processes API

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exXecx*

also posix_spawn (not widely supported), ..
waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exXecx*

also posix_spawn (not widely supported), ..
waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

fork

pid_t fork() — copy the current process

returns twice:

in parent (original process): pid of new child process
in child (new process): 0

everything (but pid) duplicated in parent, child:
memory
file descriptors (later)
registers

fork and process info (w/o copy-on-write)
memory

parent process info

user regs

rax (returnval.)=42,
rcx=133, .

memory mapping

open files

fdo: ..

fd1l: ..

fork and process info (w/o copy-on-write)

parent process info memory
rax (returnval.)=42,
user regs rcx=133, .
memory mapping
: fdo: .. —|
open files fd 1
copy child process info
rax (returnval.)=42,
user regs rcx=133, ..
memory mapping
: fdo: .
open files fd 1

fork and process info (w/o copy-on-write)
memory

copy

parent process info

user regs

rax (returnval.)=42,
rcx=133, ..

memory mapping

i fdo: ..
open files G-
child process info
user regs rax (returnval.)=42,

rcx=133, ..

memory mapping

open files

fdo: ..

fd1l: ..

fork and process info (w/o copy-on-write)
memory

copy

parent process info

user regs

rax (returnval.)=42,
rcx=133, ..

memory mapping

i fdo: ..
open files G-
child process info
user regs rax (returnval.)=42,

rcx=133, ..

memory mapping

open files

fdo: ..

fd1l: ..

fork and process info (w/o copy-on-write)
memory

copy

parent process info

user regs

rax (returnval.)=42child pid,
rcx=133, ..

memory mapping

i fdo: ..
open files G-
child process info
user regs rax (returnval.)=420,

rcx=133, ..

memory mapping

open files

fd o: ..

fd1l: ..

fork example

// not shown: #include various headers
int main(int argc, char *argv[]) {
pid_t pid = getpid();
printf("Parentypid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {
/* Parent Process */
pid_t my_pid = getpid();
printf (" [%d]_parentyof, [%d]\n",
(int) my_pid,
(int) child_pid);
} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d]_ child\n",
(int) my_pid);
} else {
perror ("Fork,failed");

return 0;

fork example

// not shown: #include various headers

int main(int argc, char *argv[]~~L

pid_t pid = getpid(); getpid — returns current process pid
printf("Parentypid:_ %d\n",

pid_t child_pid = fork();
if (child_pid > 0) {
/* Parent Process */
pid_t my_pid = getpid();
printf (" [%d]_parentyof, [%d]\n",
(int) my_pid,
(int) child_pid);
} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d], child\n",
(int) my_pid);
} else {
perror ("Fork,failed");

return 0;

fork example

// not shown: #include various headers
int ma'in('int apoc char *avayT1N L

pid_t pid | cast in case pid_t isn't int
printf("Pa

pid_t chil{ POSIX doesn’t specify (some systems it is, some not...)
if (7*”,132; (not necessary if you were using C++'s cout, etc.)
pid_t my_pTo = getpTat/;
printf (" [%d]_parentyof, [%d]\n",
(int) my_pid,
(int) child_pid);
} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d],child\n",
(int) my_pid);

} else {
perror ("Fork,failed");

return 0;

fork example

// not shown: #include various headers
int mainlint arac char *avayT1N L

pid) prints out Fork failed: error message

prin

pid| (example error message: “Resource temporarily unavailable™)
if . . .
"] from error number stored in special global variable errno

pPTO_T My_pTd = ZetpTat/;
printf("[%d]yuparentyof,[%d]\n",
(int) my_pid,
(int) child_pid);
} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d]uchild\n",
(int) my_pid);
} else {
perror ("Fork,failed");

return 0;

fork example

// not shown: #include various headers
int main(int argc, char *argv[]) {
pid_t pid = getpid();
printf("Parentypid:_ %d\n",
pid_t child_pid = fork();
if (child_pid > 0) {
/* Parent Process */
pid_t my_pid = getpid();
printf("[%d]yuparentyof,[%d]\n",
(int) my_pid,
(int) child_pid);
} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d]uchild\n",
(int) my_pid);
} else {
perror ("Fork,failed");

return 0;

(int) pid);

fork()

parent pid: ..

child ...

Example output:

Parent pid: 100

[100] parent of [432]
[432] child

a fork question

int main() {
pid_t pid = fork();
if (pid == 0) {
printf("Inychild\n");
} else {
printf("Child, %d\n", pid);

printf("Done!\n");
}

Exercise: Suppose the pid of the parent process is 99 and child is 100. Give two
possible outputs. (Assume no crashes, etc.)

a fork question

int main() {
pid_t pid = fork();
if (pid == 0) {
printf("Inychild\n");
1 else {
printf("Child %d\n", pid);
}

printf("Done!\n");
}

Exercise: Suppose the pid of the parent process is 99 and child is 100. Give two

possible outputs. (Assume no crashes, etc.)

Child 100

In child
l E Done!

Done!

In child
Done!
Child 100
Done!

a fork question (2)

int x = 0;
int main() {

}

pid_t pid = fork();

int y = 0;
if (pid == 0) {
X +=1;
y += 23
} else {
X += 3;
y += 4;

}
printf("%d_%d\n", x, y);

Exercise: which (possibly multiple) are possible outputs?

A.12 (newline) 34 B.12(newline)44 C.12 (newline) 46
D. 34 (newline) 12 E. 34 (newline) 46 F. 46 (newline) 46

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exec*

also posix_spawn (not widely supported), ..
waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

exec*

exec* — replace current program with new program

* — multiple variants
same pid, new process image

int execv(const char *path, const char
*x*kargv)

path: new program to run

argv: array of arguments, termianted by null pointer

also other variants that take argv in different form and/or
environment variables*

*environment variables = list of key-value pairs

10

execv example

child_pid = fork();
if (child_pid == 0) {
/* child process */
char *args[] = {"1ls", "-1", NULL};
execv("/bin/1ls", args);
/* execv doesn't return when it works.
So, i1f we got here, it failed. */
perror ("execv");
exit(1l);
} else if (child_pid > 0) {
/* parent process */

execv example

child_pid = fork();
if (child_pid == 0) {

/* child process

*/

char *args[] = {"ls", "-1", NULL};

execv("/bin/1ls",
/* execv doesn't
So, i1f we got
perror ("execv");
exit(1l);

used to compute argv, argc
when program’s main is run

convention: first argument is program name

} else 1if (child_

T U1

/* parent process */

11

execv example

child_pid = fork();
if (child_pid == 0) {
/* child process */

char *args[] = {"ls", '

execv("/bin/1ls", args)
/* execv doesn't retur
So, i1f we got here,
perror ("execv");
exit(l);
} else if (child_pid > 0
/* parent process */

-1", NULL};

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including 1s (‘list directory’)

11

exec in the kernel

the process control block

user regs

eax=42,
ecx=133, ..

memory

memory mapping

open files

fd 0: (terminal..)

fdi: ..

12

exec in the kernel

the process control block

user regs

eax=42init. val.,
ecx=133init. val., ..

memory mapping

open files

fd 0: (terminal..)
fd1l: ..

memory

\ 4

W VY

}new stack, heap,

loaded from

executable file
12

exec in the kernel

the process control block memory

user regs eax=42init. val.,
ecx=133init. val., ..

memory mapping

. fao: (terminaly | | i
open files fd1: . > :

copy argument:

|

}new stack, heap,

loaded from
executable file

W VY

exec in the kernel

the process control block

memory

user regs eax=42init. val.,

ecx=133init. val., ..
memory mapping _|
open files wij 2 (terminal..)

files + some other things not changed!
(more on this later)

Y

W VY

l

copy arguments

|

new stack, heap,

loaded from
executable file

exec in the kernel

the process control block memory 14 memory
eax=42init. val., 3 i
user regs o R i discarded
memory mapping, ~~~~ — B
. fd 0: (terminal..) —| _, \
open files fd1s < =

copy arguments

|

...... }new stack, heap,

files + some other things not changed!
(more on this later)

i loaded from
executable file

W VY

why fork /exec?

could just have a function to spawn a new program
Windows CreateProcess(); POSIX's (rarely used) posix_spawn

some other OSs do this (e.g. Windows)

needs to include API to set new program’s state
e.g. without fork: either:
need function to set new program'’s current directory, or
need to change your directory, then start program, then change back
e.g. with fork: just change your current directory before exec

but allows OS to avoid ‘copy everything' code
probably makes OS implementation easier
13

posix__spawn

pid_t new_pid;
const char argv[] = { "ls", "-1", NULL };
int error_code = posix_spawn(
&new_pid,
"/bin/ls",
NULL /* null = copy current process's open files;
if not null, do something else */,
NULL /* null = no special settings for new process */,
argv,
NULL /* null = copy current "environment variables'",
i1f not null, do something else */

)

if (error_code == 0) {
/* handle error */

+

14

some opinions (via HotOS '19)
A fork() in the road

Andrew Baumann Jonathan Appavoo Orran Krieger Timothy Roscoe
Microsoft Research Boston University Boston University ETH Zurich
ABSTRACT

The received wisdom suggests that Unix’s unusual combi-
nation of fork() and exec() for process creation was an
inspired design. In this paper, we argue that fork was a clever
hack for machines and programs of the 1970s that has long
outlived its usefulness and is now a liability. We catalog the
ways in which fork is a terrible abstraction for the mod-
ern programmer to use, describe how it compromises OS
implementations, and propose alternatives.

15

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exXecx*

also posix_spawn (not widely supported), ..
waiting for processes to finish: waitpid (or wait)
process destruction, ‘signaling’: exit, kill

16

wait /waitpid

pid_t waitpid(pid_t pid, int *status,
int options)

wait for a child process (with pid=pid) to finish

sets xstatus to its “status information”

pid=—1 — wait for any child process instead

options? see manual page (command man waitpid)
® — no options

17

waitpid example
#include <sys/wait.h>

child_pid = fork();
if (child_pid > 0) {

/* Parent process */

int status;

waitpid(child_pid, &status, 0);
} else if (child_pid == 0) {

/* Child process */

exit statuses

int main() {
return 0;

}

/* or exit(0);

*/

19

the status

#include <sys/wait.h>

waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("maingreturned oryexitycalled with_ %d\n",
WEXITSTATUS (status));
} else if (WIFSIGNALED(status)) {

printf("killed by, signal %d\n", WTERMSIG(status));
} else {
+

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

20

the status

#include <sys/wait.h>

waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("maingreturned oryexitycalled with_ %d\n",
WEXITSTATUS (status));
} else if (WIFSIGNALED(status)) {

printf("killed by, signal %d\n", WTERMSIG(status));
} else {
+

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

20

typical pattern

parent

1
fork -_—
¢

waitpid ;
, exec

child process

21

typical pattern (alt)

parent
<
fork -
child process
exec
_____________ »
waitpid -

S

22

typical pattern (detail)

pid = fork();
if (pid == 0) {

} else if (pid > 0) {
waitpid(pid,..);

pid = fork();
if (pid == 0) {

} else if (pid > @) {
waitpid(pid,..);

main() {

pid = fork();
if (pid == 0) {
exec..(..) ;

} else if (pid > 0) {
waitpid(pid,..);

23

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exXecx*

also posix_spawn (not widely supported), ..
waiting for processes to finish: waitpid (or wait)
process destruction, ‘signaling’: exit, kill

24

exercise (1)

int main() {
pid_t pids[2]; const char *args[] = {"echo", "ARG", NULL};
const char *extral[] = {"L1", "L2"};
for (int i = 0; i < 2; ++i) {
pids[i] = fork();
if (pids[i] == 0) {
args[1l] = extralil;
execv("/bin/echo", args);
}
1
for (int i = 0; i < 2; ++i) {
waitpid(pids[i], NULL, 0);
}

+
Assuming fork and execv do not fail, which are possible outputs?

A. L1 (newline) L2 D. Aand B

B. L1 (newline) L2 (newline) L2 E. A and C

C. L2 (newline) L1 F. all of the above 25

exercise (2)
int main() {
pid_t pids[2]; const char *args[] = {"echo", "0", NULL};
for (int 1 = 0; 1 < 2; ++1) {
pids[i] = fork();
if (pids[i] == 0) { execv("/bin/echo", args); }

}
printf("1\n"); fflush(stdout);

for (int i = 0; i < 23 ++1i) {
waitpid(pids[i], NULL, 0);

}
printf("2\n"); fflush(stdout);
}

Assuming fork and execv d

0] (newline 0 (newline

not fail, which are possible outputs?

E. A B,andC

F. Cand D

G. all of the above
H

something else

newline

newline

oNwp

o) w

) 1 2
newline) 0] 2
) 0] 2

) 2 0]

O (
1 (newline
1

) ()
1 (newline) (newline)
O (newline) ()
O (newline) 2 (newline)

newline newline newline

26

exercise (2)
int main() {
pid_t pids[2]; const char *args[] = {"echo", "0", NULL};
for (int 1 = 0; 1 < 2; ++1) {
pids[i] = fork();
if (pids[i] == 0) { execv("/bin/echo", args); }

}

printf("1\n"); fflush(stdout);

for (int i = 0; i < 23 ++1i) {
waitpid(pids[i], NULL, 0);

}
printf("2\n"); fflush(stdout);

}

Assuming fork and execv do not fail, which are possible outputs?
A. 0 (newline) 0 (newline) 1 (newline) 2 E A, B, and C

B. 0 (newline) 1 (newline) 0] (newline) 2 F. CandD

C. 1 (newline) 0 (newline) 0 (newline) 2 G. all of the above
D. 1 (newline) O (newline) 2 (newline) @ H. something else

26

some POSIX command-line features

searching for programs
ls -1 — /bin/ls -1
make — /usr/bin/make

running in background
. /someprogram &

redirection:

. /someprogram >output.txt
. /someprogram <input.txt

pipelines:
./someprogram | ./somefilter

27

some POSIX command-line features

searching for programs
ls -1 — /bin/ls -1
make — /usr/bin/make

running in background
. /someprogram &

redirection:

. /someprogram >output.txt
. /someprogram <input.txt

pipelines:
./someprogram | ./somefilter

28

some POSIX command-line features

searching for programs
ls -1 — /bin/ls -1
make — /usr/bin/make

running in background
. /someprogram &

redirection:

. /someprogram >output.txt
. /someprogram <input.txt

pipelines:
./someprogram | ./somefilter

29

file descriptors

struct process_info { /* <-- in the kernel somewhere */
_;,{:l.'uct open_file_description *files[SIZE];

T

|:-)|"c.>cess—>f'iles[f'ile_descr'iptor]

Unix: every process has
array (or similar) of open file descriptions

“open file": terminal - socket - regular file - pipe

file descriptor = index into array
usually what's used with system calls
stdio.h FILE*s usually have file descriptor + buffer

30

special file descriptors
file descriptor 0 = standard input
file descriptor 1 = standard output
file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

31

special file descriptors
file descriptor 0 = standard input
file descriptor 1 = standard output
file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns...?
more on this later

31

getting file descriptors

int read_fd = open("dir/filel", O_RDONLY);
int write_fd = open("/other/file2", O_WRONLY | ...);
int rdwr_fd = open("file3", O_RDWR);

used internally by fopen(), etc.

also for files without normal filenames...:

int fd = shm_open("/shared_memory", O_RDWR, 0666); // shared memory
int socket_fd = socket(AF_INET, SOCK_STREAM, 0); // TCP socket

int term_fd = posix_openpt(O_RDWR); // pseudo-terminal

int pipe_fds[2]; pipe(pipefds); // "pipes'" (later)

32

close

int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors
that refer to same “open file description”
(e.g. in fork()ed child or created via (later) dup2)

if last file descriptor for open file description, resources deallocated

returns O on success

returns -1 on error
e.g. ran out of disk space while finishing saving file

33

shell redirection

./my_program ... < input.txt:
run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo > output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

34

fork copies open file list

parent process control block

copy

eax=42child (new) pid,

memory

w
v

user regs ecx=133, ..
page table

_ fd o
open files fd 1

child process control block
eax=420

user regs ecx=133:
pagetable

) fd o:
open files di:

f

35

fork copies open file list

parent process control block

copy

eax=42child (new) pid,

memory

USEr regs ecx=133, ..
page table }

) fd o co
open files fd 1 by

child process control block
eax=420, open file description (stdin

user regs ecx-133. .. P P ()
pagetable open file description (stdout)

) fdo:
open files di:

f

35

fork copies open file list

parent process control block

copy

eax=42child (new) pid,

memory

user regs ecx=133, ..
page table
) fd o co
open files fd 1 Py
child process control block
eax=420, file descripti tdi
user regs cex=133. .. »| open file description (stdin)
pagetable —-| open file description (stdout)
fdo:
open files 9 |

f

iy

redirected-to stdout? :
 (set after fork, before exec) s

typical pattern with redirection,,,,

pid = fork();

if (pid == 0) {
open new files;
exec..(..);

} else if (pid > 0) {
waitpid(pid,..);

S

pid = fork();
if (pid == 0) {
open new files;

} else if (pid > 0) |
waitpid(pid,..);

child

pid = fork();

exec..(..);

if (pid == 0) {
open new files;

} else if (pid > 0) {
waitpid(pid,..);

main() {

/}

36

redirecting with exec

standard output/error/input are files
(C stdout/stderr/stdin; C++ cout/cerr/cin)

(probably after forking) open files to redirect

..and make them be standard output/error/input
using dup2 () library call

then exec, preserving new standard output/etc.

37

exec preserves open files

the process control block memory 14 memory

eax=42init. val. : ;
user regs Coxei33mit vah, - f discarded
pagetable
: fd 0: (terminal..)
open files fd 1. :

copy arguments

|

‘ }new stack, heap, ..

loaded from
executable file

not changed!
redirection /etc.:
setup stdin/stdout before exec

W VY

reassigning file descriptors
redirection: . /program >output.txt
step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

39

reassigning and file table

// something like this in 0S code
struct process_info {

struct open_file_description *files[SIZE];
b
process->files[STDOUT_FILENO] = process->files[opened-fd];

syscall: dup2 (opened-fd, STDOUT_FILENO) ;

40

reassigning file descriptors
redirection: . /program >output.txt
step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, 1int newfd)
make newfd refer to same open file as oldfd
same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

41

dup2 example

redirects stdout to output to output. txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",
O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)
do_something_about_error();

dup2(fd, STDOUT_FILENO);

/* now both write(fd, ...) and write(STDOUT_FILENO,
write to output.txt

*/
close(fd); /* only close original, copy still works! */

printf("This will be sent to output.txt.\n");

.)

42

open/dup/close/etc. and fd array

// something like this in 0OS code
struct process_info {

struct open_file_description *files[NUM];
b

open: files[new_fd] = ...;
dup2(from, to): files[to] = files[from];
close: files[fd] = NULL;

fork:

for (int i = ...)
child->files[i] = parent->files[i];
43

unshared seek pointers

if “foo.txt” contains “AB”

int fdl = open("foo.txt", O_RDONLY);
int fd2 = open("foo.txt", O_RDONLY);
char c;

read(fdl, &c, 1);

char d;

read(fd2, &d, 1);
expected result: ¢ = ‘A’, d = ‘A’

44

shared seek pointers (1)

if “foo.txt” contains “AB":

int fd = open("foo.txt", O_RDONLY);
dup2(fd, 100);

char c;

read(fd, &c, 1);

char d;

read (100, &d, 1);

expected result: ¢ = ‘A’, d = ‘B’

45

shared seek pointers (2)

if “foo.txt” contains “AB":
int fd = open("foo.txt", O_RDONLY);
pid_t p = fork();
if (p == 0) {
char c;
read(fd, &c, 1);

} else {
char d;
sleep(l);
read(fd, &d, 1);

}
expected result: c = ‘A’, d = ‘B’

46

pipes
special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe () library call

intended use: communicate between processes
like implementing shell pipelines

47

pipe()

int pipe_fd[2];

if (pipe(pipe_fd) < 0)
handle_error();

/* normal case: */

int read_fd = pipe_fd[0];

int write_fd = pipe_fd[1];

then from one process...
write(write_fd, ...);

and from another
read(read_fd, ...);

48

pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)
handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit (EXIT_SUCCESS);
} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);
1 else { /* fork error */ } 49

pipe example (1)

‘standard’ pattern with fork()

int pipe_fd[2];

if (pipe(pipe_fd) < 0)
handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);
} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);
1 else { /* fork error */ }

49

pipe example (1)

‘nt pipe fdl21: read() will not indicate
}2 (E}EEZpige]%d) < 0) end-of-file if write fd is open
handle_error(); /* e.g. out of file (any copy of it)
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit (EXIT_SUCCESS);
} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);
1 else { /* fork error */ } 49

pipe example (1)
. . . have habit of closing
}2t(g}EEZS?£ZI%d) < 0) to avoid ‘leaking’ file descriptors

handle_error(); /* e.g. out of fi|YoU can runout
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();

if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);

write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {

/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);
1 else { /* fork error */ } 49

pipe and pipelines

ls -1 | grep foo

pipe(pipe_fd);

ls_pid = fork();

if (ls_pid == 0) {
dup2 (pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1l]);
char *argv[] = {"1ls", "-1", NULL};
execv("/bin/1ls", argv);

}

grep_pid = fork();

if (grep_pid == 0) {
dup2 (pipe_fd[06], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

ks

close(pipe_fd[0]); close(pipe_fd[1l]);

50

example execution

parent

pipe() — fds 3 [read], 4 [write]

child 1

child 2 — 4— stdout
S— 3— stdin 2— close 3,4
2— close 3,4
close 3,4 exec |s
exec grep ¢

D

exercise

pid_t p = fork();

int pipe_fds[2];

pipe(pipe_fds);

if (p == 0) { /* child */
close(pipe_fds[0]);

char ¢ = 'A';
write(pipe_fds[1], &c, 1);
exit(0);

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read, %d bytes\n", count);

}

The child is trying to send the character A to the parent, but the
above code outputs read O bytes instead of read 1 bytes.

What happened?
52

exercise solution

pipe() is after fork — two pipes, one in child, one in parent

53

Unix APl summary

spawn and wait for program: fork (copy), then
in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close

one interface for regular files, pipes, network, devices, ..

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection /pipelines
open() or pipe() to create new file descriptors
dup?2 in child to assign file descriptor to index 0, 1

54

backup slides

55

shell

allow user (= person at keyboard) to run applications

user's wrapper around process-management functions

56

aside: shell forms
POSIX: command line you have used before
also: graphical shells
e.g. OS X Finder, Windows explorer
other types of command lines?

completely different interfaces?

57

searching for programs

POSIX convention: PATH environment variable

example: /home/cr4bd/bin:/usr/bin:/bin
list of directories to check in order

environment variables = key/value pairs stored with process
by default, left unchanged on execve, fork, etc.
one way to implement: [pseudocode]

for (directory 1in path) {
execv(directory + "/" + program_name, argv);
}

58

kernel buffering (reads)

program

operating system

kevboard | |

disk

59

kernel buffering (reads)

program

operating system

buffer: keyboard input
waiting for program

®|keypress happens, read|

kevboard | | disk

59

kernel buffering (reads)

program

2 read char

from terminal

3 ..via buffer

operating system

buffer: keyboard input
waiting for program

®|keypress happens, read|

kevboard | | disk

59

kernel buffering (reads)

program

1 l
L or2 read char 3|Mter

from terminal

operating system

buffer: keyboard input
waiting for program

2
Or®|keypress happens, read|

| kevboard | | disk

59

kernel buffering (reads)

1t or 2

program

read char 3|Mter 1 read char|

from terminal

from file

operating system

buffer: keyboard input
waiting for program

2
Or®|keypress ha

ppens, read|

| kevboard | | disk

59

kernel buffering (reads)

program

T | |
Lor2 read char 3|ﬁer ! read char| 3 via buffer

from terminal from file

operating system

bUfR.%rli keyboard input buffer: recently read
waiting for program data from disk

2 4 A
OrCD|keypress happens, read| 2 read block of data from disk

| keyboard | | disk |

kernel buffering (writes)

program

operating system

network ‘ ‘

disk

60

kernel buffering (writes)

program

print char
to remote machine

operating system

network ‘ ‘

disk

60

kernel buffering (writes)

program

print char
to remote machine

operating system

buffer: output
waiting for network

(when ready)
send data

network ‘ ‘ disk

60

kernel buffering (writes)

program
print char write char
to remote machine to file

operating system

buffer: output
waiting for network

(when ready)
send data

network ‘ ‘

disk

60

kernel buffering (writes)

program
print char write char
to remote machine to file

operating system

buffer: output
waiting for network

buffer: data waiting
to be written on disk

(when ready)

(when ready)

send data write block of data from disk
D A
network ‘ ‘ disk

60

read /write operations
read()/write(): move data into/out of buffer
possibly wait if buffer is empty (read)/full (write)

actual |/O operations — wait for device to be ready
trigger process to stop waiting if needed

61

layering

application

standard library cout/printf — and their own buffers

system calls read /write

kernel's file interface kernel's buffers

device drivers

hardware interfaces

62

why the extra layer

better (but more complex to implement) interface:

read line
formatted input (scanf, cin into integer, etc.)
formatted output

less system calls (bigger reads/writes) sometimes faster
buffering can combine multiple in/out library calls into one system call

more portable interface
cin, printf, etc. defined by C and C++ standards

63

pipe() and blocking

BROKEN example:

int pipe_fd[2];
if (pipe(pipe_fd) < 0)
handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What's the problem?

64

pattern with multiple?

parent

% first child process
fork —— second child process %
% é exec
waitpid(first,...) exec
5 L exit()
TR exit()

.............

<

waitnid(cecand)

65

this class: focus on Unix
Unix-like OSes will be our focus

we have source code

used to from 2150, etc.?

have been around for a while

xvb imitates Unix

66

Unix history

I ovensource
[Meshared source
[closed source 1974101975

1078

1971101973 1971101973

1974101975

1978 R Nouure reeases

1979 1979

1980 1980

1081 1981
1082 1982
1083 1983
1984 198
1985

1986

1987
65043 1088
r 1989
Reno_ 1990
= 1991
1992
SO = 1993
&3t
g 1994
X s entsp 1995
199
- 1997
FrebsD 1998
1999
2000
2001 t0 2004
2005
2006 t0 2007
Freesso 2008
- dragonFi e 2009
iy
L, : 2010
Gerivatie 20m
mos, et 201210 2015
2016
2007

image: Wikpedia/Eraserheadl+Infinity0+Sav_vas 67

1985
1986

2001 to 2008
2005
2006 to 2007

POSIX: standardized Unix
Portable Operating System Interface (POSIX)

“standard for Unix"

current version online:
https://pubs.opengroup.org/onlinepubs/9699919799/

(almost) followed by most current Unix-like OSes
..but OSes add extra features

..and POSIX doesn't specify everything

68

what POSIX defines
POSIX specifies the library and shell interface

source code compatibility
doesn't care what is/is not a system call..

doesn’t specify binary formats...

idea: write applications for POSIX, recompile and run on all
implementations

this was a very important goal in the 80s/90s
at the time, no dominant Unix-like OS (Linux was very immature)

69

getpid

pid_t my_pid = getpid();
printf("my_pidyis %ld\n",

(long) my_pid);

70

process ids in ps

cr4bd@machine:~$ ps

PID TTY TIME CMD
14777 pts/3 P0:00:00 bash
14798 pts/3 00:00:00 ps

71

read /write

ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read /write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken 1/O device, ...

72

read’ing one byte at a time

string s;

ssize_t amount_read;

char c;

/* cast to void * not needed in C */

while ((amount_read = read(STDIN_FILENO,
/* amount_read must be exactly 1 */
s += C;

}

if (amount_read == -1) {
/* some error happened */

(void*) &c, 1)) > 0)

perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */
+

73

write example

/* cast to void * optional in C */

write(STDOUT_FILENO,

(void *) "Hello, World!\n", 14);

74

aside: environment variables (1)

key=value pairs associated with every process:

$ printenv

MODULE_VERSION_STACK=3.2.10

MANPATH=: /opt/puppetlabs/puppet/share/man

XDG_SESSION_ID=754

HOSTNAME=Tabsrv0O1l

SELINUX_ROLE_REQUESTED=

TERM=screen

SHELL=/bin/bash

HISTSIZE=1000

SSH_CLIENT=128.143.67.91 58432 22

SELINUX_USE_CURRENT_RANGE=

QTDIR=/usr/1lib64/qt-3.3

OLDPWD=/zf14/cr4bd

QTINC=/usr/1ib64/qt-3.3/include

SSH_TTY=/dev/pts/0

QT_GRAPHICSSYSTEM_CHECKED=1

USER=cr4bd
LS_COLORS=rs=0:d7=01;34:1n=01;36:mh=00:pi=40;33:50=01;35:d0=01;35:bd=40;33;01:cd=40;33;01:0r
MODULE_VERSION=3.2.10

MAIL=/var/spool/mail/cr4bd

PATH=/zf14/cr4bd/.cargo/bin:/zfl4/cr4bd/bin: /usr/1lib64/qt-3.3/bin:/usr/local/bin:/usr/bin: /u
PWD=/zf14/cr4bd 75

aside: environment variables (2)

environment variable library functions:

getenv ("KEY") — value
putenv ("KEY=value") (sets KEY to value)
setenv("KEY", "value") (sets KEY to value)

int execve(char *path, char **argv, char *xenvp)

char *envp[] = { "KEYl=valuel", "KEY2=value2", NULL };
char *argv[] = { "somecommand", '"some_arg", NULL };
execve("/path/to/somecommand", argv, envp);

normal exec versions — keep same environment variables

76

aside: environment variables (3)

interpretation up to programs, but common ones...

PATH=/b1in:/usr/bin
to run a program ‘foo’, look for an executable in /bin/foo, then
/usr/bin/foo

HOME=/zf14/cr4bd

current user’'s home directory is ‘/zf14 /crdbd’

TERM=screen-256color
your output goes to a ‘screen-256color’-style terminal

e

multiple processes?

while (...) {
pid = fork();
if (pid == 0) {
exec ...
} else if (pid > 0) {
pids.push_back(pid);
}
}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {
waitpid(pid, ...);

78

waiting for all children
#include <sys/wait.h>

while (true) {
pid_t child_pid = waitpid(-1, &status, 0);
if (child_pid == (pid_t) -1) {
if (errno == ECHILD) {
/* no child process to wait for */
break;
} else {
/* some other error */

+
}
/* handle child_pid exiting */

79

multiple processes?

while (...) {
pid = fork();
if (pid == 0) {
exec ...
} else if (pid > 0) {
pids.push_back(pid);

}
+
/* retrieve exit statuses as processes finish */
while ((pid = waitpid(-1, ...)) != -1) {

handleProcessFinishing(pid);

}

‘waiting’ without waiting
#include <sys/wait.h>

pid_t return_value = waitpid(child_pid, &status, WNOHANG) ;
if (return_value == (pid_t) 0) {
/* child process not done yet */
} else if (child_pid == (pid_t) -1) {
/* error */
} else {
/* handle child_pid exiting */
+

81

parent and child processes

every process (but process id 1) has a parent process

getppid()

this is the process that can wait for it

creates tree of processes (Linux pstree command

Rnit(1)-+-NodenManager (919)-+- {Hodenhanager} (972)
- {Modenttanager } (1664)
~NetworkHanager (1160)-+-dhclient(1755)
| -dnsmasq(1985)
| - {NetworkManager} (1186)
| - {NetworkManager}(1194)
- {Networkianager} (1195)
d 1649)-4-{ 1757)
-{accounts-daemon}(1758)

-acpid(1338)
~apache2(3165). +-pache2(4125)-1-(apache2) (4126)
| -{apache2) (4127)
|-apache2(28520)-+- {apache2) (26926)
1 -{apache2}(28960)
|-apache2(28921)-+- {apache2} (28927)
1 apache2}(28963)
| -apache2(28922) - +- {apache2) (28928)
| -{apache2}(28961)
|-apache2(28923)-+- {apache2)(28930)
| ~{apache2}(28962)
| -apache2(28925) -+ {apache2} (28958)
1 apache2}(28965)
-apache2(32165)-+- {apache2} (32166)
-{apache2}(32167)
-at-spi-bus-laun(2252)-+-dbus-daenon(2269)
| -{at-spt-bus-laun}(2266)
|-{at-spi-bus-laun}(2268)
{at-spi-bus-laun}(2276)
{at-spiz-registr}(2282)

-at-spi2-registr(2275)

-atd(1633)

-autonount(13454)-+- {autonount (13455)
| -{automount}(13456)
| -{autonount} (13461)

| -{autonount} (13464)
- {automount}(13465)

~nongod (1

*~{ncollectived) (2038)
0} (1556)

e
nongod} (1983)
nongod) (2031)
~{mangod) (2047)
~{nongod) (2048)
~{nongod) (2049)
nongod) (2050)
o

hn-applet(2580) -+ - (nn-applet) (2739)
~{nn-applet}(2743)

nbi(z226)

ntpd(3091)

PoTkitd(1197)-+- (polkitd)(1239)
polkitd}(1240)

Pulseaudio(2563)-+- (pulseaudio) (2617)

Tseaudio} (2623)
BBz (puppet) (32455)

rtkit-daenon(2565)

- {reki-daenon) (2567)
-sd_clcero(2852) -+-5d_cicero(2s:

-sd_dunny(2849) -

5d_espeok(2749) (53 evpeaky (945)

| -fed ecpeak)(2846)

82

parent and child questions...

what if parent process exits before child?
child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()s (or equivalent) for child?

child process stays around as a “zombie”
can't reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

83

read’ing a fixed amount

ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {
/* cast to void * optional in C */
ssize_t amount_read =
read (STDIN_FILENO,
(void *) (result + offset),
amount_to_read - offset);
if (amount_read < 0) {
perror("read"); /* print error message */
... /X abort??? */
} else {
offset += amount_read;

- a e = , ~ o~ n . n . N o 1 . ~

partial reads

on regular file: read reads what you request

but otherwise: usually gives you what's known to be available
after waiting for something to be available

85

partial reads

on regular file: read reads what you request

but otherwise: usually gives you what's known to be available
after waiting for something to be available

reading from network — what's been received

reading from keyboard — what's been typed

85

write example (with error checking)

const char *ptr = "Hello,_ World!\n";
ssize_t remaining = 14;
while (remaining > 0) {
/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,
ptr,
remaining);
if (amount_written < 0) {
perror("write"); /* print error message */
... /X abort??? */
} else {
remaining —-= amount_written;
ptr += amount_written;

86

partial writes

usually only happen on error or interruption

but can request “non-blocking”
(interruption: via signal)

usually: write waits until it completes

= until remaining part fits in buffer in kernel
does not mean data was sent on network, shown to user yet, etc.

87

kernel buffering (reads)

program

operating system

kevboard | |

disk

88

kernel buffering (reads)

program

operating system

buffer: keyboard input
waiting for program

®|keypress happens, read|

kevboard | | disk

88

kernel buffering (reads)

program

2 read char

from terminal

3 ..via buffer

operating system

buffer: keyboard input
waiting for program

®|keypress happens, read|

kevboard | | disk

88

kernel buffering (reads)

program

1 l
L or2 read char 3|Mter

from terminal

operating system

buffer: keyboard input
waiting for program

2
Or®|keypress happens, read|

| kevboard | | disk

88

kernel buffering (reads)

1t or 2

program

read char 3|Mter 1 read char|

from terminal

from file

operating system

buffer: keyboard input
waiting for program

2
Or®|keypress ha

ppens, read|

| kevboard | | disk

88

kernel buffering (reads)

program

T | |
Lor2 read char 3|ﬁer ! read char| 3 via buffer

from terminal from file

operating system

bUfR.%rli keyboard input buffer: recently read
waiting for program data from disk

2 4 A
OrCD|keypress happens, read| 2 read block of data from disk

| keyboard | | disk |

kernel buffering (writes)

program

operating system

network ‘ ‘

disk

89

kernel buffering (writes)

program

print char
to remote machine

operating system

network ‘ ‘

disk

89

kernel buffering (writes)

program

print char
to remote machine

operating system

buffer: output
waiting for network

(when ready)
send data

network ‘ ‘ disk

89

kernel buffering (writes)

program
print char write char
to remote machine to file

operating system

buffer: output
waiting for network

(when ready)
send data

network ‘ ‘

disk

89

kernel buffering (writes)

program
print char write char
to remote machine to file

operating system

buffer: output
waiting for network

buffer: data waiting
to be written on disk

(when ready)

(when ready)

send data write block of data from disk
D A
network ‘ ‘ disk

89

read /write operations
read()/write(): move data into/out of buffer
possibly wait if buffer is empty (read)/full (write)

actual |/O operations — wait for device to be ready
trigger process to stop waiting if needed

90

filesystem abstraction

regular files — named collection of bytes
also: size, modification time, owner, access control info, ..

directories — folders containing files and directories

hierarchical naming: /net/zfl14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

91

open

int open(const char *path, 1int flags);
int open(const char *path, 1int flags, int mode);

int read_fd = open("dir/filel", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

92

open

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

path = filename

e.g. "/foo/bar/file.txt"
file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

93

open: file descriptors

int open(const char *path, 1int flags);
int open(const char *path, 1int flags, int mode);

return value = file descriptor (or -1 on error)
index into table of open file descriptions for each process

used by system calls that deal with open files

94

POSIX: everything is a file

the file: one interface for
devices (terminals, printers, ...)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

95

exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++1i) {

char c = '0' + 1;
write(pipe_fds[1], &c, 1);
}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don't fail)?
A. 0123456789 B. 0 C. (nothing)

D. Aand B E.Aand C F. A, B, and C

96

exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++1i) {

char c = '0' + 1;
write(pipe_fds[1], &c, 1);
}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don't fail)?
A. 0123456789 B. 0 C. (nothing)

D. A and B E.Aand C F. A, B, and C

97

empirical evidence

8
374
210

30
12

0

01

012

0123

01234
012345
0123456
01234567
012345678
0123456789

98

partial reads

read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn't gotten far enough

99

pipe: closing?

if all write ends of pipe are closed

can get end-of-file (read() returning 0) on read end
exit()ing closes them

— close write end when not using

generally: limited number of file descriptors per process
— good habit to close file descriptors not being used

(but probably didn't matter for read end of pipes in example)

100

dup?2 exercise
recall: dup2(old_fd, new_fd)

int fd = open("output.txt", O_WRONLY | O_CREAT, 0666);

write(STDOUT_FILENO, "A", 1);
dup2(fd, STDOUT_FILENO);
pid_t pid = fork();
if (pid == 0) { /* child: */
dup2 (STDOUT_FILENO, fd); write(fd, "B", 1);
} else {
write(STDOUT_FILENO, "C", 1);
+

Which outputs are possible?

A. stdout: ABC ; output.txt: empty D. stdout: A ; output.txt: BC
B. stdout: AC ; output.txt: B E. more?

C. stdout: A ; output.txt: CB

101

do we really need a complete copy?

bash new copy of bash
Used by OS Used by OS
Stack Stack
Heap / other dynamic Heap / other dynamic
Writable data Writable data
Code + Constants Code + Constants

102

do we really need a complete copy?

bash new copy of bash
Used by OS Used by OS
Stack Stack
Heap / other dynamic Heap / other dynamic
Writable data Writable data
Code + Constants Code + Constants

shared as read-only

102

do we really need a complete copy?

bash new copy of bash
Used by OS Used by OS
Stack Stack
Heap / other dynamic Heap / other dynamic
Writable data Writable data
Code + Constants can't be shared? Code + Constants

102

trick for extra sharing

sharing writeable data is fine — until either process modifies it

example: default value of global variables
might typically not change
(or OS might have preloaded executable’s data anyways)

can we detect modifications?

103

trick for extra sharing

sharing writeable data is fine — until either process modifies it

example: default value of global variables
might typically not change
(or OS might have preloaded executable’s data anyways)

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it's written

103

copy-on-write and page tables

VPN valid? Write?phySIcal
page
Ox00601 1 1 |0x12345
Ox00602 1 1 |0x12347
Ox00603 1 1 |0x12340
Ox00604 1 1 |Ox200DF
Ox00605 1 1 [OxX200AF

104

copy-on-write and page tables

VPN

0x00601
0x00602
Ox00603
0x00604
Ox00605

valid?write?phyzcaI

Ox12345

Ox12347

0x12340

OXx200DF

HE e e =

loolo|lo|el:

OX200AF

VPN

0x00601
0x00602
0x00603
0x00604
0x00605

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

vaIid?V\/rite?physelcaI

Ox12345

Ox12347

0x12340

Ox200DF

i R [R(R ||

lololo|lo|el:

OX200AF

104

copy-on-write and page tables

VPN valid? Write?phyzIcal VPN valid? write?physeIcal

Ox00601 1 0O |0x12345 Ox00601 1 0O |0x12345
Ox00602 1 0 [0x12347 Ox00602 1 0 [0x12347
Ox00603 1 0 [0x12340 Ox00603 1 0 [0x12340
Ox00604 1 0O |Ox200DF Ox00604 1 0O [OX200DF
Ox00605 1 0 |Ox200AF |Ox00605 1 0O |Ox200AF

when either process tries to write read-only page
triggers a fault — OS actually copies the page

104

copy-on-write and page tables

VPN

0x00601
0x00602
Ox00603
0x00604
Ox00605

hysical hysical
valid? Write?p yzlca VPN valid? Write?p yselca
1 0O |0x12345 Ox00601 1 0O |0x12345
1 0 [0x12347 Ox00602 1 0 [0x12347
1 0 [0x12340 Ox00603 1 0 [0x12340
1 0O |Ox200DF Ox00604 1 0O [OX200DF
1 0] 1 1

OX200AF

[0X00605

Ox300FD

after allocating a copy, OS reruns the write instruction

104

fork (w/ copy-on-write, if parent writes first)
memory

parent process info

rax (return val.)=42child pid,
user regs rcx=133, ..
page tables
: fdo: .
open files fd1

105

fork (w/ copy-on-write, if parent writes first)

copy

parent process info

rax (return val.)=42child pid,

memory

user regs rcx=133, ..
page tables
: fdo: .
open files fd1
child process info
rax (returnval.)=420,
User regs rcx=133, ..
page tables
open files fdo: ..

fd1l: ..

105

fork (w/ copy-on-write, if parent writes first)

parent process info memory
user regs rax (return val.)=42child pid, ___»3: on parent
rcx=133, .. ! B 1 write
page tables - rE=——ehared
: fd 0: .. —| = #———read-only
open files fd1: .. FER]
: {} copied
copy child process info i | for
rax (return val.)=420 ' parent's
user regs ’
& rcx=133, .. J > write
page tables
: fdo: .
open files fd 1 o

105

fork (w/ copy-on-write, if parent writes first)

copy

parent process info memory
user regs rax (returnval.)=42child pid, ___»55 i no longer
rcx=133, .. ! [1 share
page tables FEps }share
- fdo: . = #———read-only
open files fd1 ==t
_ _ DLt {} copied
child process info o | for
rax (return val.)=420 ' parent's
user regs Fex=133, .. ’ . write
page tables
: fdo: .
open files fd1s

105

fork (w/ copy-on-write, if parent writes first)

copy

parent process info

rax (returnval.)=42child pid,

memory

user regs rcx=133, ..
page tables
: fdo: .
open files fd1
child process info
rax (return val.)=420,
User regs rcx=133, ..
page tables
open files fdo: ..

fd1l: ..

i}copmd

for
parent’s
write

105

fork and process info (w/o copy-on-write)
memory

copy

parent process info

user regs

rax (returnval.)=42child pid,
rcx=133, ..

memory mapping

open files ES (i
child process info
user regs E?i:(fge;fm val.)=420,
memory mapping
open files fdo: ..

fd1l: ..

106

	process creation and management
	fork
	fork example
	fork exercise
	exec
	aside: fork+exec, really?
	wait
	summary diagram
	exercises (fork+exec+wait)

	shell features
	fd management
	I/O redirection: syntax, method preview
	pipelines

	files in POSIX, part 1
	interlude: file descriptors
	getting file descriptors
	close
	Shell: redirection
	dup2: redirection mechanism
	open/close/dup/fork and fd array
	shared/unshared seek pointers

	pipelines
	pipe
	pipe example
	pipe and pipelines
	pipe exercise

	POSIX api summary
	backup slides
	shells
	shells, the concept
	searching for programs
	kernel buffering
	layers of file interfaces
	pipe blocking
	waiting for more than one?
	POSIX and Unix
	getpid
	read, write
	aside: environment variables
	wait for mutliple
	wait for all
	wait for all (alt)
	waitpid WNOHANG
	parent and child

	partial reads and writes
	partial reads and read error checking
	partial writes and write error checking
	kernel buffering
	open
	Unix: everything is a file

	pipe exercise (partial reads)
	pipe: closing?
	dup2 exercise
	aside: copy-on-write
	fork with copy-on-write

