
1

last time
make and Makefiles

target: prereq (newline)(tab) commands
suffix/pattern rules
variables CC/CFLAGS/…

kernel mode versus user mode
limit operations to OS code
OS code checks “is this allowed”

system calls
controlled entry into kernel mode
starts at OS-specified location
typically called by library (not directly)

2

on the lab
some common issues TAs/I saw:

not checking that the guesser program worked
setting CFLAGS, LDFLAGS, but not using them in rules
wrong target first in Makefile (so ‘make’ doesn’t do ‘make all’)
not setting either LD_LIBRARY_PATH (runtime) or -rpath (linktime)
uploading files with spaces instead of tabs (copy/paste?)

misc. weirdness:
apparently some versions of clang on portal may be missing libraries for
-static?

3

quiz demo

4

warmup assignment

5

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

6

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

7

memory protection
reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

8

memory protection
reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is …
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

8

memory protection
reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42 (always)
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

9

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

10

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

11

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

12

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

13

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

14

shared memory
recall: dynamically linked libraries

would be nice not to duplicate code/data…

we can!

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

Shared code or data
OS data

real memory

15

one way to set shared memory on Linux
/* regular file, OR: */
int fd = open("/tmp/somefile.dat", O_RDWR);
/* special in-memory file */
int fd = shm_open("/name", O_RDWR);
...
/* make file's data accessible as memory */
void *memory = mmap(NULL, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

mmap: “map” a file’s data into your memory

will discuss a bit more when we talk about virtual memory

part of how Linux loads dynamically linked libraries

16

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

17

an infinite loop
int main(void) {

while (1) {
/* waste CPU time */

}
}
If I run this on a shared department machine, can you still use it?
…if the machine only has one core?

18

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

19

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

20

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

21

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

22

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

22

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

22

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

23

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

23

threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

24

threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

24

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

25

OS and time multiplexing
starts running instead of normal program

mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

26

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

27

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

28

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

29

types of exceptions
externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

intentionally triggered exceptions
system calls — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

31

terms for exceptions
terms for exceptions aren’t standardized

our readings use one set of terms
interrupts = externally-triggered
faults = error/event in program
trap = intentionally triggered

all these terms appear differently elsewhere

32

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

33

exception implementation: notes
I describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

34

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

35

running the exception handler
hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

36

which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

37

which require exceptions [answers] (1)
A. program calls a function in the standard library

no (same as other functions in program; some standard library functions
might make system calls, but if so, that’ll be part of what happens after
they’re called and before they return)

B. program writes a file to disk
yes (requires kernel mode only operations)

C. program A goes to sleep, letting program B run
yes (kernel mode usually required to change the address space to acess
program B’s memory)

38

which require exceptions [answer] (2)
D. program exits

yes (requires switching to another program, which requires accessing OS
data + other program’s memory)

E. program returns from one function to another function
no

F. program pops a value from the stack
no

39

which require context switches [answer]
no: A. program calls a function in the standard library

no: B. program writes a file to disk
(but might be done if program needs to wait for disk and other things
could be run while it does)

yes: C. program A goes to sleep, letting program B run

yes: D. program exits

no: E. program returns from one function to another function

no: F. program pops a value from the stack

40

The Process
process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

41

signals
Unix-like operating system feature

like exceptions for processes:

can be triggered by external process
kill command/system call

can be triggered by special events
pressing control-C
other events that would normal terminate program

‘segmentation fault’
illegal instruction
divide by zero

can invoke signal handler (like exception handler)
42

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

43

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

43

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

43

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

43

backup slides

44

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

45

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

45

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o./program ...

45

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o

./program ...

45

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o

./program ...

45

files in building C programs [static linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(compiler files) libc.a

46

file extensions
name
.c C source code
.h C header file
.s (or .asm) assembly file
.o (or .obj) object file (binary of assembly)
(none) (or .exe) executable file
.a (or .lib) statically linked library [collection of .o files]
.so (or .dll) dynamically linked library [‘shared object’]

47

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

48

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

49

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

49

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

49

interrupt disabling
CPU supports disabling (most) interrupts

interrupts will wait until it is reenabled

CPU has extra state:
are interrupts enabled?
is keyboard interrupt pending?
is timer interrupt pending?

50

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

51

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

51

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

51

disabling interrupts
automatically disabled when exception handler starts

also can be done with privileged instruction:
change_keyboard_parameters:

disable_interrupts
...
/* change things used by

handle_keyboard_interrupt here */
...
enable_interrupts

52

	memory protection
	exercise: expected behavior?
	address spaces
	preview: shared memory

	infinite loop
	time multiplexing
	context switching idea
	thread idea
	context switches

	not just timers
	reasons for exceptions, generally
	aside: terms

	exception table + dispatch
	exercise
	process
	signals
	idea

	backup slides
	files in building C programs
	key-in timeline
	nested exceptions?

