra.c

 main.o: main.c main.h extra.h
 ▶ $(CC) $(CFLAGS) -o main.o -c main.c

23

aside: conventional names
chose names CC, CFLAGS, LDFLAGS, etc.

not required, but conventional names (incomplete list follows)
 CC C compiler
 CFLAGS C compiler options
 LDFLAGS linking options
 LIBS or LDLIBS libraries

24

variables/macros (2)
 CC = gcc
 CFLAGS = -Wall
 LDFLAGS = -Wall
 LDLIBS = -lm

 program: main.o extra.o
 ▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

 extra.o: extra.c extra.h
 ▶ $(CC) $(CFLAGS) -o $@ -c $<

 main.o: main.c main.h extra.h
 ▶ $(CC) $(CFLAGS) -o $@ -c $<

aside: $^ works on GNU make (usual on Linux), but not portable.

$@: target
$<: first dependency
$^: all dependencies

25

aside: make versions
multiple implementations of make

for stuff we’ve talked about so far, no differences

most common on Linux: GNU make

will talk about ‘pattern rules’, which aren’t supported by some
other make versions

older, portable, (in my opinion less intuitive) alternative: suffix rules

26

pattern rules
 CC = gcc
 CFLAGS = -Wall
 LDFLAGS = -Wall
 LDLIBS = -lm

 program: main.o extra.o
 ▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

%.o: %.c
 ▶ $(CC) $(CFLAGS) -o $@ -c $<

 extra.o: extra.c extra.h
 main.o: main.c main.h extra.h

aside: these rules work on GNU make (usual on Linux), but less portable than suffix
rules.

27

built-in rules
‘make’ has the ‘make .o from .c’ rule built-in already, so:
 CC = gcc
 CFLAGS = -Wall
 LDFLAGS = -Wall
 LDLIBS = -lm

 program: main.o extra.o
 ▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

 extra.o: extra.c extra.h
 main.o: main.c main.h extra.h

(don’t actually need to write supplied rule!)

note: b
uilt-in r

ules no
t allowed on t

he make lab

28

built-in rules
‘make’ has the ‘make .o from .c’ rule built-in already, so:
 CC = gcc
 CFLAGS = -Wall
 LDFLAGS = -Wall
 LDLIBS = -lm

 program: main.o extra.o
 ▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

 extra.o: extra.c extra.h
 main.o: main.c main.h extra.h

(don’t actually need to write supplied rule!)

note: b
uilt-in r

ules no
t allowed on t

he make lab

28

writing Makefiles?
error-prone to write all .h dependencies

-MM (and related) options to gcc or clang
outputs make rule
ways of having make run this + use output

Makefile generators
other programs that write Makefiles

29

other build systems
alternatives to writing Makefiles:

other make-ish build systems
ninja, scons, bazel, maven, xcodebuild, msbuild, …

tools that generate inputs for make-ish build systems
cmake, autotools, qmake, …

30

backup slides

31

suffix rules
 CC = gcc
 CFLAGS = -Wall
 LDFLAGS = -Wall

 program: main.o extra.o
 ▶ $(CC) $(LDFLAGS) -o $@ $^

.c.o:
 ▶ $(CC) $(CFLAGS) -o $@ -c $<

 extra.o: extra.c extra.h
 main.o: main.c main.h extra.h
.SUFFIXES: .c .o

aside: $^ works on GNU make (usual on Linux), but not portable.
32

	files in building C programs
	libraries, static and shared
	library order

	exercise: commands to build

	make
	basics
	exercise: what will be run
	phony targets
	conventional targets
	variables, macro rules
	aside: make versions
	pattern rules
	built-in rules

	other build system stuff
	backup slides
	suffix rules

