
CS 3130 intro

1

changelog
2023-01-19: add missing libfoo.a to ar command line example

2

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

3

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

4

make
$./foo.exe
...
...
$ edit readline.c
$ make
clang -g -O -Wall -c readline.c -o readline.o
ar rcs terminal.o readline.o libreadline.a
clang -o foo.exe foo.o foo-utility.o -L. -lreadline
$

5

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

6

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

8

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

8

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

9

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

10

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

11

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

11

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

11

multiple cores+threads
firefox graphics ssh

clang firefox networking clang

core 1:

core 2:

multiple cores? each core still divided up

12

multiple cores+threads
firefox graphics ssh

clang firefox networking clang

core 1:

core 2:

one program with multiple threads

12

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

13

permissions
$ ls /u/other/secret
ls: cannot open directory '/u/other/secret': Permission denied
$ shutdown
shutdown: Permission denied

14

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

15

layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

16

more than four layers?
sometimes more layers above ‘application’

e.g. HTTPS:
HTTP (app layer) on TLS (another app layer) on TCP (network) on …

e.g. DNS over HTTPS:
DNS (app layer) on HTTP on on TLS on TCP on …

e.g. SFTP:
SFTP (app layer??) on SSH (another app layer) on TCP on …

e.g. HTTP over OpenVPN:
HTTP on TCP on IP on OpenVPN on UDP on different IP on …

17

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

18

secure communication?
how do you know who your socket is to?

who can read what’s on the socket?

what can you do to restrict this?

19

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

20

2004 CPU

Registers
L1 cache

L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

2004 CPU
Registers

L1 cache

L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 21

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design on networks

under the hood of fast processors
caching and (hidden) parallelism

22

some performance examples
example1:

movq $10000000000, %rax
loop1:

addq %rbx, %rcx
decq %rax
jge loop1
ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movq $10000000000, %rax

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2
ret

about 40B instructions
my desktop: approx 2.65 sec

23

some performance examples
example1:

movq $10000000000, %rax
loop1:

addq %rbx, %rcx
decq %rax
jge loop1
ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movq $10000000000, %rax

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2
ret

about 40B instructions
my desktop: approx 2.65 sec

23

logistics

24

labs
attend lab in person and get checked off by TA, or

(most labs) submit something to submission site and we’ll grade it
submit to submission site? don’t care if you attend the lab
more strict about submissions without checkoffs being complete/correct
(can’t tell how much time you actually spent)
in-person lab checkoff of incomplete lab at least 50% credit

some labs will basically require attendance
or contact me for other arrangements if you can’t (sick, etc.)
logistically won’t work otherwise — e.g. code review

25

lab collaboration and submissions
please collaborate on labs!

when working with others on lab and submitting code files

please indicate who you worked with in those files
via comment or similar

26

quizzes
released evening after Thursday lecture

starting next week

due 15 minutes before lecture on Tuesdays

about lecture and/or lab from the prior week

4–6 questions

individual, open book, open notes, open Internet
okay: looking up resources/tutorials/etc.
not okay: asking Stack Overflow the quiz question
not okay: IMing your friend the quiz question

27

asking about quiz questions
I and the TAs won’t answer quiz questions…

but we will answer questions about the lecture material, etc.

(and TAs (not you) are responsible for knowing
what they can’t answer
but we’d prefer you don’t try to test those limits)

28

homeworks
several homework assignments

done individually

due before a week’s first lab

29

exams
1 final exam

no midterms — instead:
quizzes count a lot
slightly more homework/lab than pilot

30

development enviroment
official: department machines via SSH or NX (remote desktop)

you can also use your own machines, but…

we will test your code on x86-64 Linux

I haven’t checked assignments on a Windows or OS X machine

31

getting help
office hours — calendar will be posted on website

mix of in-person and remote, indicated on calendar
remote OH will use Discord + online queue
in-person OH may or may not — indicated on whiteboard, probably

Piazza
use private questions if homework code, etc.

emailing me (preferably with ‘3130’ in subject)

32

late policy
no late quizzes

one quiz dropped (unconditionally)

90% credit for 0–48 hours late homeworks

80% credit for 48–72 hours late homeworks

for labs that allow submission only, same policy as homeworks
lab submission due time is 11:59pm

for other labs, policy on a lab-by-lab basis

33

excused lateness
special circumstances?

illness, emergency, etc.

contact me, we’ll figure something out

please don’t attend lab/etc. sick!

34

attendance
I won’t take attendance in lecture

I will attempt to have lecture recordings
sometimes there may be issues with the recording

35

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

36

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

36

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o./program ...

36

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o

./program ...

36

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o

./program ...

36

files in building C programs [static linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(compiler files) libc.a

37

file extensions
name
.c C source code
.h C header file
.s (or .asm) assembly file
.o (or .obj) object file (binary of assembly)
(none) (or .exe) executable file
.a (or .lib) statically linked library [collection of .o files]
.so (or .dll) dynamically linked library [‘shared object’]

38

static libraries
Unix-like static libraries: libfoo.a

internally: archive of .o files with index

create: ar rcs libfoo.a file1.o file2.o …

use: cc … -o program -L/path/to/lib …-lfoo
cc could be clang, gcc, clang++, g++, etc.
-L/path/to/lib not needed if in standard location

39

shared libraries
Linux shared libraries: libfoo.so

create:
compile .o files with -fPIC (position independent code)
then: cc -shared … -o libfoo.so

use: cc …-o program -L/path/to/lib …-lfoo

40

finding shared libraries
cc …-o program -L/path/to/lib …-lfoo

on Linux: /path/to/lib only used to create program
program contains libfoo.so without full path

Linux default: libfoo.so expected to be in /usr/lib, /lib, and
other ‘standard’ locations

possible overrides:
LD_LIBRARY_PATH environment variable
paths specified with -Wl,-rpath=/path/to/lib when creating
executable

41

exercise (incremental compilation)
program built from main.c + extra.c

main.c, extra.c both include extra.h, stdio.h

clang -c main.c # command 1
clang -c extra.c # command 2
clang -o program main.o extra.o # command 3

What commands need to be rerun if…

Question A: …main.c changes?

Question B: …extra.h changes?

42

backup slides

43

	overall themes
	briefly, building
	briefly, virtual memory
	interrupts
	kernel mode / permissions

	networking
	layered design
	addresses and names
	secure communication

	caching
	instruction-level parallelism
	labs
	quizzes
	homeworks
	final
	dev environment
	getting help
	late policy
	attendance/etc.
	files in building C programs
	libraries, static and shared
	exercise: commands to build

	backup slides

