
1

changelog
11 Nov 2024: NAT illusion: add slide, to clarify that machines
within private network for NAT use private addresses as their local
addresses, but still contact public servers with public addresses

2

recall: sockets
open connection then …

read+write just like a terminal file

doesn’t look like individual messages

“connection abstraction”

3

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to B

queue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

4

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to B

queue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

4

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to B

queue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

4

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to B

queue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

4

connections over mailboxes
real Internet: mailbox-style communication

send “letters” (packets) to particular mailboxes

have “envelope” (header) saying where they go

“best-effort”

no guarantee on order, when received

no guarantee on if received

sockets implemented on top of this
5

connections

machine
A

 machine
B

(messages to start new ‘connection’)

Conn = Connect(B)

(messages to verify connection is made)

Conn = Accept()

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

Send(B, “4”)

“4” = Recv(Conn)

6

layers
 application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
 physical … encode bits for wire/radio

7

layers terminology
 application application-defined meanings
 transport reach correct program,

reliablity/streams
 segments/datagrams

 network reach correct machine
(across networks)

 packets

 link coordinate shared wire/radio frames
 physical encode bits for wire/radio

8

layer wrapping
upper layers usually implemented using lower layers

example: implement reliable + large messages (transport layer)
by sending multiple unreliable messages across networks (network
layer)

example: implement reaching machine across networks (network
layer)
by sending multiple messages on local networks (link layer)

9

layers
 application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
 physical … encode bits for wire/radio

10

network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

11

network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

12

dealing with network message lost

machine
A

machine
B

“The meeting is at 12pm.”

machine
A

machine
B

“The meeting is at 12pm.”

13

handling lost message: acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

14

handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

15

handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

15

handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

15

exercise: lost acknowledgement

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

exercise: how to fix this?
 A. machine A needs to send “Got ‘got it!’ ”
 B. machine B should resend “Got it!” on its own
 C. machine A should resend the original message on its own
 D. none of these

16

answers
send “Got ‘got it!’ ”?

same problem: Now send ‘Got Got Got it’?

resend “Got it!” own its own?
how many times? — B doesn’t have that info

resend original message?
yes!
as far as machine A can see, exact same situation as losing original
message

17

lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

18

lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

18

lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

18

network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

19

delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

20

delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

20

delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

20

delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost

21

delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost

21

delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost
21

network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

22

splitting messages: try 1

machine
A

machine
B

“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm. 23

splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

got it“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meetingThe meeting is at 12pm.

24

splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

got it“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meetingThe meeting is at 12pm. 24

exercise: other problems?
other scenarios where we’d also have problems?
 1. message (instead of acknowledgment) is lost
 2. first message from machine A is delayed a long time by network
 3. acknowledgment of second message lost instead of first

25

splitting messages: try 2

machine
A

machine
B

part 1: “The meeting”

got itpart 2: “ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm.

26

splitting messages: try 2 — missed ack

machine
A

machine
B

part 1: “The meeting”

got itpart 1: “The meeting”

got itpart 2: “ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm. 27

splitting messages: try 2 — problem

machine
A

machine
B

part 1: “The meeting”

got it
part 1: “The meeting”

got itpart 2: “ is at 12pm.”

A thinks: part 1 + part 2 acknowleged!

28

splitting messages: version 3

machine
A

machine
B

part 1: “The meeting”

got part 1part 1: “The meeting”

got part 1

part 2: “ is at 12pm.”

timeout
for part 2

part 2: “ is at 12pm.”

got part 2

29

network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

30

message corrupted
instead of sending “message”

say Hash(“message”) = 0xABCDEF12

then send “0xABCDEF12,message”

when receiving, recompute hash

pretend message lost if does not match

31

“checksum”
these hashes commonly called “checksums”

in UDP/TCP, hash function: treat bytes of messages as array of
integers; then add integers together

32

going faster
so far: send one message, get acknowledgments

pretty slow

instead, can send a bunch of parts and get them acknowledged
together

need to do congestion control to avoid overloading network

33

layers
 application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
 physical … encode bits for wire/radio

34

more than four layers?
sometimes more layers above ‘application’

e.g. HTTPS:
HTTP (app layer) on TLS (another app layer) on TCP (network) on …

e.g. DNS over HTTPS:
DNS (app layer) on HTTP on on TLS on TCP on …

e.g. SFTP:
SFTP (app layer??) on SSH (another app layer) on TCP on …

e.g. HTTP over OpenVPN:
HTTP on TCP on IP on OpenVPN on UDP on different IP on …

35

names and addresses
 name address
logical identifier location/how to locate

 variable counter memory address 0x7FFF9430

 DNS name www.virginia.edu IPv4 address 128.143.22.36
 DNS name mail.google.com IPv4 address 216.58.217.69
 DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
 DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
 DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

 service name https port number 443
 service name ssh port number 22

36

layers
 application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
 physical … encode bits for wire/radio

37

an Ethernet frame
destination

MAC address
source

MAC address
frame
type

frame’s data

IP
packet

vers. length protocol

destination
IPv4 address

source
IPv4 address

packet’s data

TCP
segment

dest.
port

source
port sequence num.

flags

segment’s data

4c cc 6a ba 1c b9 d8 07 b6 d9 ae 50 08 00

45 00 00 60 db 89 40 00 f2 06 cf cd 34 60 e6 a2

c0 a8 01 95 01 bb aa c4 40 2b d6 46 7c 9d 15 e4

80 18 40 02 65 fe 00 00 01 01 08 0a 03 83 98 62

19 70 27 9e 17 03 03 00 27 00 00 00 00 00 00 00
c8 b9 ab 81 50 e0 ef 1a d8 97 73 76 9a ee 33 d4
9a cb 17 29 f0 fa 1c 13 4c b0 07 ef 92 8b 0a a9

38

an Ethernet frame
destination

MAC address
source

MAC address
frame
type

frame’s data

IP
packet

vers. length protocol

destination
IPv4 address

source
IPv4 address

packet’s data

TCP
segment

dest.
port

source
port sequence num.

flags

segment’s data

4c cc 6a ba 1c b9 d8 07 b6 d9 ae 50 08 00

45 00 00 60 db 89 40 00 f2 06 cf cd 34 60 e6 a2

c0 a8 01 95 01 bb aa c4 40 2b d6 46 7c 9d 15 e4

80 18 40 02 65 fe 00 00 01 01 08 0a 03 83 98 62

19 70 27 9e 17 03 03 00 27 00 00 00 00 00 00 00
c8 b9 ab 81 50 e0 ef 1a d8 97 73 76 9a ee 33 d4
9a cb 17 29 f0 fa 1c 13 4c b0 07 ef 92 8b 0a a9

38

an Ethernet frame
destination

MAC address
source

MAC address
frame
type

frame’s data

IP
packet

vers. length protocol

destination
IPv4 address

source
IPv4 address

packet’s data

TCP
segment

dest.
port

source
port sequence num.

flags

segment’s data

4c cc 6a ba 1c b9 d8 07 b6 d9 ae 50 08 00

45 00 00 60 db 89 40 00 f2 06 cf cd 34 60 e6 a2

c0 a8 01 95 01 bb aa c4 40 2b d6 46 7c 9d 15 e4

80 18 40 02 65 fe 00 00 01 01 08 0a 03 83 98 62

19 70 27 9e 17 03 03 00 27 00 00 00 00 00 00 00
c8 b9 ab 81 50 e0 ef 1a d8 97 73 76 9a ee 33 d4
9a cb 17 29 f0 fa 1c 13 4c b0 07 ef 92 8b 0a a9

38

layers
 application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
 physical … encode bits for wire/radio

39

the network layer
the Internet Protocool (IP) version 4 or version 6

there are also others, but quite uncommon today

allows send messages to/recv messages from other networks
“internetwork”

messages usually called “packets”

40

IPv4 addresses
32-bit numbers
typically written like 128.143.67.11

four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0–128.143.255.255
e.g. Google has 216.58.192.0–216.58.223.255 and
74.125.0.0–74.125.255.255 and 35.192.0.0–35.207.255.255

some IPs reserved for non-Internet use (127.*, 10.*, 192.168.*)
41

IPv6 addresses
IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses
no need for address translation?

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

42

selected special IPv6 addresses
::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

43

IPv4 addresses and routing tables

router
network 1 network 2

network 3

 if I receive data for… send it to…
 128.143.0.0—128.143.255.255 network 1, 11.4.3.2
 192.107.102.0–192.107.102.255 network 1, 11.4.3.2
 … …
 4.0.0.0–7.255.255.255 network 2, 12.4.6.4
 64.8.0.0–64.15.255.255 network 2, 45.4.0.1
 … …
 anything else network 3, 199.44.33.1 44

selected special IPv4 addresses
127.0.0.0 — 127.255.255.255 — localhost

AKA loopback
the machine we’re on
typically only 127.0.0.1 is used

192.168.0.0–192.168.255.255 and
10.0.0.0–10.255.255.255 and
172.16.0.0–172.31.255.255

“private” IP addresses
not used on the Internet
commonly connected to Internet with network address translation
also 100.64.0.0–100.127.255.255 (but with restrictions)

169.254.0.0-169.254.255.255
link-local addresses — ‘never’ forwarded by routers 45

layers
 application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
 physical … encode bits for wire/radio

46

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

47

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

47

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

47

UDP v TCP
TCP: stream to other program

reliable transmission of as much data as you want
“connecting” fails if server not responding
write(fd, ”a”, 1); write(fd, ”b”, 1) = write(fd, ”ab”, 2)
(at least) one socket per remote program being talked to

UDP: messages sent to program, but no reliablity/streams
unreliable transmission of short messages
write(fd, ”a”, 1); write(fd, ”b”, 1) 6= write(fd, ”ab”, 2)
“connecting” just sets default destination
can sendto()/recvfrom() multiple other programs with one socket

(but don’t have to)

48

UDP v TCP
TCP: stream to other program

reliable transmission of as much data as you want
“connecting” fails if server not responding
write(fd, ”a”, 1); write(fd, ”b”, 1) = write(fd, ”ab”, 2)
(at least) one socket per remote program being talked to

UDP: messages sent to program, but no reliablity/streams
unreliable transmission of short messages
write(fd, ”a”, 1); write(fd, ”b”, 1) 6= write(fd, ”ab”, 2)
“connecting” just sets default destination
can sendto()/recvfrom() multiple other programs with one socket

(but don’t have to)

48

UDP v TCP
TCP: stream to other program

reliable transmission of as much data as you want
“connecting” fails if server not responding
write(fd, ”a”, 1); write(fd, ”b”, 1) = write(fd, ”ab”, 2)
(at least) one socket per remote program being talked to

UDP: messages sent to program, but no reliablity/streams
unreliable transmission of short messages
write(fd, ”a”, 1); write(fd, ”b”, 1) 6= write(fd, ”ab”, 2)
“connecting” just sets default destination
can sendto()/recvfrom() multiple other programs with one socket

(but don’t have to)

48

connections in TCP/IP
connection identified by 5-tuple

used by OS to lookup “where is the socket?”

(protocol=TCP/UDP, local IP addr., local port, remote IP addr., remote port)

local IP address, port number can be set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

49

connections on my desktop
cr4bd@reiss−t3620>/u/cr4bd
$ netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 128 . 143 . 67 . 91 : 49202 128 . 1 4 3 . 6 3 . 3 4 : 2 2 ESTABLISHED
tcp 0 0 128 . 1 43 . 6 7 . 9 1 : 8 03 128 . 143 . 67 . 236 : 2049 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 50292 128 . 1 43 . 6 7 . 2 26 : 2 2 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54722 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 52002 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 128 . 1 43 . 6 7 . 9 1 : 7 32 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 40664 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54098 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 49302 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 50236 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 128 . 1 4 3 . 6 7 . 9 1 : 2 2 172 . 2 7 . 9 8 . 2 0 : 4 9566 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 51000 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 127 . 0 . 0 . 1 : 5 0 4 3 8 1 2 7 . 0 . 0 . 1 : 6 3 1 ESTABLISHED
tcp 0 0 1 2 7 . 0 . 0 . 1 : 6 3 1 1 27 . 0 . 0 . 1 : 5 0 4 3 8 ESTABLISHED

50

non-connection sockets
TCP servers waiting for connections +
UDP sockets with no particular remote host

Linux: OS keeps 5-tuple with “wildcard” remote address

51

“listening” sockets on my desktop
cr4bd@reiss−t3620>/u/cr4bd
$ netstat −−inet −−inet6 −−numeric −−listen
Active Internet connections (only servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 127 . 0 . 0 . 1 : 3 8 5 3 7 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 3 6 7 7 7 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 0 . 0 . 0 . 0 : 4 1 0 9 9 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 0 . 0 . 0 . 0 : 4 5 2 9 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 5 1 9 4 9 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 4 1 0 7 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 0 . 0 . 0 . 0 : 1 1 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 3 2 8 8 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 3 8 6 7 3 0 . 0 . 0 . 0 : * LISTEN
. . . .
tcp6 0 0 : : : 4 2 6 8 9 : : : * LISTEN
udp 0 0 128 . 143 . 67 . 91 : 60001 0 . 0 . 0 . 0 : *
udp 0 0 128 . 143 . 67 . 91 : 60002 0 . 0 . 0 . 0 : *
. . .
udp6 0 0 : : : 5 9 9 3 8 : : : *

52

names and addresses
 name address
logical identifier location/how to locate

 variable counter memory address 0x7FFF9430

 DNS name www.virginia.edu IPv4 address 128.143.22.36
 DNS name mail.google.com IPv4 address 216.58.217.69
 DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
 DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
 DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

 service name https port number 443
 service name ssh port number 22

53

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

54

URL / URIs
Uniform Resource Locators (URL)

tells how to find “resource” on network
uniform — one syntax for multiple protocols (types of servers, etc.)

Unifrom Resources Identifiers
superset of URLs

55

URI examples
https://kytos02.cs.virginia.edu:443/cs3130-spring2023/

 quizzes/quiz.php?qid=02#q2

https://kytos02.cs.virginia.edu/cs3130-spring2023/
 quizzes/quiz.php?qid=02

https://www.cs.virginia.edu/

sftp://cr4bd@portal.cs.virginia.edu/u/cr4bd/file.txt

tel:+1-434-982-2200

//www.cs.virginia.edu/~cr4bd/3130/S2023/
/~cr4bd/3130/S2023

 scheme and/or host implied from context 56

URI generally
scheme://authority/path?query#fragment
scheme: — what protocol
//authority/

authoirty = user@host:port OR host:port OR user@host OR host

path
which resource

?query — usually key/value pairs
#fragment — place in resource

most components (sometimes) optional
57

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

58

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

58

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

58

DHCP high-level
protocol done over UDP

but since we don’t have IP address yet, use 0.0.0.0

and since we don’t know server address, use 255.255.255.255
= “everyone on the local network”

local server replies to request with address + time limit

later: can send messages to local server to renew/give up address

59

DHCP high-level
protocol done over UDP

but since we don’t have IP address yet, use 0.0.0.0

and since we don’t know server address, use 255.255.255.255
= “everyone on the local network”

local server replies to request with address + time limit

later: can send messages to local server to renew/give up address

59

exercise: why time limit?
DHCP “lease”

rather than getting address forever

but DHCP has way of releasing taken address

why impose a time limit

60

network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for local addresses

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

61

NAT idea

external
router

203.0.113.43

192.168.1.1

internal
192.168.1.*

192.168.1.2

192.168.1.3

192.168.1.4

192.168.1.5

192.168.1.6

1.2.3.4:443
→

203.0.113.43:54923

1.2.3.4:443
→

192.168.1.4:39129

62

NAT illusion
NAT illusion:

private IP address communicating directly with public IP

inside network, talking to outside:
use private local address
use public remote address
never see router’s address

outside network, talking to inside
use public local address
use router’s public address

63

implementing NAT
 remote host + port outside local port number inside IP inside port number
 128.148.17.3:443 54033 192.168.1.5 43222
 11.7.17.3:443 53037 192.168.1.5 33212
 128.148.31.2:22 54032 192.168.1.37 43010
 128.148.17.3:443 63039 192.168.1.37 32132

table of the translations
need to update as new connections made

64

upcoming lab
request + receive message split into pieces

you are responsible for:
requesting parts in order
resending requests if messages lost/corrupted

“acknowledge” receiving part X to request part X+1

65

upcoming lab
request + receive message split into pieces

you are responsible for:
requesting parts in order
resending requests if messages lost/corrupted

“acknowledge” receiving part X to request part X+1

65

protocol
GETx — retrieve message x (x = 0, 1, 2, or 3)

other end acknowledges by giving data
if they don’t reply, you need to send again
higher numbered messages have errors/etc. that are harder to handle

ACKn
request message n + 1 by acknowledging message n
not quite same purpose as acknowledgments in prior examples
(in lab, the response is your ‘acknowledgment’ of your request;
you retry if you don’t get it)

66

protocol
GETx — retrieve message x (x = 0, 1, 2, or 3)

other end acknowledges by giving data
if they don’t reply, you need to send again
higher numbered messages have errors/etc. that are harder to handle

ACKn
request message n + 1 by acknowledging message n
not quite same purpose as acknowledgments in prior examples
(in lab, the response is your ‘acknowledgment’ of your request;
you retry if you don’t get it)

66

callback-based programming (1)
/* library code you don't write */
/* lab: part of waitForAllTimeoutsAndMessagesThenExit() */
void mainLoop() {

 while (notExiting) {
 Event event = waitForAndGetNextEvent();
 if (event.type == RECIEVED) {

 recvd(...);
 } else if (event.type == TIMEOUT) {

 (event.timeout_function)(...);
 }
 ...

 }
}

67

callback-based programming (2)
/* your code, called by library */
void recvd(...) {

 ...
 setTimeout(..., timerCallback, ...);

}

void timerCallback(...) {
 ...

}

int main() {
 send(.../* first message */);
 ... /* other initial setup */
 waitForAllTimeoutsAndMessagesThenExit(); // runs mainLoop()

}
68

callback-based programming
writing scripts in a webpage

many graphical user interface libraries

sometimes servers that handle lots of connections

69

backup slides

70

the link layer
Ethernet, Wi-Fi, Bluetooth, DOCSIS (cable modems), …

allows send/recv messages to machines on “same” network
segment

typically: wireless range+channel or connected to a single switch/router
could be larger (if bridging multiple network segments)
could be smaller (switch/router uses “virtual LANs”)

typically: source+destination specified with MAC addresses
MAC = media access control
usually manufacturer assigned / hard-coded into device
unique address per port/wifi transmitter/etc.

can specify destination of “anyone” (called broadcast)
messages usually called “frames”

71

the link layer
Ethernet, Wi-Fi, Bluetooth, DOCSIS (cable modems), …

allows send/recv messages to machines on “same” network
segment

typically: wireless range+channel or connected to a single switch/router
could be larger (if bridging multiple network segments)
could be smaller (switch/router uses “virtual LANs”)

typically: source+destination specified with MAC addresses
MAC = media access control
usually manufacturer assigned / hard-coded into device
unique address per port/wifi transmitter/etc.

can specify destination of “anyone” (called broadcast)
messages usually called “frames”

71

link layer jobs
divide raw bits into messages

identify who message is for on shared radio/wire

handle if two+ machines use radio/wire at same time

drop/resend messages if corruption detected
resending more common in radio schemes (wifi, etc.)

72

link layer reliablity?
Ethernet + Wifi have checksums

Q1: Why doesn’t this give us uncorrupted messages?
Why do we still have checksums at the higher layers?

Q2: What’s a benefit of doing this if we’re also doing it in the
higher layer?

73

link layer quality of service
if frame gets…
 event on Ethernet on WiFi
 collides with another detected + may resend resend
 not received lose silently resent
 header corrupted usually discard silently usually resend
 data corrupted usually discard silently usually resend
 too long not allowed to send not allowed to send
 reordered (v. other messages) received out of order received out of order
 destination unknown lose silently usually resend??
 too much being sent discard excess? discard excess?

74

network layer quality of service
if packet …
 event on IPv4/v6
 collides with another out of scope — handled by link layer
not received lost silently
 header corrupted usually discarded silently
 data corrupted received corrupted
 too long dropped with notice or “fragmented” + recombined
 reordered (v. other messages) received out of order
 destination unknown usually dropped with notice
 too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

75

network layer quality of service
if packet …
 event on IPv4/v6
 collides with another out of scope — handled by link layer
not received lost silently
 header corrupted usually discarded silently
 data corrupted received corrupted
 too long dropped with notice or “fragmented” + recombined
 reordered (v. other messages) received out of order
 destination unknown usually dropped with notice
 too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

75

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

76

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

77

TCP state machine
TIME_WAIT, ESTABLISHED, …?

OS tracks “state” of TCP connection
am I just starting the connection?
is other end ready to get data?
am I trying to close the connection?
do I need to resend something?

standardized set of state names

78

TIME_WAIT
remember delayed messages?

problem for TCP ports

if I reuse port number, I can get message from old connection

solution: TIME_WAIT to make sure connection really done
done after sending last message in connection

79

TCP state machine picture

via Wikimedia/User:Scil100; CC-BY-SA 80

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

81

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

82

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

83

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

84

‘connected’ UDP sockets
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
bind(fd, &my_addr, sizeof(my_addr))
struct sockaddr_in to_addr = ...;
connect(fd, &to_addr); /* set remote IP address + port */

/* doesn't actually communicate with remote address yet */
...
int count = write(fd, data, data_size);
// OR
int count = send(fd, data, data_size, 0 /* flags */);

/* single message -- sent ALL AT ONCE */

int count = read(fd, buffer, buffer_size);
// OR
int count = recv(fd, buffer, buffer_size, 0 /* flags */);

/* receives whole single message ALL AT ONCE */
85

UDP sockets on IPv4
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
if (0 != bind(fd, &my_addr, sizeof(my_addr)))

handle_error();
...
struct sockaddr_in to_addr = ...;

/* send a message to specific address */
int bytes_sent = sendto(fd, data, data_size, 0 /* flags */,

&to_addr, sizeof(to_addr));

struct sockaddr_in from_addr = ...;
/* receive a message + learn where it came from */

int bytes_recvd = recvfrom(fd, &buffer[0], buffer_size, 0,
&from_addr, sizeof(from_addr));

...

86

what about non-local machines?
when configuring network specify:

range of addresses to expect on local network
128.148.67.0-128.148.67.255 on my desktop
“netmask”

gateway machine to send to for things outside my local network
128.143.67.1 on my desktop
my desktop looks up the corresponding MAC address

87

routes on my desktop
$ /sbin/route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 128.143.67.1 0.0.0.0 UG 100 0 0 enp0s31f6
128.143.67.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s31f6
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 enp0s31f6

network configuration says:

(line 2) to get to 128.143.67.0–128.143.67.255, send directly on
local network

“genmask” is mask (for bitwise operations) to specify how big range is

(line 3) to get to 169.254.0.0–169.254.255.255, send directly on
local network
(line 1) to get anywhere else, use “gateway” 128.143.67.1 88

names and addresses
 name address
logical identifier location/how to locate

 variable counter memory address 0x7FFF9430

 DNS name www.virginia.edu IPv4 address 128.143.22.36
 DNS name mail.google.com IPv4 address 216.58.217.69
 DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
 DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
 DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

 service name https port number 443
 service name ssh port number 22

89

two types of addresses?
MAC addreses: on link layer

IP addresses: on network layer

how do we know which MAC address to use?

90

a table on my desktop
my desktop:
$ arp -an
? (128.143.67.140) at 3c:e1:a1:18:bd:5f [ether] on enp0s31f6
? (128.143.67.236) at <incomplete> on enp0s31f6
? (128.143.67.11) at 30:e1:71:5f:39:10 [ether] on enp0s31f6
? (128.143.67.92) at <incomplete> on enp0s31f6
? (128.143.67.5) at d4:be:d9:b0:99:d1 [ether] on enp0s31f6

…
network address to link-layer address + interface

only tracks things directly connected to my local network
non-local traffic sent to local router

91

how is that table made?
ask all machines on local network (same switch)

“Who has 128.148.67.140”

the correct one replies

92

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80

exercise: why include the Host there?

93

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80

exercise: why include the Host there?

93

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80
exercise: why include the Host there?

93

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

94

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

95

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

96

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

97

spoofing
if I only allow connections from my desktop’s IP addresses,
how would you attack this?

hint: how do we know what address messages come from?

98

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

99

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

99

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

99

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

99

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

100

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

100

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

100

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

100

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

101

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

101

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

101

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

102

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

102

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

102

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

102

connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

103

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

104

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

104

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

104

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

104

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

104

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

105

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

105

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

105

connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

106

connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

106

connection setup: old lookup function
/* example hostname, portnum= "www.cs.virginia.edu", 443*/
const char *hostname; int portnum;
...
struct hostent *server_ip;
server_ip = gethostbyname(hostname);

if (server_ip == NULL) { /* handle error */ }

struct sockaddr_in addr;
addr.s_addr = *(struct in_addr*) server_ip−>h_addr_list[0];
addr.sin_port = htons(portnum);
sock_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock_fd, &addr, sizeof(addr));
...

107

aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

108

	recall: sockets
	mailbox model
	review: connection abstraction
	layers preview
	layer wrapping

	handling network failures
	acknowledgments
	exercise: lost acks
	solution: lost acks
	delayed acks

	splitting into multiple
	checksums
	aside: going faster

	layers, revisited
	addresses versus names
	a frame example
	IP
	IPv4 addresses
	IPv6 addresses
	routing idea
	special addresses

	TCP/UDP
	port numbers
	UDP v TCP
	OS tracking connections

	DNS
	URLs and URIs

	DHCP and IPv6 autoconfig
	NAT
	lab API
	backup slides
	ethernet / 802.11 / …
	exercise: why resend?
	link layer quality-of-service
	network layer quality-of-service

	firewalls
	aside: TCP state machine
	DIG trace
	UDP sockets
	ARP / IPv6 ND routing
	ARP / IPv6 ND

	and HTTP? (exercise)
	DNS: dig +trace

	spoofing?
	example: echo client/server
	server setup
	client setup
	read/write code

	more normal connection setup
	other connection setup options

