
1

the one-way bridge

2

the one-way bridge

2

the one-way bridge

2

the one-way bridge

2

moving two files
struct Dir {
mutex_t lock; HashMap entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock(&from_dir−>lock);
mutex_lock(&to_dir−>lock);

Map_put(to_dir−>entries, filename,
Map_get(from_dir−>entries, filename));

Map_erase(from_dir−>entries, filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

3

moving two files: lucky timeline (1)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

lock(&B->lock);
lock(&A->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

4

moving two files: lucky timeline (2)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);

lock(&B->lock…
(do move) (waiting for B lock)
unlock(&B->lock);

lock(&B->lock);
lock(&A->lock…

unlock(&A->lock);
lock(&A->lock);
(do move)
unlock(&A->lock);
unlock(&B->lock);

5

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

6

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

6

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

6

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

6

moving two files: dependencies
directory B

directory A

thread 1 thread 2

waiting for lock

waiting for lock

lock held by

lock held by

7

moving three files: dependencies
directory B

directory C directory A

thread 1 thread 2

thread 3

waiting for lock

waiting for lock

waiting for lock

lock held by

lock held by

lock held by

8

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")

lock(&A->lock);

lock(&B->lock);

lock(&C->lock);

lock(&B->lock… stalled

lock(&C->lock… stalled

lock(&A->lock… stalled

9

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

10

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

11

free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for

12

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

13

lab next week
applying solutions to deadlock to classic dining philosphers problem

14

dining philosophers

five philosophers either think or eat
to eat:
grab chopstick on left, then
grab chopstick on right, then
then eat, then
return chopsticks

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

15

dining philosophers

five philosophers either think or eat
to eat:
grab chopstick on left, then
grab chopstick on right, then
then eat, then
return chopsticks

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

15

dining philosophers

five philosophers either think or eat
to eat:
grab chopstick on left, then
grab chopstick on right, then
then eat, then
return chopsticks

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

15

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks
16

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks
16

deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1

17

how is deadlock possible?
Given list: A, B, C, D, E
RemoveNode(LinkedListNode *node) {

pthread_mutex_lock(&node−>lock);
pthread_mutex_lock(&node−>prev−>lock);
pthread_mutex_lock(&node−>next−>lock);
node−>next−>prev = node−>prev; node−>prev−>next = node−>next;
pthread_mutex_unlock(&node−>next−>lock); pthread_mutex_unlock(&node−>prev−>lock);
pthread_mutex_unlock(&node−>lock);

}

Which of these (all run in parallel) can deadlock?
 A. RemoveNode(B) and RemoveNode(C)
 B. RemoveNode(B) and RemoveNode(D)
 C. RemoveNode(B) and RemoveNode(C) and RemoveNode(D)
 D. A and C E. B and C
 F. all of the above G. none of the above 18

how is deadlock — solution
 Remove B Remove C
 lock B lock C
 lock A (prev) wait to lock B (prev)
 wait to lock C (next)

With B and D — only overlap in in node C — no circular wait possible
(thread can’t be waiting while holding something other thread wants)

19

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
… requires some way to undo partial changes to avoid errors

common approach for databases
…

20

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
… requires some way to undo partial changes to avoid errors

common approach for databases
…

21

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
… requires some way to undo partial changes to avoid errors

common approach for databases
…

22

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
…

requires some way to undo partial changes to avoid errors
common approach for databases
…

23

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
… requires some way to undo partial changes to avoid errors

common approach for databases
…

24

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
…

requires some way to undo partial changes to avoid errors
common approach for databases
…

25

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
… requires some way to undo partial changes to avoid errors

common approach for databases
…

26

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {

if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

27

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {

if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

27

acquiring locks in consistent order (2)
often by convention, e.g. Linux kernel comments:
/*
* ...
* Lock order:
* contex.ldt_usr_sem
* mmap_sem
* context.lock
*/

/*
* ...
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
* ...
*/

28

deadlock prevention techniques
infinite resources
 or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
 “busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
problem: retry how many times? no bound on number of tries needed
… requires some way to undo partial changes to avoid errors

common approach for databases
…

29

	deadlock examples
	a one-way bridge
	with locks
	with memory
	dining philosophers

	deadlock definition
	short intuition
	conditions for deadlock

	exercise
	deadlock prevention
	techniques overview
	example: no waiting
	example: livelock
	example: revoke
	example: consistent order

