
1

changelog
3 Dec 2025: add some extra exercises re: variations in cache layout
and how it affects what information learned from eviction
information

3 Dec 2025: add slides on EVICT+RELOAD

5 Dec 2025: “supplying own attack code?”: be more explicit that
code is running partially

2

check_passphrase
int check_passphrase(const char *versus) {

int i = 0;
while (passphrase[i] == versus[i] &&

passphrase[i]) {
i += 1;

}
return (passphrase[i] == versus[i]);

}

number of iterations = number matching characters

leaks information about passphrase, oops!

3

exploiting check_passphrase (1)
 guess measured time
 aaaa 100 ± 5
 baaa 103 ± 4
 caaa 102 ± 6
daaa 111 ± 5
 eaaa 99 ± 6
 faaa 101 ± 7
 gaaa 104 ± 4
 … …

4

exploiting check_passphrase (2)
 guess measured time
 daaa 102 ± 5
 dbaa 99 ± 4
 dcaa 104 ± 4
 ddaa 100 ± 6
 deaa 102 ± 4
dfaa 109 ± 7
 dgaa 103 ± 4
 … …

5

timing and cryptography
lots of asymmetric cryptography uses big-integer math

example: multiplying 500+ bit numbers together

how do you implement that?

6

big integer multiplcation
say we have two 64-bit integers x, y

and want to 128-bit product, but our multiply instruction only does
64-bit products

one way to multiply:

divide x, y into 32-bit parts: x = x1 · 232 + x0 and y = y1 · 232 + y0

then xy = x1y1264 + x1y0 · 232 + x0y1 · 232 + x0y0

can extend this idea to arbitrarily large numbers
number of smaller multiplies depends on size of numbers!

7

big integer multiplcation
say we have two 64-bit integers x, y

and want to 128-bit product, but our multiply instruction only does
64-bit products

one way to multiply:

divide x, y into 32-bit parts: x = x1 · 232 + x0 and y = y1 · 232 + y0

then xy = x1y1264 + x1y0 · 232 + x0y1 · 232 + x0y0

can extend this idea to arbitrarily large numbers
number of smaller multiplies depends on size of numbers!

7

big integers and cryptography
naive multiplication idea:

number of steps depends on size of numbers

problem: sometimes the value of the number is a secret
e.g. part of the private key

oops! revealed through timing

8

big integer timing attacks in practice (1)
early versions of OpenSSL (TLS implementation)had timing attack

Brumley and Boneh, “Remote Timing Attacks are Practical” (Usenix
Security ’03)

attacker could figure out bits of private key from timing

why? variable-time mulitplication and modulus operations
got faster/slower depending on how input was related to private key

9

big integer timing attacks in practice (2)

Figure 3a from Brumley and Boneh, “Remote Timing Attacks are Practical” 10

browsers and website leakage
web browsers run code from untrusted webpages

one goal: can’t tell what other webpages you visit

11

some webpage leakage (1)
…as you can see here, here, and here …

convenient feature 1: browser marks visited links
<script>
var the_color = window.getComputedStyle(

document.querySelector('a[href=~"foo.com"]')
).color
if (the_color == ...) { ... }
</script>

convenient feature 2: scripts can query current color of something

fix 1: getComputedStyle lies about the color
fix 2: limited styling options for visited links

12

some webpage leakage (1)
…as you can see here, here, and here …

convenient feature 1: browser marks visited links
<script>
var the_color = window.getComputedStyle(

document.querySelector('a[href=~"foo.com"]')
).color
if (the_color == ...) { ... }
</script>

convenient feature 2: scripts can query current color of something
fix 1: getComputedStyle lies about the color
fix 2: limited styling options for visited links

12

some webpage leakage (2)
one idea: script in webpage times loop that writes big array

variation in timing depends on other things running on machine

turns out, other webpages
create distinct “signatures”
Figure from Cook et al, “There’s Always a Bigger Fish: Clarifying Analysis of a
Machine-Learning-Assisted Side-Channel Attack” (ISCA ’22)

13

some webpage leakage (2)
one idea: script in webpage times loop that writes big array

variation in timing depends on other things running on machine
turns out, other webpages
create distinct “signatures”
Figure from Cook et al, “There’s Always a Bigger Fish: Clarifying Analysis of a
Machine-Learning-Assisted Side-Channel Attack” (ISCA ’22)

13

inferring cache accesses (1)
suppose I time accesses to array of chars:

reading array[0]: 3 cycles
reading array[64]: 4 cycles
reading array[128]: 4 cycles
reading array[192]: 20 cycles
reading array[256]: 4 cycles
reading array[288]: 4 cycles
…

what could cause this difference?
array[192] not in some cache, but others were

14

inferring cache accesses (2)
some psuedocode:
char array[CACHE_SIZE];
AccessAllOf(array);
*other_address += 1;
TimeAccessingArray();

suppose during these accesses I discover that array[128] is
slower to access
probably because *other_address loaded into cache + evicted
it
what do we know about other_address? (select all that apply)
 A. same cache tag B. same cache index C. same cache offset
 D. diff. cache tag E. diff. cache index F. diff. cache offset

15

some complications
caches often use physical, not virtual addresses

(and need to know about physical address to compare index bits)
(but can infer physical addresses with measurements/asking OS)
(often OS allocates contiguous physical addresses esp. w/‘large pages’)

storing/processing timings evicts things in the cache
(but can compare timing with/without access of interest to check for
this)

processor “pre-fetching” may load things into cache before access
is timed

(but can arrange accesses to avoid triggering prefetcher
and make sure to measure with memory barriers)

some L3 caches use a simple hash function to select index instead
of index bits 16

exercise: inferring cache accesses (1)
char *array;
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer += 1;
}
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

suppose pointer is 0x1000188
and cache (of interest) is direct-mapped, 32768 (215) byte, 64-byte
blocks
what array index should we check?

17

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer = 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) { /* pointer accessed */ }

215 byte direct mapped cache, 64 = 26 byte blocks

9 index bits, 6 offset bits

0x1000188: …0000 0001 1000 1000

array[0] starts at multiple of cache size — index 0, offset 0

to get index 6, offset 0 array[0b1 1000 0000] = array[0x180]
18

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer = 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) { /* pointer accessed */ }

215 byte direct mapped cache, 64 = 26 byte blocks

9 index bits, 6 offset bits

0x1000188: …0000 0001 1000 1000

array[0] starts at multiple of cache size — index 0, offset 0

to get index 6, offset 0 array[0b1 1000 0000] = array[0x180]
18

aside
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer += 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

will this detect when pointer accessed? yes

will this detect if mystery is true? not quite

…because branch prediction could started cache access

19

exercise: inferring cache accesses (2)
char *other_array = ...;
char *array;
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) {
/* found something interesting */

}
}

other_array at 0x200400, and interesting index is i=0x800, then
what was mystery?

20

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) { ... }
}

at i=0x800: …0000 1000 0000 0000 (cache index = 0x20)

other_array at 0x200400

Q: 0x200400 + X has cache index 0x20?
 0x200400 …0 000 0100 00 00 0000
 + X …? 000 0100 00 ?? ????
 0x200400+X …? 000 1000 00 ?? ????

21

exercise: inferring cache accesses (2)
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer = 1;
}
if (TimeAccessTo(&array[index1]) > THRESHOLD ||

TimeAccessTo(&array[index2]) > THRESHOLD) {
/* pointer accessed */

}

pointer is 0x1000188

cache is 2-way, 32768 (215) byte, 64-byte blocks, ???? replacement

what array indexes should we check?
22

PRIME+PROBE
name in literature: PRIME + PROBE

PRIME: fill cache (or part of it) with values

do thing that uses cache

PROBE: access those values again and see if it’s slow

(one of several ways to measure how cache is used)

coined in attacks on AES encryption

23

example: AES (1)
from Osvik, Shamir, and Tromer, “Cache Attacks and
Countermeasures: the Case of AES” (2004)

early AES implementation used lookup tables

goal: detect index into lookup table
index depended on key + data being encrypted

tricks they did to make this work
vary data being encrypted
subtract average time to look for what changes
lots of measurements

24

example: AES (2)
from Osvik, Shamir, and Tromer, “Cache Attacks and Countermeasures: the Case
of AES” (2004)

25

reading a value
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
other_array[mystery * BLOCK_SIZE] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...

}
}

with 32KB direct-mapped cache
suppose we find out that array[0x400] is slow to access
and other_array starts at address 0x100000
what was mystery?

26

revisiting an earlier example (1)
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer += 1;
}
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

what if mystery is false but branch mispredicted?

27

revisiting an earlier example (2)
cycle # 0 1 2 3 4 5 6 7 8 9 10 11

movq mystery, %rax F D R I E E E W C
test %rax, %rax F D R I E W C
jz skip (mispred.) F D R I E W C
mov pointer, %rax F D R I E E E W
mov (%rax), %r8 F D R I E W
add $1, %r8 F D R
mov %r8, %rax F D R
…
skip: ... F D R

28

avoiding/triggering this problem
if (something false) {

access *pointer;
}

what can we do to make access more/less likely to happen?

29

reading a value without really reading it
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
if (something false) {

other_array[mystery * BLOCK_SIZE] += 1;
}
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...

}
}

if branch mispredicted, cache access may still happen

can find the value of mystery

30

seeing past a segfault? (1)
Prime();
if (something false) {

triggerSegfault();
Use(*pointer);

}
Probe();

could cache access for *pointer still happen?

yes, if:
branch for if statement mispredicted, and
*pointer starts before segfault detected

31

seeing past a segfault? (2)
operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...
Prime();
if (something false) {

int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

}
Probe();

32

seeing past a segfault? (2)
operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...
Prime();
if (something false) {

int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

}
Probe();

32

seeing past a segfault? (2)
operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...
Prime();
if (something false) {

int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

}
Probe();

32

seeing past a segfault? (2)
operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...
Prime();
if (something false) {

int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

}
Probe();

32

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper with FLUSH+RELOAD instead
 of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

33

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper with FLUSH+RELOAD instead
 of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

33

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper with FLUSH+RELOAD instead
 of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

33

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper with FLUSH+RELOAD instead
 of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

33

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper with FLUSH+RELOAD instead
 of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

33

Meltdown fix
HW: permissions check done with/before physical address lookup

was already done by AMD, ARM apparently?
now done by Intel

SW: separate page tables for kernel and user space
don’t have sensitive kernel memory pointed to by page table
when user-mode code running
unfortunate performance problem
exceptions start with code that switches page tables

34

reading a value without really reading it
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
if (something false) {

other_array[mystery * BLOCK_SIZE] += 1;
}
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...

}
}

if branch mispredicted, cache access may still happen

can find the value of mystery

35

mistraining branch predictor?
if (something) {

CodeToRunSpeculatively()
}

how can we have ‘something’ be false, but predicted as true

run lots of times with something true

then do actually run with something false

36

contrived(?) vulnerable code (1)
suppose this C code is run with extra privileges

(e.g. in system call handler, library called from JavaScript in webpage,
etc.)

assume x chosen by attacker

(example from original Spectre paper)
if (x < array1_size)

y = array2[array1[x] * 4096];

37

the out-of-bounds access (1)
char array1[...];
...
int secret;
...
y = array2[array1[x] * 4096];

suppose array1 is at 0x1000000 and

secret is at 0x103F0003;

what x do we choose to make array1[x] access first byte of
secret?

38

the out-of-bounds access (2)
unsigned char array1[...];
...
int secret;
...
y = array2[array1[x] * 4096];
suppose our cache has 64-byte blocks and 8192 sets
and array2[0] is stored in cache set 0

if the above evicts something in cache set 128,
then what do we know about array1[x]?

is 2 or 130

39

the out-of-bounds access (2)
unsigned char array1[...];
...
int secret;
...
y = array2[array1[x] * 4096];
suppose our cache has 64-byte blocks and 8192 sets
and array2[0] is stored in cache set 0

if the above evicts something in cache set 128,
then what do we know about array1[x]?

is 2 or 130
39

exploit with contrived(?) code
/* in kernel: */
int systemCallHandler(int x) {

if (x < array1_size)
y = array2[array1[x] * 4096];

return y;
}

/* exploiting code */
/* step 1: mistrain branch predictor */

for (a lot) {
systemCallHandler(0 /* less than array1_size */);

}
/* step 2: evict from cache using misprediction */

Prime();
systemCallHandler(targetAddress − array1Address);
int evictedSet = ProbeAndFindEviction();
int targetValue = (evictedSet − array2StartSet) / setsPer4K;

40

really contrived?
char *array1; char *array2;
if (x < array1_size)

y = array2[array1[x] * 4096];

times 4096 shifts so we can get lower bits of target value
so all bits effect what cache block is used

int *array1; int *array2;
if (x < array1_size)

y = array2[array1[x]];

will still get upper bits of array1[x] (can tell from cache set)

can still read arbitrary memory!
want memory at 0x10000?
upper bits of 4-byte integer at 0x0FFFE

41

really contrived?
char *array1; char *array2;
if (x < array1_size)

y = array2[array1[x] * 4096];

times 4096 shifts so we can get lower bits of target value
so all bits effect what cache block is used

int *array1; int *array2;
if (x < array1_size)

y = array2[array1[x]];

will still get upper bits of array1[x] (can tell from cache set)
can still read arbitrary memory!

want memory at 0x10000?
upper bits of 4-byte integer at 0x0FFFE

41

bounds check in kernel

void SomeSystemCallHandler(int index) {
if (index > some_table_size)

return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

...
}

}

actual code

if (x < array1_size) {
y = array2[array1[x]];

}
our template

42

bounds check in kernel

void SomeSystemCallHandler(int index) {
if (index > some_table_size)

return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

...
}

}

actual code

if (x < array1_size) {
y = array2[array1[x]];

}
our template

42

bounds check in kernel

void SomeSystemCallHandler(int index) {
if (index > some_table_size)

return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

...
}

}

actual code

if (x < array1_size) {
y = array2[array1[x]];

}
our template

42

bounds check in kernel

void SomeSystemCallHandler(int index) {
if (index > some_table_size)

return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

...
}

}

actual code

if (x < array1_size) {
y = array2[array1[x]];

}
our template

42

exercise
char *array;
// PRIME
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
// (some code we don't control)
other_array[mystery * BLOCK_SIZE] += 1;
// PROBE
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

 if (CheckIfSlowToAccess(&array[i])) {
 ...
 }

}

64KB (216B) direct-mapped cache with 64B blocks
array[0x800] slow to access;
other_array at 0x4000000
value of mystery? 43

exercise solution (1)
NUM_SETS = 64KB/64B = 1K (1024) sets

array[0x800] has cache index 0x800/BLOCK_SIZE mod NUM_SETS
= cache index 32

know other_array[mystery * BLOCK_SIZE] had same index

other_array[0] at cache index 0
(0x4000000 / BLOCK_SIZE) mod NUM_SETS = 0

44

exercise solution (2)
recall have found:

other_array[0] at index 0;
other_array[mystery*BLOCK_SIZE] has index 32 (same as
array[0x800])

other_array[X] at cache index (0 + X/BLOCK_SIZE mod
NUM_SETS)

advanced by X/BLOCK_SIZE blocks
wrapping around after NUM_SETS blocks

X = mystery * BLOCK_SIZE
32 = 0 + mystery mod NUM_SETS
mystery = 32 or 32 ± 1024 or 32 ± 1024 × 2 or etc. 45

exercise
char *array;

//PRIME

posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);

AccessAllOf(array);

other_array[mystery] += 1;
//PROBE

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {

...

}

}

with 64KB direct-mapped cache with 64B blocks
suppose we find out that array[0x200] is slow to access
and other_array starts at some multiple of cache size
What was mystery?

char *array;

//PRIME

posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);

AccessAllOf(array); // PRIME

other_array[mystery] += 1;
//PROBE

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) // PROBE

{...}

}

• NSETS = CACHE_SIZE/BLOCK_SIZE = 64KB/64B = 1K = 210

• And this affected array[0x200]
• Which had cache index 0x200/BLOCK_SIZE = 512/64 = 8
• Or 0b 0010 0000 0000

• other_array[mystery] = other_array + mystery (because these are char array)
• If we know the base address of other_array is 0x20000, we need to index(0x20000 + mystery) = 8
• 0b 0010 0000 0000 0000 0000 //other_array
• +0b ???? ???? ???? ???? ???? //mystery
• =0b ???? 0000 0010 00?? ????
• So we get a couple bits in the low-order byte of mystery and the next byte

not just BLOCK_SIZE
char *array, *other_array;
// PRIME
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
// (some code we don't control)
other_array[mystery * N] += 1; // previously: * BLOCK_SIZE
// PROBE
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

 if (CheckIfSlowToAccess(&array[i])) {
 ...
 }

}

64KB (216B) direct-mapped cache with 64B blocks
array[0x800] slow to access?
other_array at 0x4000000 (index 0, offset 0)
value of mystery if N = 1? N = 32 * 64? 46

solution (N=1)
bmystery ∗ N/BLOCK_SIZEc mod 1024 = 32

bmystery ∗ N/BLOCK_SIZEc = 32 + 1024K

let offset be some number in [0,BLOCK_SIZE):
mystery ∗ N = BLOCK_SIZE × (32 + 1024Z) + offset

mystery = BLOCK_SIZE × (32 + 1024Z) + N × offset
mystery = 64 × (32 + 1024Z) + N × offset

N=1: mystery = 2048, 2049, 2050, …, 2048 + 63, 64 · 1024 + 2048,
64 · 1024 + 2048 + 1, …

47

exercise (N=32*64)
what if N = 32*64

recall: other_array[0] is set 0, offset 0

other_array[mystery * N] is set 32

possible values of mystery?
mystery · 32 · 64 = 64(32 + 1024Z) + offset

= 64 · 32 + 65536Z + offset

mystery = 1 + 65536
64 · 32Z + offset

64 · 32 = 1 + 32Z

48

alternate view
learn index bits of mystery * N

this example: bits 6–15

N = 1, bits 6–15 of mystery

N = 64, bits 0–9 of mystery

N = 32*64 (211), bits 0–4 of mystery

49

variation: different starting location
other_array starts at 0x4001440

then other_array[0] at cache index
0x4001440 / BLOCK_SIZE mod NUM_SETS = 51

(51 + mystery * BLOCK_SIZE / BLOCK_SIZE) mod
NUM_SETS = 32

mystery = -19 or 1005 or 2029 or …

50

variation: associative cache
char *array;
// PRIME
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
// (some code we don't control)
other_array[mystery * BLOCK_SIZE] += 1;
// PROBE
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

 if (CheckIfSlowToAccess(&array[i])) { ... }
}

suppose 2-way 64KB cache instead of direct-mapped

NUM_SETS = 64KB/2/64B = 512 sets

array[0x800] still has cache index 32 (still)

but now mystery can be 32 or 32 + 512 or 32 + 512 · 2 or …
51

variation: associative cache (2)
char *array;
// PRIME
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
// (some code we don't control)
other_array[mystery * BLOCK_SIZE] += 1;
// PROBE
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

 if (CheckIfSlowToAccess(&array[i])) { ... }
}

suppose 2-way 64KB cache w/ 64B and array[0x8800] is slow

0x8800/BLOCK_SIZE = 544 = 512 + 32

since 512 sets total, still set index 32

mystery still 32 or 32 + 512 or 32 + 512 · 2 or …
52

exercise
if 4-way 64KB cache w/64B blocks and something from cache set
32 evicted,
then where could slow access be?

recall: 2-way cache: i=0x800, i=0x8800

A. i=0x400, i=0x800, i=0x8400, i=0x8800

B. i=0x800, i=0x8800, i=0x10800, i=0x18800

C. i=0x800, i=0x4800, i=0x8800, i=0xc800

D. i=0x800, i=0x4800, i=0x8800, i=0x10800

E. something else
53

EVICT+RELOAD
PRIME+PROBE: fill cache, detect eviction

alternate idea EVICT+RELOAD:
unsigned char *probe_array;
posix_memalign(&probe_array, CACHE_SIZE, CACHE_SIZE);
access OTHER things to evict all of probe_array
if (something false) {

 read probe_array[mystery * BLOCK_SIZE];
}
check which value from probe_array is faster

requires code to access something you can access

but often easier to setup/more reliable than PRIME+PROBE
54

EVICT+RELOAD
PRIME+PROBE: fill cache, detect eviction

alternate idea EVICT+RELOAD:
unsigned char *probe_array;
posix_memalign(&probe_array, CACHE_SIZE, CACHE_SIZE);
access OTHER things to evict all of probe_array
if (something false) {

 read probe_array[mystery * BLOCK_SIZE];
}
check which value from probe_array is faster

requires code to access something you can access

but often easier to setup/more reliable than PRIME+PROBE
54

EVICT+RELOAD
PRIME+PROBE: fill cache, detect eviction

alternate idea EVICT+RELOAD:
unsigned char *probe_array;
posix_memalign(&probe_array, CACHE_SIZE, CACHE_SIZE);
access OTHER things to evict all of probe_array
if (something false) {

 read probe_array[mystery * BLOCK_SIZE];
}
check which value from probe_array is faster

requires code to access something you can access

but often easier to setup/more reliable than PRIME+PROBE
54

into exploit: Meltdown
uint8_t* probe_array = new uint8_t[256 * 4096];
// ... Make sure probe_array is not cached
uint8_t kernel_memory_val = *(uint8_t*)(kernel_address);
uint64_t final_kernel_memory = kernel_memory_val * 4096;
uint8_t dummy = probe_array[final_kernel_memory];
// ... catch page fault
// ... in signal handler, determine which of 256 slots in probe_array is cached

55

privilege levels?
vulnerable code runs with higher privileges

so far: higher privileges = kernel mode

but other common cases of higher privileges

example: scripts in web browsers

56

JavaScript
JavaScript: scripts in webpages

not supposed to be able to read arbitrary memory, but…

can access arrays to examine caches

and could take advantage of some browser function being
vulnerable

or — doesn’t even need browser to supply vulnerable code itself!

57

JavaScript
JavaScript: scripts in webpages

not supposed to be able to read arbitrary memory, but…

can access arrays to examine caches

and could take advantage of some browser function being
vulnerable

or — doesn’t even need browser to supply vulnerable code itself!

57

just-in-time compilation?
for performance, compiled to machine code, run in browser
not supposed to be access arbitrary browser memory
example JavaScript code from paper:
if (index < simpleByteArray.length) {

index = simpleByteArray[index | 0];
index = (((index * 4096)|0) & (32*1024*1024−1))|0;
localJunk ˆ= probeTable[index|0]|0;

}

web page runs a lot to train branch predictor
then does run with out-of-bounds index
examines what’s evicted by probeTable access 58

supplying own attack code?
JavaScript: could supply own attack code

turns out also possible with kernel mode scenario

trick: don’t need to actually run code for real

…just need branch predictor to fetch it
so it gets partially executed speculatively

59

other misprediction
so far: talking about mispredicting direction of branch

what about mispredicting target of branch in, e.g.:
// possibly from C code like:
// (*function_pointer)();
jmp *%rax

// possibly from C code like:
// switch(rcx) { ... }
jmp *(%rax,%rcx,8)

60

an idea for predicting indirect jumps
for jmps like jmp *%rax predict target with cache:
 bottom 12 bits of jmp address last seen target
 0x0–0x7 0x200000
 0x8–0xF 0x440004
 0x10-0x18 0x4CD894
 0x18-0x20 0x510194
 0x20-0x28 0x4FF194
 … …
 0xFF8–0xFFF 0x3F8403

Intel Haswell CPU did something similar to this
uses bits of last several jumps, not just last one

can mistrain this branch predictor
61

using mispredicted jump
1: find some kernel function with jmp *%rax

2: mistrain branch target predictor for it to jump to chosen code
use code at address that conflicts in “recent jumps cache”

3: have chosen code be attack code (e.g. array access)
either write special code OR
find suitable instructions (e.g. array access) in existing kernel code

62

Spectre variants
showed Spectre variant 1 (array bounds), 2 (indirect jump)

from original paper

other possible variations:
could cause other things to be mispredicted

prediction of where functions return to?
values instead of which code is executed?

could use side-channel other than data cache changes
instruction cache
cache of pending stores not yet committed
contention for resources on multi-threaded CPU core
branch prediction changes
…

63

some Linux kernel mitigations (1)
replace array[x] with
array[x & ComputeMask(x, size)]

…where ComputeMask() returns
0 if x > size
0xFFFF..F if x ≤ size

…and ComputeMask() does not use jumps:
mov x, %r8
mov size, %r9
cmp %r9, %r8
sbb %rax, %rax // sbb = subtract with borrow

// either 0 or -1

64

some Linux kernel mitigations (2)
for indirect branches:

with hardware help:
separate indirect (computed) branch prediction for kernel v user mode
other branch predictor changes to isolate better

without hardware help:
transform jmp *(%rax), etc. into code that
will only predicted to jump to safe locations
(by writing assembly very carefully)

65

only safe prediction
as replacement for jmp *(%rax)

code from Intel’s “Retpoline: A Branch Target Injection
Mitigation”

call load_label
capture_ret_spec: /* <-- want prediction to go here */

pause
lfence
jmp capture_ret_spec

load_label:
mov %rax, (%rsp)
ret

66

backup slides

67

Quiz week 14

• file = &all_files[index]
• So if we provide an out of bounds index, we can read arbitrary memory
• file->data[], ie all_files[index].data[] is like array2
• file->size, ie all_files[index].size, is like array1

• kind ~ file->size, ie all_files[index].size, is like array1
• This is the address we want to learn about by observing its cache behavior

• other_table [] ~ file->data[], ie all_files[index].data[] is like array2
• Not using the .foo here

• Why not A?
• all_files[index].data is like array2

• Based on which cache set is affected by different index values, we learn what those
index values are

• So we need to set up the index (~array1) to refer to the memory location we’re interested
in – here file.size, ie all_files[index].size

Q4

• (0 + mystery) // 64 +/- multiple of 512 (number of cache sets) = 435
• (32 + mystery) // 64 +/- multiple of 512 (number of cache sets) = 435
• (48 + mystery) // 64 +/- multiple of 512 (number of cache sets) = 436
• …

There was a typo originally that we fixed.
Originally wrote %16384 instead of %32768,
and 4096 instead of 8240 for the last row

extracting low-order bits

char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
other_array[mystery * BLOCK_SIZE] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...
}

}
with 64KB direct-mapped cache with 64B blocks
suppose we find out that array[0x700] is slow to access
and other_array starts at some multiple of cache size
What was mystery?

char *array;

posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);

AccessAllOf(array); // PRIME

other_array[mystery] += 1;

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) // PROBE

{...}

}

• NSETS = CACHE_SIZE/BLOCK_SIZE = 64KB/64B = 1K = 210

• And this affected array[0x700] //cache-aligned
• Which had cache index 0x700/BLOCK_SIZE = 1792/64 = 28
• Or 0b 0111 0000 0000

• other_array[mystery] = other_array + mystery (because these are char array)
• If we know the base address of other_array is 0x20000, we need index(0x20000 + mystery) = 28

• 0b 0010 0000 0000 0000 0000 //other_array
• +0b ???? ???? ???? ???? ???? //mystery
• =0b ???? 0000 0111 00?? ????
• Now we find the low order byte of mystery, which is 0b 0001 1100 = 28
• In either case, we extract log(NSETS) bits, at the positions that align with the index bits

char *array;

posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);

AccessAllOf(array); // PRIME

other_array[mystery] += 1;

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) // PROBE

{...}

}

• NSETS = CACHE_SIZE/BLOCK_SIZE = 64KB/64B = 1K = 210

• And this affected array[0x700]
• Which had cache index 0x700/BLOCK_SIZE = 1792/64 = 28
• Or 0b 0111 0000 0000

• other_array[mystery] = other_array + mystery (because these are char array)
• If we know the base address of other_array is 0x20440, we need to index(0x20440 + mystery) = 28

• 0b 0010 0000 0100 0100 0000 //other_array
• +0b ???? 0000 0010 11?? ???? //mystery
• =0b ???? 0000 0111 00?? ????
• Now we find the actual value of mystery, which is 0b 0000 1011 = 11

char *array;

posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);

AccessAllOf(array); // PRIME

other_array[mystery * BLOCK_SIZE] += 1;

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {
if (CheckIfSlowToAccess(&array[i])) // PROBE

{...}

}

• NSETS = CACHE_SIZE/BLOCK_SIZE = 64KB/64B = 1K
• Each value of mystery touches a different cache line

• So we touched cache index mystery % NSETS
• But base address might be offset

• And this affected array[0x700]
• Which had cache index 0x700/BLOCK_SIZE = 1792/64 = 28

• And &other_array starts at 0x20440, which has cache index (0x20440/BLOCK_SIZE)%NSETS = 17
• So IDX(mystery) + IDX(&other_array) = 28
• So IDX(mystery) = 28 -17 = 11
• So mystery = 11 or (11+1024) or …

• If we know mystery is a char, then we know it’s between 0-255, so in this case mystery = 11

• It’s the same math!!!

char array[CACHE_SIZE] // not aligned

AccessAllOf(array); // PRIME

other_array[mystery * BLOCK_SIZE] += 1;

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) // PROBE

{...}

}

• NSETS = CACHE_SIZE/BLOCK_SIZE = 64KB/64B = 1K
• Each value of mystery touches a different cache line

• So we touched cache index mystery % NSETS
• But base address might be offset

• And this affected array[0x8280]
• Whose base address might also be offset, say 0x48480
• What cache index is array[0x8280]?
• IDX(&array + 0x8280) = ((0x48480 + 0x8280)/BLOCK_SIZE)%NSETS = 28

• And &other_array starts at 0x20440, which has cache index (0x20440/BLOCK_SIZE)%NSETS = 17
• So IDX(mystery) + IDX(&other_array) = 28
• So IDX(mystery) = 28 -17 = 11
• So mystery = 11 or (11+1024) or …

• If we know mystery is a char, then we know it’s between 0-255, so in this case mystery = 11

What about associative caches?
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
other_array[mystery * BLOCK_SIZE] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...
}

}
with 64KB 2-way cache with 64B blocks
suppose we find out that array[0x800] is slow to access
and other_array starts at some multiple of cache size
What was mystery?

another exercise

char array1[…];
…
int secret;
…
y = array2[array1[x] * 4096];

• Suppose our cache has 64B blocks and 1K sets, and array2[0] is in set 0
• Suppose our prime+probe lets us see that something in cache set 256 or

our probe array (array2) is evicted
• What do we know about array1[x]?

char array1[…];
…
int secret;
…
y = array2[array1[x] * 4096];

• Suppose our cache has 64B blocks and 1K sets, and array2[0] is in set 0
• So array2[64] is in set 1, array2[128] is in set 2, etc.

• Suppose our prime+probe lets us see that something in cache set 256 of our probe array (array2)
is evicted,
• So CACHE_SET(array1[x]*4096) = 256

• What do we know about array1[x]?

• array1[x] * 4K = 64 * target_set + some multiple of number of sets
• array1[x] * 4K = 64 * 256 + …
• So array1[x] = (64*256)/4K = 16K/4K = 4 + …

char array1[…];
…
int secret;
…
y = array2[array1[x] * 4096];

• Suppose our cache has 64B blocks and 32K sets, and array2[0] is in set 0
• So array2[64] is in set 1, array2[128] is in set 2, etc.

• Suppose our prime+probe lets us see that something in cache set 256 of our probe array
is evicted, so CACHE_SET(array1[x]*4096) = 256

• What do we know about array1[x]?

• array1[x] * 4K = 64 * target_set + some multiple of number of sets
• array1[x] * 4K = 64 * 256 + n*32K*64
• So array1[x] = (64*256 + n*32K*64)/4K = 16K/4K + (n*32K*64)/4K

• So array1[x] = 4 or 4+512 or…
• But it’s a char, so it can only be 4

char array1[…];
…
int secret;
…
y = array2[array1[x] * 4096];

• Suppose our cache has 64B blocks and 2K sets, and array2[0] is in set 0
• So array2[64] is in set 1, array2[128] is in set 2, etc.

• Suppose our prime+probe lets us see that something in cache set 256 of our probe array
is evicted, so CACHE_SET(array1[x]*4096) = 256

• What do we know about array1[x]?

• array1[x] * 4K = 64 * target_set + some multiple of number of sets
• array1[x] * 4K = 64 * 256 + n*2K*64
• So array1[x] = (64*256 + n*2K*64)/4K = 16K/4K + (n*2K*64)/4K

• So array1[x] = 4 or 4+32 or 4+64 or…
• But it’s a char, so it can only be 4, 36, 68, 100, 132, 164, or 196
• … This works better in last-level caches with larger # of sets

char array1[…];
…
int secret;
…
y = array2[array1[x]]; // no *4096 this time

• Suppose our cache has 64B blocks and 32K sets, and array2[0] is in set 0
• So array2[64] is in set 1, array2[128] is in set 2, etc.

• Suppose our prime+probe lets us see that something in cache set 3 of our probe array is
evicted, so CACHE_SET(array1[x]*4096) = 3

• What do we know about array1[x]?

• array1[x] * 4K = 64 * target_set + some multiple of number of sets
• array1[x] * 4K = 64 * 3 + n*32K*64
• So array1[x] = 196 + n*32K*64

• So array1[x] = 196 or some large number
•

	some side channel examples
	example: check_passphrase
	timing and ciphers
	example: which website

	cache side channels
	introduction: observing cache evictions
	exercise: detect this access? (DM)
	exercise: detect this access? (2-way)
	PRIME+PROBE, AES example
	reading a value (1)

	seeing speculation via side channels
	revising array lookup
	reading a value (2)

	meltdown
	well, what else gets speculated?
	vulnerability
	fix

	spectre
	concept: forcing branch misprediction
	contrived? vulnerable code
	array bounds check

	additional exercises
	simple prime+probe example
	which bits do we learn — extended
	variations: starting location, associativity

	evict+reload
	applied to meltdown

	spectre con't
	JavaScript exploit
	mispredicted indirect
	more variants?
	software fix

	backup slides
	quiz review (F2024)
	learning parts of bits
	more exercises

